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 Abstract—Tilted Bianchi type I cosmological model with 

barotropic fluid distribution and heat conduction is 
investigated. To get deterministic solution, we have assumed 
barotropic condition ( p γρ= ), where p being isotropic 

pressure, ρ  the matter density with 0 1γ≤ ≤ .Also, we 
assumed that the expansion in the model is only in two 
directions i.e. one of the component of Hubble parameter 

4
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A
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is zero. The physical and geometrical aspects of the 

model are also discussed. 
 

Index Terms—Tilted cosmological model; bianchi type-I 
universe; barotropic fluid. 

 

I. INTRODUCTION 

Homogeneous and anisotropic cosmological models have 
been widely studied in classical general relativity in the 
search for a relativistic picture of the universe in its early 
stages because they can be explained a number of observed 
phenomena quite satisfactorily. So that in recent years, there 
has been a considerable interest in investigating spatially 
homogeneous and anisotropic cosmological models in 
which mater do not move orthogonally to the hyper surface 
of homogeneity. These types of models are called tilted 
cosmological models. The general dynamics of these 
cosmological models have been studied in details by King 
and Ellis [1] and they have shown that in such universe, the 
matter move with non-zero expansion, rotation and shear.  
Also, Ellis and King [2], Collins and Ellis [3], Ellis and 
Baldwin [4] have shown that we are likely to be living in a 
tilted universe and they have indicated that how we may 
detect it. 

The Bianchi models can be used to analyze aspects of the 
physical universe which pertain to or which may be affected 
by anisotropy in the rate of expansion.Bianchi type I 
cosmological models have been studied by several authors 
in various context viz. Mazumdar [5], Aguirregabiria [6], 
Yavuz [7], Beesham [8]. Johri et al. [9] investigated the 
general Bianchi type I cosmological solution corresponding 
to spatially homogeneous and anisotropic models containing 
barotropic fluid.Cosmological models with heat flow have 
been studied by various author viz. Novello and Reboucas 
[10], Ray [11], Reboucas and Lima [12], Roy and Banerjee 
[13, 14].Bagora [15-16] obtained tilted Bianchi type I and 
III cosmological model for disordered radiation and stiff 
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fluid distribution. Motivated by these studies, in this paper 
we propose to find tilted Bianchi type I cosmological model 
for barotropic fluid.Also, we assumed that the expansion in 
the model is only in two directions i.e. one of the 
component of Hubble parameter is zero. The physical and 
geometrical aspects of the model are also discussed. 

 

II. THE FIELD EQUATIONS 
We consider the Bianchi type-I metric in the form 

2 2 2 2 2 2 2ds dt dx dy  dz= + + B + C−                       (1) 

where B and C are functions of‘t’ alone.  
The energy-momentum tensor for perfect fluid 

distribution with heat conduction given by Ellis [17] is 
given by 

 ( )j j j j j
i i i i iT p v v pg q v v qρ= + + + +             (2) 

Together with 

 gijv
i
vj = − 1   (3) 

 q i q
i
> 0      (4) 

 qivi = 0     (5) 

In the above, p is the isotropic pressure, ρ  the matter 
density, qi the heat conduction vector orthogonal to vi. The 

fluid flow vector vi has the components (sinh λ , 0, 0, cosh
λ ) satisfying (3), λ being the tilt angle. 

The Einstein’s field equation 
1 8
2

j j j
i i iR Rg Tπ− =− , (c = G = 1) 

The field equation for the line element (1) leads to  

244 44 4 4
1

B
8  sinh 2 sinh

BC
B C C

+ + = π ( p) p q
B C

ρ λ λ⎡ ⎤− + + +⎢ ⎥⎣ ⎦

                               (6) 
44 8

C
= πp

C
−                                     (7)                   

44 8
B

= πp
B

−              (8) 

24 4
18  cosh 2 sinh

B C
= π ( p) p q

BC
ρ λ λ⎡ ⎤− − + + −⎢ ⎥⎣ ⎦       (9) 

2

1 1
sinhsinh cosh cosh 0
cosh

( p) q q λ
ρ λ λ λ

λ
+ + + =    (10) 

 
where the suffix ‘4’ stands for ordinary differentiation with 
respect to the cosmic time ‘t’ alone. 

Tilted Bianchi Type I Barotropic Cosmological Model 

Anita Bagora and Rakeshwar Purohi 



 

 

  

 

 

  

 

 

.                   

 

 

 

  

 

 
                  

International Journal of Applied Physics and Mathematics, Vol. 2, No. 5, September 2012

397

III. SOLUTION OF THE FIELD EQUATIONS 
Equations from (6)-(10) are five equations in six 

unknown B, C ρ , p, 1q  and λ .For the complete 
determination of these quantities, we assume that the model 
is filled with barotropic perfect fluid which leads to 

 
                     p γ ρ=                                       (11) 

where  0 1γ≤ ≤ . 
Equations (6) and (9) with (11) lead to 

44 44 4 42B C
 8 ( )

BC
B C p p
B C

π
γ

⎡ ⎤
⎢ ⎥+ + = −⎢ ⎥⎣ ⎦

          (12) 

Using (8) in (12), we have 

 44 44 4 4 442B C 1  ( 1)
BC

B C B
B C B γ

+ + =− −       (13) 

Equations (7) and (8) lead to 

44 44 0
B C
B C

− =          (14) 

Let us assume that  

BC μ=   B  
C

ν=            (15) 

With the help of (15), equation (14) leads to  

4 aν
ν μ

=            (16) 

where ‘a’ is constant of integration.  

