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Abstract—The article discusses the dynamic 

three-dimensional modeling compounds A
3
B

5
. The initial 

structure is taken compound GaAs. The resulting model is given 

for different distances from the central atom. There are the 

distances from one to six. The result is an uneven growth of the 

number of atoms grouped along the radius of coverage. For the 

other elements of the possibility of uniform methods increase 

the number of atoms, such as Ga. This article briefly describes 

the algorithms finding the orderly and the semi platonic and 

Archimedean figures and their complexes for the FCC and 

BCC structures, which contributes to the increased use of the 

computer modeling techniques in crystallography and SSP. 

 
Index Terms—Semiconductors; ab initio calculations; crystal 

structure; Fermi surface. 

 

I. INTRODUCTION 

To compound semiconductor type A3B5 is GaAs. Its 

crystal structure is a two face-centered cubic lattice, which 

are shifted relative to each other by ¼ the space diagonal. In 

the center of origin of the As atoms there are four nearest 

neighbors at the vertices of a tetrahedron. Each ion is 

surrounded by four nearest-neighbor ions, the antithesis of 

the mark. At a distance, there are four ion with qiqj = 1, eight 

ions antithesis sign qiqj = +1 at a distance. The system nods of 

the GaAs create the order of the atomic cores of the 

tetrahedral combinations. The source of difficulty in the 

calculation of band spectra is a priori is laid in these 

calculations the translational invariance, which involves the 

study does not end, real crystals, and the infinite, ideal. 

Manipulations with infinite objects are allowed in the initial 

stages of the abstraction of subject area (in our case, solid 

bodies), but they become simply mathematical trick when 

trying to obtain information about the physical properties of 

such complex objects as solid bodies. Solid body, as really 

existing system, and not a mathematical trick, requires a 

different approach than adopted for the simple monatomic 

isolated objects [1].  

One of the advantages described technique — applicable 

to the systems with neighbor order, where Bloch's theorem is 

not applicable as the initial conditions, since the translational 

invariance in the real space and in the quasi-momentum space 

is not the necessary condition for the determination of the 

crystalline potential, the wave functions of the energy values 

in the space of wave vectors [1], [2]. 

Therefore the proposed technique is still the only one 

well-established technique that is applicable for the analysis 

 
 

of the band spectrum of finite imperfect crystals. 

 

II. CALCULATION OF THE DYNAMIC THREE-DIMENSIONAL 

STRUCTURE A3B5 

Consider the finite crystal with unbroken intervals (except 

for the crystal boundary violation). For simplicity, we take a 

large number of cores, when there is a nearly ideal periodicity 

of the crystal. In this case, the parameters obtained from the 

mathematical formalism for the analysis of the band spectrum 

are periodic functions, except for the boundary of the crystal. 

The crystal potential and wave functions have a period equal 

to the distance between the cores, depending on the chosen 

direction. The energies have multiple frequency modulus of 

the wave vector in the quasi-momentum space [1]-[3]. 

Now turn to the crystal with a very small number of cores. 

In such a crystal frequency is not as ideal as in the previous 

case. The simulation of such a crystal is insurmountable 

difficulties for traditional methods, but this is the case is 

taken by us as a basic demonstration version. The object in 

question is distant from a perfect crystal due to its limited size. 

And despite this, the technique presented by us showed the 

periodicity of the above parameters. Thus in our problems are 

not used the condition of periodicity and Bloch's theorem as 

the necessary initial conditions. The Fig. 1 shows it on the 

example of GaAs. 

 

Fig. 1.The As atoms and Ga for the radius of coverage 6. Red marked atoms 

As, in blue denote atoms Ga. Central atom is As. 

In computer modeling of the crystal structure of GaAs, 

combined with three-and five-valent elements are observed 

the following regularities (see Table I). When the radius of 

coverage is two in this range there are 38 cores. As the first 

atomic core in the center of origin, the four Ga atoms are 

located at a distance of 3 next 12 As atoms at a distance of 8. 

