
  
Abstract—Several methodologies have been proposed to 

model the effect of length scale parameters to improve 
constitutive equations for analyzing microstructures and 
nanostructure materials. Most of them are developed based on 
strain gradient theory. The main restriction is contributed to 
the large scale of imposed plastic deformation in comparison 
with implementation of length scale parameters. Also 
comparing to the scale of dislocation movement and hardening 
mechanisms, the plastic deformation in microstructures and 
nanostructure materials is sufficiently large that finite plasticity 
theory could be well justified. Therefore, the main intention of 
this paper is to develop strain gradient deformation with the 
corporation of finite plastic and dislocation theory as physically 
based attribution in constitutive equations. This procedure is 
accomplished with intrinsic length scale relation, which is 
dedicated to develop phenomenological of plasticity laws for 
microstructures in finite plasticity. Finally, the result of new 
theory gives for microstructures, and its predictable results are 
discussed for nanostructure materials. 
 

Index Terms—Strain gradient plasticity; micromechanical 
modelling; dislocation theory; microstructures; nanostructure 
materials.  
 

I. INTRODUCTION 
A multiscale continuum is a bridge for a gap between 

classic continuum theories and micromechanical theories. 
The distinguished establishment of multiscale theory is 
defined on the basis of length scale parameters in the 
constitutive description. According to experimental data it is 
comprehended that the smaller size of material, the stronger 
is the response. In the conventional plasticity theory the 
dimension of microstructures and nanostructure deos not 
intervene in computations. First the result of indicating the 
size effects, explained by Aifantis [1]. Size effect is 
demonstrated in strain gradient as the spatial coefficients.  
After that the strain gradient theory has been physically 
provoked by developing dislocation mechanics. 

In the current work, first the basis concept of dislocation is 
described and then, relation between dislocation-based 
mechanics and continuum plasticity formulation is explored. 

The mechanism-based strain gradient (MSG) plastic 
theory and the Taylor-based nonlocal theory (TNT) of 
plasticity i developed based on the Taylor-type flow stress as 
the starting point of this procedure afterwards the total 
dislocation densities in material is discussed which could be 
categorized into two different sections [2]: 
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•  Geometrically Necessary Dislocations (GNDs). 
• Statistically Stored Dislocations (SSDs). 

GNDs, which can be determined as crystallographic 
constrains leading to redundant crystal systems, were 
introduced by Nye [3] and Ashby [4] and developed by 
Arsenlis and Park [2]. GNDs are proportional to plastic strain 
gradient of material deformation. 

SSDs, which could be considered as random trapping of 
dislocations, were explained by Ashby [4]. Moreover based 
on his approach, Kocks [5], [6], Esterin and Mecking [7], 
Kubin and Estrin [8], Bammann [9] and Beaudoin and 
Acharya [10] evolved equations for SSDs. SSDs is related to 
plastic strain of material deformation. 

Although different mechanisms of dislocation are 
happened in plastic deformation phenomena such as cross 
slip, double cross slip of dislocation, pile up on grain 
boundaries and precipitate particles and arrange themselves 
in various types of cells or substructure networks but they can 
be well defined by dislocation densities. 

According to dislocation theory, which developed classic 
plasticity theory for microstructures, a physically based strain 
gradient plasticity theory was evaluated for small 
deformation [11]. 

Significantly, the scale of plastic deformation in 
microstructures and nanostructure materials is sufficiently 
large in comparison with dislocation mechanisms and inner 
structural mechanisms for plastic deformation of these 
materials. Moreover, Yano et al. (2009)[12] conveyed that 
super plastic deformability is one of the properties of 
nanostructure materials which are produced in the way of 
severe plastic deformation (SPD). So, large strain could be 
occurred in these materials and finite plasticity deformation 
is an appropriate theory for modelling plastic deformation in 
microstructures and nanostructure materials. In order to 
expound the strain gradient, finite plastic deformation should 
be considered in the case of microstructures and 
nanostructure materials. 

