
 

  
Abstract—In This section we study of Mixed convective heat 

transfer of non-Newtonian fluids through porous medium with 
magnetic field on a flat plate has been investigated using a 
modified power – law viscosity model. This model does not 
contain physically unrealistic limits of zero or infinite viscosity 
as are encountered in the boundary - layer formulation with 
traditional models of viscosity for power – law fluids through 
porous medium with magnetic field. These unrealistic limits 
can introduce an irremovable singularity at the leading edge; 
the present modified model matches well with the 
measurement of viscosity, and does not introduce irremovable 
singularities. Therefore, the boundary layer equations can be 
solved by marching from the leading edge downstream as for 
Newtonian fluids. The numerical results are presented for a 
shear-thinning fluid in terms of the velocity and temperature 
distribution, and for important physical properties, namely the 
wall shear stress and heat transfer rates.  
 

Index Terms—Mixed convection, boundary layer, non-
newtonian, modified power low, finite difference, flat plate, 
porous medium, magnetic field 

 

I. INTRODUCTION 
Free convection can have significant effects on forced 

flows over solid bodies. It can alter the flow field and, hence 
the heat transfer rate and the wall shear stress. Such effects 
are particularly enhanced for high-speed rotating 
machineries due to their large centrifugal forces. The effect 
of natural convection is accumulative so it cannot be 
ignored even when the flow acceleration is small. The 
simplest physical model is a two-dimensional mixed forced 
and free convection along a flat plate. Understanding of 
fundamental mechanism of this interaction can help to 
estimate more accurately the heat transfer rate and pumping 
power for complex geometries of practical interest in order 
to prevent unnecessary burn-out of heated surfaces.  

Few authors recognize that length scale is associated with 
the power-law correlation. Due to this length scale, 
boundary layer problems with power – law, non-Newtonian 
fluids cannot have simple self-similar solutions. It is 
nevertheless a common practice to ignore, without 
justification, the dependence of boundary – layer solutions 
on the steam wise coordinate. It has been demonstrated in 
(2008) that such a self – similar solution is actually only 
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valid at the leading edge of the boundary-layer. This 
similarity solution is the required upstream condition at the 
leading edge of the flat plate to integrate boundary-layer 
equations along the stream wise direction. 

Traditional power-law correlation, that in the limit of 
large or small shear rates, Traditional power-law 
correlations introduce non-removable singularities into 
boundary-layer formulations for infinite or zero viscosity. 
Without recognizing the cause of such unrealistic conditions, 
complex multi-layer structures have been introduced by 
many authors. 

A recently proposed modified power-law correlation is 
sketched for a number of values of the power index ‘n’. It is 
clear that this new correlation does not contain physically 
unrealistic limits of zero and infinite viscosities as do 
traditional power-law correlations. The modified power-law, 
in fact, fits measured viscosity data better. The constants in 
the proposed model are fixed with available measurements 
and described in detail in (2008), where the boundary-layer 
formulation on a flat plate is described and numerically 
solved. The associated heat transfer for two different heating 
conditions is reported (2008). A shear-thinning fluid, whose 
power-law index is 0.95, slightly different from Newtonian 
fluids for which n = 1, was selected in the study of (2008, 
2008). In (2009, 2008, and 2008) this analysis is extended to 
fluids whose power-law indexes are 0.6, 0.8, 1, 1.2 and 1.4 
in order to fully demonstrate the effect of non-Newtonian 
fluids. In this paper, results for mixed convection of non-
Newtonian fluids along a vertical flat plate using the 
modified power-law model for shear – thinning fluid are 
presented. A similar analysis for natural convection along a 
vertical heated flat plate appears in (2008). Recently, Molla 
and Yao (2009) have studied on mixed convection of non-
Newtonian fluids along a heated vertical flat plate, 

The Nusselt number and shear stress distributions can be 
well correlated in terms of length scale for all combination 
of the Reynolds and Rayleigh numbers since the flows are 
laminar. This is not true for non-Newtonian fluids, since the 
new length scale, introduced into the formulation by the 
traditional power-law correlation, becomes the dominant 
length scale of mixed convection boundary-layers for 
power-law fluids through porous medium with magnetic 
field. This will be demonstrated by numerical results 
presented in section 3. 

 

II.   FORMULATION OF PROBLEM 
A steady laminar boundary-layer of a non-Newtonian 

fluid through porous medium along a semi-infinite heated 
flat plate with magnetic field has been studies. The viscosity 
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depends on the shear rate and is correlated by a modified 
power-law for shear-thinning non-Newtonian fluids. It is 
assumed that the surface temperature of the plate Tw, where 

wT T∞>  Here T∞ ambient temperature of the fluid and T is 
the temperature of the fluid. The coordinate system is shown 
in Fig. 1. 