Nine Ga atoms at a distance there are 11. Six As atoms at a 

distance of 16, three Ga at a distance of 19 and three Ga at a 

distance of 27.  
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TABLE I: THE COMBINED LATTICE GAAS  

№ x y z d2 Ion  

0 0 0 0 0 As  

1 1 1 1 3 Ga  breaking 

2 1 1 1 3 Ga  

3 1 1 1 3 Ga  

4 1 1 1 3 Ga  

5 0 2 2 8 As  breaking 

6 0 2 2 8 As  

7 0 2 2 8 As  

8 0 2 2 8 As  

9 2 2 0 8 As  

10 2 2 0 8 As  

11 2 2 0 8 As  

12 2 2 0 8 As  

13 2 0 2 8 As  

14 2 0 2 8 As  

15 2 0 2 8 As  

16 2 0 2 8 As  

17 1 3 1 11 Ga  breaking 

18 1 1 3 11 Ga  

19 3 1 1 11 Ga  

20 1 3 1 11 Ga  

21 3 1 1 11 Ga  

22 1 3 1 11 Ga  

23 1 1 3 11 Ga  

24 3 1 1 11 Ga  

25 1 1 3 11 Ga  

26 0 4 0 16 As  breaking 

27 4 0 0 16 As  

28 4 0 0 16 As  

29 0 0 4 16 As  

30 0 0 4 16 As  

31 0 4 0 16 As  

 

TABLE II: CONTINUATION 

 

№ x y z d2 Ion  

32 3 3 1 19 Ga  breaking 

33 1 3 3 19 Ga  

34 3 1 3 19 Ga  

35 1 5 1 27 Ga  breaking 

36 5 1 1 27 Ga  

37 1 1 5 27 Ga  

Total number of cores with zero: 38 

From this calculation, the differences in distance between 

the various groups are as (1): 

 

Δr1 = r2 r1=3 

Δr2 = r3 r2=5 

Δr3 = r4 r3=3 (1) 

Δr4 = r5 r4=5 

Δr5 = r6 r5=3 

Δr6 = r7 r6=8 

We observe quasiperiodic change in the difference. At the 

border radius of coverage this periodicity is broken. When 

increasing the radius of coverage this periodicity is restored 

to the previous radius, but is broken on the new range. Thus, 

the boundary conditions lead to a violation of the periodicity. 

Simulated lattice shown in the following figures. The first 

figure shows the four first neighbors As in the lattice. 

Neighbors’ ions Ga (blue) form a tetrahedron with the center 

of As (red). 

 

III. MODELING OF THE DYNAMIC THREE-DIMENSIONAL 

MODELS OF GAAS 

The Fig. 2 shows the grid with a radius of coverage 1. 

There are 5 atomic cores in it. There is a periodic step 

structure. The structure of the central ion and its neighbors on 

the tetrahedron is stored and located in the center of this 

lattice. 

 

Fig. 2. The grid with a radius of coverage where there are 5 atomic cores. 

The Fig. 3 shows the grid with a radius of coverage 2. 

There are 38 atomic cores in it. There is a periodic step 

structure. The structure of the central ion and its neighbors on 

the tetrahedron is stored and located in the center of this 

lattice. 

 
Fig. 3.The grid with a radius of coverage 2 where there are 38 atomic cores.

 

The Fig. 4 shows the grid with a radius of coverage 3. 

There are 110 atomic cores in it. There is again a periodic 

step structure. The structure of the previous lattice is 

preserved. And while the structure of the central ion and its 

neighbors on the tetrahedron is stored and located in the 

center of this lattice. 

 

Fig. 4.The grid with a radius of coverage 3. where there are 110 atomic cores. 

The Fig. 5 shows the grid with a radius of coverage 4. 

There are 282 atomic cores in it. Again, there is a periodic 

step structure. The structure of the previous lattice is 
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preserved. Again, the structure of the central ion and its 

neighbors on the tetrahedron is stored and located in the 

center of this lattice. 

 

Fig. 5.The grid with a radius of coverage 4. where there are 282 atomic cores. 

The Fig. 6 shows the grid with a radius of coverage 5. 

There are 498 atomic cores in it. There is a periodic step 

structure. The structure of the previous lattice is preserved. 

And the structure of the central ion and its neighbors on the 

tetrahedron is stored and located in the center of this lattice. 

 

Fig. 6. The grid with a radius of coverage 5. where there are 498 atomic 

cores. 

The Fig. 1 shows the grid with a radius of coverage 6. 

There are 918 atomic cores in it. There is a periodic step 

structure. The structure of the previous lattice is preserved. 

And the structure of the central ion and its neighbors on the 

tetrahedron is stored and located in the center of this lattice.  