Relatively small number of papers has been devoted to 
gradient plasticity with finite deformation determination. 
Gurtin and Annand proposed the idea of large plasticity in 
strain gradient [13] and Cermelli and Gurtin proposed 
irrotational and spineless configuration [14]. Gao et al. [15] 
and Huang et al. [16] generalized finite deformation in the 
mechanism-based gradient plasticity theory. Chambon et al. 
[17] proposed a finite deformation phenomenological strain 
gradient plasticity which is analogous to fleck and 
Hutchinson [18]. Relying on finite deformation of strain 
gradient, Polizzotto commented the nonlocality. He 
explained that deformation in intermediate configuration 
should be stated based on strain gradient also featured the 
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corrotational rate for strain gradient. He defined three 
dimensional tensor that could be stand for spin in 
intermediate space [19].  

The layout of this paper is as follows: In section 2 
kinematics of plastic deformation for finite plasticity theory 
is presented. In section 3 the modelling of dislocation is 
described. In section 4 formulation of finite plasticity theory 
of MSG theory is extended on the basis of dislocations theory 
then intrinsic length scale relation is used in the simulation of 
micro-torsion of thin wire. In section 5 numerical results are 
compared with experimental data. 

 

II.  KINEMATICS OF PLASTIC DEFORMATION 
Finite plastic deformation has been typically categorized 

into two sections where three configurations are defined 
through plastic deformation. Let a particle of continuous rigid 
body deforms in the case of ),(00 tXXX =  where VX ∀  
and V is an initial body volume at undeformed configuration 

which is designated as B  at t=0. 0X  refers to intermediate 
configuration which can be proposed as an unstressed body. 
The rigid body rotation causes this transition. Thus the 
complementary part of this deformation is when the particle 
of the body undergo a deformation process ),( 00 tXXX =  
where X is refers to final location of the particle at deformed 
configuration B at t>0. The deformation mapping of 

),( tXXX =  is illustrated in Fig. 1. 
 

 
Fig. 1. Transition of a particle in different configurations. 

 
According to conventional plastic deformation one of the 

most distinguish equation for modelling the stress-strain 
relationship is Levy-Mises criterion, which is nominated as 

flow rule, can be described as  D
D

pe

eσσ
&o

3
2=  [20]. Where 

the effective stress is ijij
e σσσ

2
3= , the effective rate of 

strain is ijij
e DDD

p

2
3=  and 

o
σ  is corrotational rate of 

stress [20]. 
When finite plasticity is used to promote the subject, 

intermediate configuration should be proposed. Hence 

appropriated corrotational rate of stress 
o
σ  should be 

considered. Furthermore substantial physical properties of 
plastic deformation should be taken into account for 
modelling the deformation of materials. So according to the 
scale of plastic deformation in comparison with inner 
structure and scale of dislocation mechanisms of 
microstructures and nanostructure materials and also the 
special role of dislocation mechanisms in plastic deformation 
of these materials, finite plasticity theory should be 
developed based on dislocation theory. 
 

III.  DISLOCATION MODELLING 

A.  Dislocation Description 
Plastic deformation is related to the motion of dislocations 

and also hardening is caused by interactions of dislocations. 
The impetus behind hardening phenomena is embedded the 
dislocation mechanisms. In microscopic point of view, a 
collection of dislocations is represented as the effect of 
dislocations. Therefore, dislocation density attribution is 
implemented for simulating of dislocation effects.  

These arrangements act as obstacles to motion and thus 
providing the important mechanism of hardening. The 
continuum modelling of hardening mechanisms are 
explained on the basis of density of dislocations. The 
dislocation density concepts can be contributed into the 
continuum theories to alleviate the gap between conventional 
theory and micromechanical theory. 

The Taylor hardening law, relating to the shear strength to 
and dislocation density, is the basis of (MSG) theory in 
plastic deformation. It is the best theory for explaining 
dislocation density in the plasticity. 