Fig. 1 (Physical Model and Coordinates) 

The equations governing the flow and heat transfer are               
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where ,  u v are velocity components along the 

( ),x y axes, T is the temperature, and α is the thermal 

diffusivity of the fluid. The viscosity is correlated by a 
modified power-law, which is  
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The constant 1γ  and 2γ , are threshold shear rates, ρ is the 
density of the fluid, and k is a dimensional constant, whose 
dimension depends on the power – law index n. the values 
of these constants can be determined by matching with 
measurements. Outside of the above range, viscosity is 
assumed constant; its value can be fixed with data given. 

The boundary conditions for the present problem are  

                  

0

0,          0

,                   

wu v T T at y

u U T T as y∞

= = = = ⎫
⎪
⎬
⎪= → → ∞ ⎭

                                                                               

(2.5) 

where Uo is the free steam velocity.  
We now introduce the following non – dimensional 

transformations;  
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where v1 is the reference viscosity, θ is the dimensionless 
temperature of the fluid, Re is the Reynolds number and Gr 
is the Grashof number. The length scale is  
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Substituting variables (2.6a) into Eqs. (2.1) - (2.4) leads 
to the following non-dimensional equations 

                        0,
u v
x y

∂ ∂
+ =

∂ ∂
                       (2.7) 

      

          
2Re

u u u Gr
u v D Qu

x y y y
θ

∂ ∂ ∂ ∂
+ = + −

∂ ∂ ∂ ∂
⎡ ⎤
⎢ ⎥⎣ ⎦

  (2.8)

        

                   
2

2

1
 ,

Pr
v

x y y
θ θ θ∂ ∂ ∂

+ =
∂ ∂ ∂

                  (2.9) 

where 

1

1 11

 o

n nnk U u u
D C

v l y yρ

− −− ∂ ∂
= =

∂ ∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

       (2.10) 

 

0

1
Q M

K
= +
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

where Pr is the Prandtl number. The physical meaning of  
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that the non-Newtonian effect becomes apparent and the 
length scale that the natural convection effect grows 

dominant. For larger 
2

,
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  it takes shorter distance for the 

effect of natural convection becomes dominant.  
The boundary conditions (2.5) become 
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Next the equations are transformed to parabolic 
coordinates [1987] 
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In order to remove the singularity at the leading edge, and 
to minimize the variation of the boundary-layer thickness 
for computational convenience. Consequently, Eqs. (2.7) - 
(2.9) become 
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The correlation (2.16) is a modified power-law 
correlation first presented by Yao and Molla (2008), this 
correlation describes that if the shear rate |γ| lies between 
the threshold shear rates γ1 and γ2 then the non-Newtonian 
viscosity, D, varies with the power-law 
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of γ. On the other hand, if the shear rate | γ | do not lie within 
this range, then the non-Newtonian viscosities are different 
constants as shown. This is property of many measured 
viscosities.  

Eqs. (2.13) - (2.15) can be solved by marching 
downstream with the upstream condition satisfying the 
following differential equations.  
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Which are the limits of Eqs. (2.17) - (2.19) as 0ξ → . 
The corresponding boundary conditions are 
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Eqs. (2.13) - (2.15) and (2.17) – (2.19) are discredited by 
a central – difference scheme for the diffusion term and a 
backward-difference a scheme for the convection terms; 
finally we get a system of implicit tridiagonal algebraic 
system of equations. The algebraic equations have been 
solved by a double – sweep technique. In the computation 
the continuity equation is directly solved for the normal 

velocity component V. hence, the truncation errors are 
( )O .ξΔ  The computation is started from ξ =  0.0 and 

then marches downstream to ξ = 100. After several test 
runs, convergent results are obtained by using 

92 10ξ −Δ = × and 0.1ηΔ = near the leading edge 

from ξ = 0.0 to 610ξ −= afterwards ξΔ  is gradually 

increased by the relation ( ) ( )2new oldξ ξΔ = Δ up to 

ξΔ =0.005 
The physical quantities of principle interest are the wall 

shear stress in terms of the skin – friction coefficient Cf and 
the rate of the heat transfer in terms of the Nusselt number 
Nu, which are, respectively,  
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III. RESULTS AND DISCUSSION: 
Numerical results are presented for the case of a non-

Newtonian power-law fluid of shear – thinning (n = 0.6) 
case along with Newtonian fluid (n =1.0) for the value of 
the Prandtl number Pr =1.2. Computations have been done 
for threshold shear rates limits of γ1= 0.1 and γ2 =105 and for 
two values of the mixed convection parameter Gr/Re2 (= 0.1 
or 1.0). The non-dimensional viscosity, D, given by the 
modified power-law correlation, which as a function of the 
non-dimensional shear rate γ. The singularity experienced at 
the leading edge for the traditional power-law correlation 
has been successfully removed without any difficulty by 
using the present modified power-law correlation. Since the 
shear stress at the leading edge is inversely proportional to  