 

IV. DISCUSSION 

It can be seen as an increase in the radius of coverage is 

restored periodicity in the lattice covered by the previous 

radius and there is a new violation of the periodicity on the 

boundary spanning lattice. The depth of violation increases 

with the radius of coverage. This is well observed in the 

tables you demonstrated for different cores.  

On the basis of the direct lattice can construct the 

reciprocal lattice and define the properties of the Fermi 

surface. And the radius of coverage can be taken arbitrary 

(millions of skeletons).  

The calculated structure allows to reach a real-time 

implementation and to take into account of defects and of 
real devices based on GaAs, because these are high-speed 

computing now by our proposed method.  

On the basis of the direct lattice we can also construct the 

reciprocal lattice and define the properties of the Fermi 

surface. And the radius of coverage can be taken arbitrary 

(millions of skeletons). High-speed computing enables a 

dynamic computer simulation of the properties of real 

crystals of the GaAs.  

Since the GaAs lattice is identical to the lattice of Si, 

sphalerite and diamond, we can apply the technology 

provided by and for these substances. 

In calculating of coordination spheres cells of FCC- and 

BCC-lattices are presented as superlattice structure to fill 

own nodes by atoms of cells and additional nodes of the 

simple cubic lattices (SCL) — interstitial atoms [2]. The 

completing of coordination spheres with atoms is determined 

on the basis of a small SC-lattice, taking into account 

octahedral, tetrahedral internodes. 

If atoms in the lattice arrange with the dense packing, 

P-nodes are centers of the inter-body lattices in the methods 

of presentment of the spatial distribution of atoms and 

internodes along the coordination spheres in the crystals. 

Tetrahedral and octahedral internodes in the ion-interionic 

terminology mean inter-body lattice space surrounded by the 

atoms in the crystal lattice nodes. 

The Table 1 contains the number of atoms and the distance 

from the central atom of the diamond-like structure. The 

distance is given in units of the lattice constant a. Let us 

choose the maximum distance based on these conditions, 

forming a set of atoms contributions on which the calculation 

of the potential are taken into account. 

In this work we consider the crystal potential for crystals 

with the diamond structure. The Coulomb potential is the 

sum of the capacity building of the nucleus and the electrons 

occupied levels:  

Uc = Un + U0, (2) 

where Un = 2Z/r. Here, Z — number of the element, r — 

distance from the atom to the specified point. 

Potential Uо is a solution of the Poisson equation: 

2Uо = –8 πо(r),  (3) 

where о(r) — the density of the electrons of the occupied 

levels at the distance r from the center of the atom. The 

density is calculated as follows: 

   
ln

nl rRrr
,

22

0 .ρ  (4) 

Function Rnl(r) — the radial part of the electron wave 

function for a hydrogen atom [4], [5]. Using the principle of 

superposition of the electronic densities and the additivity of 

the integral equation (3) can solve as follows: 

   ,
0

0 



I

i

irurU  (5) 

   ,
,


ln

inli ruru  (6) 

where I  — the set of the number of atoms minus one, ri — 

the distance from the center of the i-th atom to the specified 

point 

.ii arr


  (7) 

Here ai — the radius-vector of the i-th atom with respect to 

the center of origin. Let us obtain the Poisson equation for an 

electron of i-th atom: 

   .π8 222

inli
rRrru inl


  (8) 

Solving (8), we obtain 
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    .π8
,

2
ln

iinli rdruru
  (9) 

Directly using the functions (5, 6, 7, 8, 9) we find the 

potential U0 (r). This approach allows us to calculate 

effectively and accurately the electronic potential. We 

rewrite the expression (2) accounted for the entire set of 

atoms: 

     .0 rUrUrU
i

inс


  (10) 

Thus, the Coulomb potential is calculated from all the 

surrounding atoms [1], [6]. 

This approach allows us to select any line capacity in any 

direction from the lattice points, and may be any length of 

line. Moreover, we can specify a curved line capacity. 

The cell potential near the nucleus has a singularity, and 

the distance from the nucleus is close to zero in hyperbole. 

For a single atom inside the Wigner-Seitz sphere the main 

contribution comes from the nucleus of an atom [6], [7]. 

Consider the cell potential obtained at the line potential. In 

this case, clearly seen the potential frequency, which is 

created by all the atoms are now set. In passing through the 

core potential becomes singular. The potential between the 

atoms is identical and negligible in the magnitude. There is a 

little effect of the atoms located at the centers of the faces of 

the two face-centered cubic lattices [8]. 