The Taylor hardening law is explained as follows [20] 
 

i
eee Gbm ρασσ += 0                      (1) 

 
where G is a shear modulus b is the magnitude of Burgers 
vector and α is a material constant in the range of 0.1 to 0.5 
related to crystals and ρi is the immobile or forest dislocation 
density. An average evaluation of Taylor factor (m) for 
polycrystal’s material can be used in nonlocality constitutive 
equations ( 3=m  for isotropic solid and 08.3=m  for FCC 
polycrystalline metal). 

B.  Geometrically Necessary Dislocations and 
Statistically Stored Dislocations 
Dislocation density can be separated by two sections: 

GNDs and SSDs. The geometrically constrains of crystal 
lattice and obstacles which are indicated as strain gradient in 
equations, stand for GNDs and random trapping of 
dislocations during plastic deformation led to SSDs. Forest 
dislocations represents the total coupling of SSDs and GNDs. 

Different combination of SSDs and GNDs can be deduced 
in the Taylor type description for total dislocation density. 
Mughrabi (2001) [21] concluded that the simple 
superposition of GNDs and SSDs is not well founded but, 
Abu Al-Rub and Voyiadjis (2005) [22],[23] presented 
different forms of GNDs and SSDs combination depending 

on the measuring of 321 /1))/()(( γγγ εε xpp ∂∂+ l , where 

xp ∂∂ /ε  is related to GNDs and pε  is referred to SSDs, 

B  

B 

t=0 

t>0 

207

International Journal of Applied Physics and Mathematics, Vol. 1, No. 3, November 2011



  

also 1γ , 2γ , 3γ  are constant and l  is the length scale 
parameter. 

 The form of combination in this work is explained as  
 

SGi ρρρ &&& +=                                 (2) 
 
where Gρ  and sρ  represent GNDs and SSDs respectively 
and iρ refers to total density. The total density should be 
emphatically supported the continuity of the crystal lattic. 

The GNDs density simultaneously can not be created or 
annihilated as SSDs but it results from reaction of other 
regions existing GNDs, and enhenced to an effective plastic 

strain ( pε& ) in small plasticity. Thus, based on Arsenlis and 
Park (1999)[2], Gao et al. (1999)[24], Huang et al. (2000) [16] 
and Hutchinson (2000) [25], GNDs is expressed as follows 
 

xb
r p

G ∂
∂= γρ&                                  (3) 

 
where r  is Nye factor and b is the magnitude of Burgers 
vector. 

It was explained by Bamman and Aifantis (1982) [1] that 
increment in plastic strain tensor in microscopic plasticity 
theory ( p

ijε& ) could be replaced by an effective plastic shear 

strain ( pγ& ) as follows 
 

ij
pp

ij mγε && =                                     (4) 

 
where mij is symmetric Schmid’s orientation tensor. 

This equation can be rewritten as 
 

pp mεγ && =                                     (5) 
 

where 
pε&  is effective plastic strain, 

pγ&  is effective plastic 
shear strain and m is the average the Taylor factor which is 
explained in Eq (5), Substituting in Eq (3) leads to [2]: 
 

xb
rm p

G ∂
∂= ερ&                                (6) 

 
In this work, GNDs modeling is generalized in finite 

plasticity as  
 

)(
pe

G D
b
rm ⊗∇=ρ&                             (7) 

 

where 
peD  is effective rate of plastic strain. 