2ξ    it is infinite there, and D = 

1

2

1

n

γ
γ

−

⎛ ⎞
⎜ ⎟
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at the leading 

edge.  
The velocity distribution as a function of η at selected ξ 

locations for the power law index n = 0.6 are depicted in 
Figures – (5.1) and (5.2) for Gr/Re2 = 0.1 and Gr/Re2 =1.0, 
respectively at ξ = 0, the velocity distribution is the forced 
convection similarity velocity profile, from figures – (5.1) 
and (5.2), it is observed that the natural convection has a 
significant influence on the flow field. For Gr/Re2 = 0.1, it 
takes longer distance for the natural convection effect 
becomes dominant. On the other hand, for Gr/Re2 =1.0, the 
natural convection takes short distance becomes the 
dominant mode. The velocity distribution is the natural 
convection has a significant influence on the flow field for 
magnetic field and porosity. In figure – (5.3), the velocity 
distribution decreases with increase the values of magnetic 
field (M). The velocity distribution increases due to increase 
the value of porosity parameter (K) in figure – (5.4).  
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The corresponding temperature distributions are plotted 
Figures - (5.5) and (5.6), respectively, for different values of 
ξ and Pr at Gr/Re2 = 0.1, the temperature distribution is 
larger than any other location since, near ξ =1, the 
temperature distribution is enhanced due the combined 
mode of forced and natural convection. On the other hand, 
the temperature distribution decreases as increase in the case 
of ξ, which is expected due to the natural convection mode. 
In figure – (5.6), the temperature distribution decreases due 
to increase the values of Pr for natural convection.   

The axial distribution of the skin – friction coefficient 
1

2(2 )
f

C ξ  and the Nusselt number 
1

2(2 )Nu ξ − are 

derived in equations – (2.21) and (2.22), respectively, for Pr 
= 1.2, n = 0.6 and Gr/Re2 = 0.1, with the forced convection 
limit. It is observed that the forced convection solutions 
coincide with the full mixed convection solutions for 
comparison, we have provided only forced convection 
solutions because the forced convection and the mixed 
convection length scales are same for the non-Newtonian 
fluids, but it is difficult to compare with the mixed and free 
convection solutions due to the different length scales 
(2008). They clearly show that the free convection effects 
grow faster for larger Gr/Re2. The data for the Newtonian 
fluids (n =1) with shear-thinning non-Newtonian fluid (n = 
0.6) to contrast the differences of the two fluids. From this 
comparison it is observed that the skin-friction coefficient 
decreases and the Nusselt number increases for the shear – 

thinning fluid. Which can correlate 
1

2(2 )
f

C ξ  and 
1

2(2 )Nu ξ − into a single curve for all combination of Gr 
and Re for Newtonian fluids (1987). But not for non-
Newtonian fluids. This indicates that the length scale 
introduced by the interaction of forced and free convections 
is not the proper length scale for non-Newtonian fluids. 
Consequently, we use the length scale associated with the 
power-law in the current study.  

    
Fig. (5.4). Velocity distribution for different valnes of k at Gr/Re2=0.1&ξ=1 

 

      
   Fig. (5.1). Velocity distribution for different valnes of ξ at Gr/Re2=0.1 

 
Fig. (5.3). Velocity distribution for different valnes of M at Gr/Re2=0.1& 

ξ=1 
 

 
Fig. (5.5). Temperature distribution for different valnes of ξ at Gr/Re2=0.1 

 

IV. CONCLUSIONS

The proposed modified power-law correlation fits well 
with the actual measurement of viscosities for non-
Newtonian fluids; consequently it does not contain 
physically unrealistic limits of zero and infinite viscosity 
introduced into the boundary – layer formulation by the 
traditional power-law model. The problems associated with 
the non-removal singularity introduced by the traditional 
power-law correlations do not exist for the modified power-
law correlation proposed. This means that the similarity 
solution exists at the leading edge, which is the natural 
upstream condition for the non-similar boundary layer 
problem. Therefore, the proposed modified power-law 
correlations can be used to investigate other heat transfer 
problems for shear – thinning or shear thickening non-
Newtonian fluids on boundary – layers. The fundamental 
mechanism that the effect of natural convection eventually 
becomes dominant when the heating length is long is also 
properly demonstrated in our computations. For the low 
heating Case with Gr/Re2 = 0.1, the effect of natural 
convection has not reached its fully developed stage at =100 

1) The natural convection has a significant influence on 
the flow field. For Gr/Re2 = 0.1, it takes longer 
distance for the natural convection effect becomes 
dominant. On the other hand, for Gr/Re2 =1.0, the 
natural convection takes short distance becomes the 
dominant mode. 

2) The velocity distribution decreases with increase the 
values of magnetic field (M).  

3) The velocity distribution increases due     to increase 
the value of porosity parameter (K). 
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