The obtained simulation results show the crystal potential, 

the crystal can be modeled with all its features. In contrast to 

known methods of calculating of the crystal potential as 

described in the engineering calculations of the crystal 

potential is universal. It gives the results without making any 

correction factors, does not require the use of logarithmic 

scales, and other non-uniform, allows you to quickly 

calculate the crystalline potential for all elements of the given 

crystal structure. There are facilities for the further 

developments of such technology in the direction of 

accounting for various disturbances. It will allow a 

calculating the electronic potential even more precisely. 

However, even without taking into account the properties of 

an ideal crystal, this calculation provides sufficiently 

accurate results. To illustrate the power and versatility of the 

described technique for the calculating of the potential 

capabilities it is shown an interaction potential on line drawn 

along the main diagonals of the two face-centered cubic 

lattices in Fig. 7. 

 

Fig. 7.An interaction potential on line drawn along the main diagonals of the 

two face-centered cubic lattice. 

In determining the energy spectra of quantum-mechanical 

problems for periodic structures, it often uses methods of the 

broadcast. In particular, semiconductors have a periodic 

structure. The crystal potential, having the grating period, 

usually modeled by the expression [1], [9]: 

       .exh0

0

n rVrUrVrV
N

i

i











 



 (11) 

where Vn (ri) — the potential created by the i-th nucleus at the 

point r; U0 (r) — the electronic potential, formed by the 

electrons of the core at some point r and is determined from 

the Poisson equation 

   .π8 00

2 rrU


  (12) 

Here 0(r) — the electronic density of the occupied levels 

at a distance r from the center of the atom; Vexh(r) —the 

exchange potential at point r; ri=r-ai — the distance from 

the i-th node to the point r; ai — the node location; N — the 

number of neighbors taken into account relatively to the 

cores. The solution of Schrödinger equation based on the 

potential (11) is carried out by the Hartree-Fock-Slater [10]. 

The specificity of a solid compared to other bodies, is the 

decisive role of spatial-structural properties: a lattice type, a 

location and an interaction of the defects, a structure of core 

lattices and inter-ionic space. The period of the inter-ionic 

lattice coincides with the period of the core lattice. Spatially 

periodic structure of two weakly coupled and oppositely 

charged objects is the cause of the stability of rigid body — in 

this case the semiconductor GaAs — because between these 

objects appear spatially periodic Coulomb forces. In the 

geometric structure of each inter-ionic space surrounded on 

six sides by positive ion cores, and the ionic core in turn — 

intervals. 

For a uniform distribution of electrons in the space of 

interaction between them becomes energetically unfavorable. 

There is the possibility of an orderly arrangement of electrons 

in space, the emergence of the so-called Wigner or "electron 

crystal". 

The geometrical structure of the crystal consists not only 

of the atomic cores, but inter-ionic space intervals. The 

valence electrons in inter-ionic space intervals are also 

elements of the crystal, along with the atomic cores. The 

inter-ionic space is gap, i.e. the most probable location of the 

valence electrons. In addition, inter-ionic space intervals are 

also still a kind of "elements" of the crystal. But then the 

conclusion is that in the crystal lattice there are two — the 

well-known lattice consisting of the atomic cores, and 

another, equally important for the existence of the crystal 

lattice of the valence electrons are concentrated between the 

cores. The lattice periodicity of the atomic cores immediately 

implies the lattice periodicity of the inter-ionic space. 

Even more natural in such a conclusion, if you do not 

forget that the atomic cores of the crystal lattice — not a point 

in space, but the figures, which occupy a significant part of 

the whole space of the crystal, and inter-ionic space also has a 

periodic structure, as well as skeletons. The period of this 

lattice coincides with the usual of the core of the lattice. Fig. 8 

shows a two-dimensional lattice with the lattice constant a0. 

The coordinate origin of the system Oxy is at the center of one 

of the cores, and the origin of the coordinate system O'x'y' is 

located in the center of one of the inter-ionic cells. The 
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coordinate system O'x'y' is formed by the translation of the 

coordinate system Oxy in a0n/2, where n = {0, 1, 2, ...}. We 

assume inter-ionic intervals are the inter-ionic elements of 

the lattice, which is shifted with respect to a core of the lattice 

by half a lattice constant in all coordinate axes.  

 

Fig. 8.A two-dimensional lattice with the lattice constant a0. 

Cores and inter-ionic space two-dimensional lattice 

include 1) frame, 2) inter-ionic space. 