In Eq (7) the term )(
peD⊗∇  can be stated as tantamount 

spin in intermediate configuration and emphatically proposed 
in the directions, where the size of materials minimised. 
Therefore, Eq (7) for micro-torsion of thin wire where the 
radius of the wire is minimised, is changed to  

r
D

b
rm

pe
G ∂

∂=ρ&                                     (8) 

 
In the case of calculation SSDs, the strain gradient is 

eliminated and only the flow stress depending on the plastic 
strain mechanism should be taken into account and it is 
proportional to e

pε
 
and 2)( e

pε . In regarding to Arsenlis and 

Park (1999) [2], the SSDs hardening mechanism is 
independent of GNDs mechanism. Hence, Kubin’s model for 
hardening material of SSDs density is described as [8] 
 

p
SSS K

b
k

γρρρ && ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −= 2
1                        (9) 

 
where k1 and k2 are constant, sk ρ1 represents 

immobilization and annihilation and sk ρ2  represents 
dynamic recovery. 

Considering the relation between the effective plastic shear 

strain and effective plastic strain as pp mεγ && = , Eq (9) can 
be led to  
 

p
sss k

b
k

m ερρρ )( 2
1 −=&                      (10) 

 
Furthermore, according to Kubin et al. (2002) [26], 

Kubin’s model of dislocation can be generalized in finite 

plasticity. Hence an effective rate of plastic strain 
peD can be 

appropriately used in Kubin’s model as follows 
 

pe
sss Dk

b
k

m )( 2
1 ρρρ −=&                    (11) 

 
So the two categories of dislocation density which are 

considered by an effective rate of plastic strain are utilized to 
promote finite classic plasticity theory. 
 

IV. THEORY FORMULATION 

A.  Dislocation Modelling in Constitutive Equations 
In this section, the dislocation mechanisms are modelled 

by finite plasticity theory. 
Differentiating of the flow stress can be explained as 

(Voyiadjis, 2005) [22]. 
 

S
S

G
G

e ρ
ρ
σρ

ρ
σσ &&&

∂
∂+

∂
∂=                    (12) 

 
where Sρ  is SSDs density and Gρ  is GNDs density and 

also GSi ρρρ &&& +=   
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Substitution of Eq (8) and Eq (11) in Eq (12) obtains 
Eliminating gradient terms in Taylor theory yields 
 

SS mGb ρασσ += 0                       (14) 

 
In the case of average declaration, two useful equations are 

as follows 
 

 
2

0 ⎟
⎠

⎞
⎜
⎝

⎛ −
=

α
σσρ

mGbi                                (15) 

 
2

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

α
σσ

ρ
mGb
S

S                                (16) 

 
Substituting Eq (15) in Eq (13) leads to 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂+−

−
=

r
D

b
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b
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)(2

)(
2

1
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2
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σσ
ασ&  (17) 

 
Following equation can be obtained by substituting Eq (16) 

in Eq (17). 
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0
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2

0

0

0

223
σσα

σσ
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 (18) 

 
In the absence of gradient rate of strain, Eq (18) is reduced 

to  
 

[ ] pe
SSe DmkGkm )(

2
1

021
2 σσασ −−=&      (19) 

 
For calculating the coefficients k1 and k2  the coefficient h 

(the strain rate hardening) should be introduced as  
 

dD
dh σ&=                                      (20) 

 
Initial condition of finite plastic deformation equals to the 

initial condition of small deformation theory So, for initial 
condition of new plastic deformation of microstructures is 
defined as 

 

ε
σ
d

d
h s=0                             (21) 

 
Therefore k1 and k2 can be expressed as follows 
 

Ω
=

αGm

h
k

2
0

1
2

   ,   
)(

2

0
0

2 σσ −
=

Satm
h

k
          

(22) 

According to the suggestion of Kubin and Estrin (1990) [8], 

Ω  can be neglected ( 1=Ω ) and satσ  is saturated stress and 

equals sσ  in the initial where no gradient terms exist. 
Substitution k1 and k2 in Eq (19) gives 
 

pe

sat
ssat

s Dh )(
0

0 σσ
σσσ

−
−

=&                      (23) 

 

B.  Modelling of the Finite Strain Gradient Plasticity 
Theory 
In this work, the plastic deformation has been developed 

by the assumption of the classic plasticity and the dislocation 
mechanisms. Also dislocation theories for microstructures 
and nanostructure materials are developed by finite plasticity 
deformation theory. 