Using (15) and (16) in (13), we have  
   

 
2 2

4
442 aμ α

μ α
μ μ

+ =                  (17) 

where    1
1

γ
α

γ
−

=
+

      

Equation (17) gives   

 2 2
4

ba αμ
μ

= +                                    (18) 

 where ‘b’ is constant of integration and 4 ( )fμ μ=  
Equation (18) leads to 

2

adlog   
a bα

μ
ν

μ μ
=

+
∫                 (19) 

Hence the metric (1) reduces to the form 
2

2 2 2 2
2

dds   
f

dx dy dzμ μ
μν

ν
= − + + +     (20) 

 
By introducing the following transformations 
 μ  = T, x = X, y = Y, z = Z. 
The metric (20) reduces to the form 

2
2 2 2 2

2

Tds   T dYT dT dX dZ
a T b

α

α ν
ν

−
= + + +

+
   (21) 

where ν is determined by (19) when μ= T.  
 

IV. SOME PHYSICAL AND GEOMETRICAL FEATURES 
The matter density ρ  and isotropic pressure p for the 

model (21) are given by 

          3 1 18
2(1 )

bπ p =
T γ γ

γ
γ + ++

          (22)     

          3 1 18
2 (1 )

bπ =
T γ γρ

γ γ + ++
         (23) 

The tilt angle λ  is given by  

(1 3 )cosh
2(1 )

γ
λ

γ
+

=
+

          (24) 

( 1)sinh
2(1 )
γ

λ
γ

−
=

+
        (25) 

The scalar of expansion θ  calculated for the flow vector 
vi for the model (21) is given by 

 
21 (1 3 )( T b)

T 2(1 )
aθ =

T

α

α

γ
γ

+ +
+

   

      (26) 
The flow vectors vi and heat conduction vectors q i for 

the model (21) are given by 

1 ( 1)
2(1 )
γ

ν
γ

−
=

+
                       (27) 

 4 (1 3 )
2(1 )

v γ
γ

+
=

+
                      (28)   

1 2 3 1 1

(1 3 ) 1
2( 1)16 (1 )

bq =
T γ γ

γ γ γ
γπ γ + +

− + −
++

         (29) 

4 2 3 1 1

( 1) 3 1
2( 1)16 (1 )

bq =
T γ γ

γ γ γ
γπ γ + +

− +
++

     (30) 

The non-vanishing components of shear tensor (σ ij) are 

2

11
(3 1) (1 3 )( )

12( 1)T 2(1 )
a T bσ =

T

α

α

γ γ
γ γ

− + + +
+ +

  (31) 

2

14
(3 1) ( 1)( )

12( 1)T 2(1 )
a T bσ =

T

α

α

γ γ
γ γ
+ − +
+ +

      (32) 

1 4
11 14 0=σ ν σ ν+ =   (33) 

The physical significance of conditions (33) is explained 
by Ellis [18]: The shear tensor ( )ijσ determines the distortion 
arising in the fluid flow, leaving the volume invariant. The 
direction of principal axis is unchanged by the distortion, 
but all other directions are changed. Thus, we have 

Which leads to 0j
ijσ ν =  

1 4
11 14 0σ ν σ ν+ =     ( 1 40, 0ν ν≠ ≠∵ ) 

Shear ( σ ) is given by 
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2 1
2

ij
ijσ σ σ=  

Thus 2 0σ ≥ and 0 0ijσ σ= ⇔ =  
 

V. CONCLUSION 
The reality conditions pρ+ > 0, 3pρ+ > 0 given by 

Ellis [19] lead to b> 0, 1γ+ > 0 or b<.0 1γ+ <0 ie these 
conditions hold good when 0γ =  i.e. 0p =  The matter 
density ρ→∞  when T 0→ and 0ρ→ when T →∞  
therefore ρ  is the decreasing function of time. The model 
starts with a big-bang at T=0 and the expansion in the 
model decreases as time increases. Also, the velocity 
components 1ν  and 4ν are constant i.e. flow is uniform and 
tilt angle is independent of time. The condition 0j

ijσ ν =  is 

satisfied as 1 4
11 14 0=σ ν σ ν+ .The model has cigar type 

singularity at T=0 when α > 0 and it has point type 
singularity at T=0 when α < 0(MacCallum, [20]). Also, the 

declaration parameter 
2 2

2 2 2

[ 2 ]1
3 ( )

a T b bq
T T a T bα

α α
+

+ +
=− +

+
 

Implies an accelerating model of the universe. Recent 
observations of type Ia supernovae [21], [22] reveal that the 
present universe is in accelerating phase and deceleration 
parameter lies somewhere in the range 1 < q ≤ 0. It also 
follows that our model of the universe consistent with 
recent observations. The deceleration parameter q 
approaches the value (1) as in the case of de-Sitter universe. 
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