The determining the location of the centers of the 

inter-ionic intervals can be easily receive from the definition 

of the basis vector for the nodes of the crystal (the core) of the 

lattice with any structure. But it should be noted that by 

increasing the radius of inter-ionic volumes (not just their 

centers) there is a change the number under the consideration 

inter-ionic space compared to the amount covered by the 

cores. Since you want to cover all inter-ionic space 

surrounding covered the skeletons, the radius of coverage 

inter-ionic space few more skeletons examined. 

Crystal is in a stable condition thanks to the orderly 

arrangement of opposite charges. Most of the properties of 

crystals (eg, electrical conductivity, magnetic susceptibility), 

are caused not only property of the host lattice, but also the 

existence of inter-ionic lattice. 

This inter-ion lattice in addition to the core determines the 

physical properties of the crystal. 

Specificity of a solid compared to other bodies is that in 

them play crucial role spatial structural properties: the lattice 

type, location and interaction of defects, the structure of the 

nucleus and inter-ion lattice. The period of the inter-ion 

lattice coincides with the period of the core lattice. Spatially 

periodic structure of two weakly coupled and oppositely 

charged objects is the cause of the stability of rigid body — in 

this case the GaAs — because between these objects appear 

spatially periodic Coulomb forces. In the geometric structure 

of each inter-ionic cell surrounded on six sides by positive 

ion cores, and the ionic core in turn — the inter-ionic gaps. 

Computer simulation of the properties of the crystal lattice 

gives to use up to 1010 ÷ 1012 atoms. Using the described 

technique can be obtained from any of these atomic systems, 

as well as changes in the radii of coordination spheres at 

various distances. Simultaneously, you can get a number of 

nearby neighbors, the location of atoms on the coordination 

sphere. 

Thus, algorithms are developed for the FCC, BCC and  

diamond-like structures for determining the orderly and 

semiregular Archimedean and Platonic figures, as well as 

their complexes.  

V. CONCLUSION 

We can develop an algorithm for constructing the structure 

of compound semiconductor-type A3B5, based on this 

principle. For example, to the type of A3B5 of semiconductor 

compounds it is used compound GaAs. It is crystal lattice of 

two face-centered cubic lattices shifted relative to each other 

at ј spatial diagonal. Each Ga atom has four nearest neighbors 

located at the tops of a tetrahedron. Each ion is surrounded by 

four nearest neighboring ions of opposite sign. There are four 

ions with qi qj= –1 at a distance a02
½/2, eight ions of opposite 

sign of qi qj = +1 at the 2 distance a02
½. The system of links of 

the GaAs structure establishes the order of the atomic body 

along tetrahedral combinations [2], [3]. For such compounds 

of the tetrahedral group of atoms is one-eighth of the basic 

lattice, so it is convenient to consider as a superstructure. The 

cell of the GaAs lattice consists of four tetrahedral 

sublattices. 

One of the advantages of the described technique is its 

application to systems with short-range order, which does not 

use Bloch's theorem as the initial conditions. This was 

possible due to the fact that translational invariance follows 

as a consequence of the calculations, and not postulated 

initially. Thus, translational invariance in real space and in 

the quasi-momentum space is not a prerequisite for the 

determination of the crystal potential, wave functions and 

energies in wave vector space. 

This, in turn, allows you to define these parameters not 

only for infinite crystals, but also for the real limits on the 

size of the crystals. Therefore, it is possible to determine the 

properties of crystals with impaired structure of a single 

scheme, with no additional idealizations. Individual interest 

is a violation of the periodicity on the boundary of the crystal. 

In fact, it is inherent in all real crystals violation of the ideal 

(i.e. infinite) crystal structure. 

The violation of a perfect crystal at the border no doubt 

affects the theoretical study of the band spectrum. Boundary 

effects appear in the form of decay phase portraits of the main 

parameters (the crystal potential, the wave functions and 

energies in wave vector space) in all directions of the crystal 

boundaries (in our case spherical). 

In the study of solid-state we considered two sites within 

the crystal, virtually connected to each other. A theoretical 

study of solid-state is easily accomplished with the use of 

these facilities both qualitative and quantitative methods. But 

the most effective way of investigating solids is to use a 

direct computer simulation, and that we have done for simple 

structures. 

Thus, the use of techniques discussed in the article allows 

the calculation of real properties of GaAs crystals with 

defects and other constraints. 
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