In accordance with conventional plasticity, flow rule 
proposing the relation between stress and strain can be 
explained for microstructures as follows [20] 
 

D
De

eJ
σσ
&o

3
2=                           (24) 

 

where eσ&  is an effective stress for microstructures and the 
evolving of the yield surface is directly related to dislocation 

theory, corresponding to eσ& . So Eq (24) is developed by 
dislocation theory and Jaumann corrotational stress rate for 
microstructures. 

Jaumann corrotational stress rate is defined as follows [20] 
 

WW
J

σσσσ +−= &
o

                          (25) 

 
Although Jaumann corrotational rate is exhibited 

oscillation behaviour, it can appropriately predict the form of 
plastic deformation for microstructures in experimental test. 
Therefore, on the basis of classic plasticity and plastic 

deformation, deformation gradient tensor for torsion is 

expressed as (Hwang et al., 2003) [27] 
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And velocity gradient tensor is defined as 
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⎥
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where 
dR
dr=α . 

So that symmetric part of L which is the rate of strain is 
calculated as follows 

 

⎥
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⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ψ
ψ

α
α

&&

&&

&
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2
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2
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00

                     (28) 

 
Asymmetric part of L which is material spin is proposed as  
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⎥
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So the effective rate of strain can be calculated as 
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where, based on Huang et al. (2003) [27], ψ  and α  are 
respectively interrelated to the Axial strain effect and 
experimental test. It is assumed that ψ  and α  are constant 
through the time stepping. Thus, the effective rate of strain is 
expressed as 

 
22

2
12 ⎥⎦

⎤
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⎤
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⎡= rk
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Although Jaumann corrotational rate is exhibited 
oscillation behaviour, it can be appropriately predicted the 
form of plastic deformation for microstructures and 
nanostructure materials in experimental test so, Jaumann 
corrotational rate of stress is derived as follows 
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If it is defined two new parameters as follows 
 

)(
2 2

1
2223
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b
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brGmA 223
2 α=                                    (33) 

The flow rule is simplified to calculate 32σ  as following 
form 
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where P1 and P2 and T are considered as follows 
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V. NUMERICAL ANALYSIS 
Initial condition is extracted, in accordance with the 

experimental data. Also sρ  can be calculated as (Voyadjis 
and Abu Al Rub, 2005) [22] 
 

2
0 )exp(1

⎥
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s
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where 
peε  is the effective plastic strain in small 

deformation and 0σσσ −= satref . Refering to Fig. 2, it can 

be illustrated that in finite deformation, SSDs can be treated 
as a constant value ( 4200=sρ ). 

 
Fig. 2. Statistically stored dislocation density versus effective strain 

diagram according toVoyadjis results. 
 
The constant value of Eq (34) is determined for the 

micro-torsion test of thin Copper wires which are used in 
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experimental test of Fleck et al. (1994) [28]. The 
experimental results are fitted with refσ  = 226 MPa, G = 44 

GPa and 0σ = 0 MPa. The Hall-Petch behaviour of 0σ  is 
not significant in these experiments as reported by Fleck et al. 
(1994) [28]. The microstructure parameters are m = 3.08, r
=1.93, b = 0.255 nm, h0 = 11500, and α = 0.1. In this study, 

supposing 002.0=
∂
∂
k
r , provides reasonable agreement 

between experimental and new simulation data .So, Fig. 3a 

observes the relation between
32

σ  and k (torsion parameter) 

for torsion of thin Copper wire with diameter of 2a=12µm 

(
32

σ is computed in Eq (20)).  

In accordance with Fig. 3a and Fig. 3b, it is deduced that 
the fluctuation of experimental stress for microstructures and 
variation form of stress, imposed by high pressure torsion 
(HPT) for nanostructure materials could be predicted by new 
finite plasticity model of (MSG) theory. Comparing Fleck et 
al. (1994) [28] experimental data with new finite plasticity 

model of (MSG), the relation between 
eσ

σ 32  (stress 

parameter) and 
3a

Q
 (disturbance parameter) should be 

stated. In finite plasticity this relation can not be calculated as 
exact form so, the general form of this relation is explained as 

 

)( 3
32

a

Qf
e

=
σ
σ                                  (37) 

 
where Q is the torque-twist and a  is radius of thin copper 
wire. 

For linear elastic deformation of materials, Eq (37) is 
defined linear proportion but it should be suggested nonlinear 
form for finite plastic deformation. Hence, a kind of 
assuming parameters’ relation for deriving more accurate 
data can be given as follows 
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This equation is considered to compare the present (MSG) 

of finite plastic deformation model’s results with 
micro-torsion test of Fleck et al. (1994) [28] for thin Copper 
wires, which have different values of diameters ( 2a = 12, 15, 
20 µm). The resulting data evaluation from Eq (38) is 
depicted in Fig. 4. 

According to Fig. 4, Fig. 5 and Fig. 6 the results of Eq (38) 
significantly can be tracked the experimental data even for 
the thinner wire (2a=12). Moreover, the results of New model 
is compared with Voyadjis et.al, Aifantis et.al and Gao et.al 
works in these figures, and the accuracy of New methodology 
is evaluated. As it is illustrated, more agreements between 
experimental data of Fleck et al. (1994) [28] and new model 
of (MSG) theory for finite plastic deformation is predicted on 
the basis of dislocation mechanisms. 

The relation between stress and disturbance parameter is 

developed in nonlinear form. Also, radius of thin wire and 
different parameters, which are described in evaluation of 
stress, are taken corporate in this relation. Thus, the length 
scale is declared intrinsically in the form of relation in Eq 
(38). Hence, in this work the length scale parameter is 
replaced by the length scale relation and new finite plasticity 
theory of (MSG) and length scale relation observe better data 
for large value of torsion parameter (k). 

 
     

 
(a) 

 

 
(b) 

Fig. 3. (a) Stress versus torsion parameter enhanced finite plasticity model of 
(MSG) theory for torsion of thin wire (CU), which is implemented in 

experimental data of fleck et al. (1994) [28]. (b) Stress versus total strain 
enhenced experimental data for high pressure torsion of nanostructured (CU) 

Dubravina etal. (Zehetbauer et al., 2002) [29]. 
 

 
Fig. 4. Comparison of experimental data of Fleck (1994)[28] and Voyadjis 

model with finite plasticity model of  (MSG) for microstructure. 
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Fig. 5. Comparing new model with experimental data and numerical work by 

Aifantis and co-workers using second order gradient [23]. 
 

 
Fig. 6. Comparing new model with experimental data and numerical work by 

Gao and co-workers using second order gradient [23]. 
 

VI. CONCLUSIONS 
In the current work, strain gradient plasticity theory is 

developed based on the physical properties of phenomena. In 
this theory, the Taylor’s dislocation hardening model and 
dislocation mechanisms with simple combination GNDs and 
SSDs in finite plasticity theory, is considering. Involving the 
dislocation theory as a physically based attitude in finite 
plasticity form is a novel procedure in generation of 
equations in classic finite plasticity theory. 

Although simple combination between SSDs and GNDs is 
used in order to bridge the gap between macromechanical and 
micromechanical plasticity, the implementation of finite 
plasticity deformation model and suggesting intrinsic length 
scale relation in micro-torsion test of thin wires, provides 
results which are significantly fitted to the experimental data.  

This model can be predicted the form of stress fluctuation 
even for nanostructure materials. Furthermore, the better data 
are extracted from this model when the diameter of 
microstructure wire is reduced. So, this model may be 
predicted the acceptable data even for torsion of 
nanostructure materials and their products. 
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