

Deterministic-Embedded Monte Carlo Approach to Find
out an Objective Item in a Large Number of Data Sets

Xingbo Wang1, 2 *, Jianxiang Guo1

1 Department of Mechatronic Engineering, Foshan University, Foshan, China.
2 Guangdong Engineering Center of Information Security for Intelligent Manufacturing System, Foshan,
China.

* Corresponding author. Tel.: +86075782988845; email: xbwang@fosu.edu.cn, dr.xbwang@qq.com
Manuscript submitted April 12, 2019; accepted July 13, 2019.

Abstract: The paper investigates an approach to find out an objective integer in a large integer interval. It

first puts forward an approach to subdivide a large integer interval into small ones that are available for the

Monte Carlo randomized search algorithm, then selects a small interval by the Monte Carlo algorithm and

applies a deterministic search algorithm on the selected one. In order to make the search in an expected

computing time, the paper proposes certain regulations to set an initial length for the small interval and to

update it in accordance with the expectation of the time complexity. Mathematical foundations for

setting-up the initial value and updating it to an acceptable value are presented and proved in detail and a

parallel computing strategy is introduced to realized it. Except for the availability in integer factorization,

the approach is also applicable in big data searches.

Key words: Subdivision, randomized algorithm, parallel computing, big data, integer factorization.

1. Introduction

Computer search or computer searching has been a primary function of computers, as introduced in

kinds of schoolbooks like the Goodman’s early book [1], Steven S. Skiena’s [2] or Anany Levitin’s [3] classical

book. It is a truth that, algorithm design related with the computer searching has been a topic in the field of

computer science, as H R Richardson and T L Corwin overviewed early in 1980 [4]. In recent years since

2017 and in several literatures, for example, in papers [5]-[9], a problem has been investigated to search

rapidly an integer that hides somewhere in a large interval, for example, to find an integer that has a

common divisor with the RSA100 in the large interval [32556519888 32231467362589506572709753

9753475571713,39020571855401265512289573339484371018905006900194], which contains 3232

025983539475419331839136878636739575765664241 large odd integers. The papers [5], [6] and [7],

proposed approaches by means of subdividing the large interval and performing parallel brutal searches

(BS) on each subinterval, the paper [8] put forward a probabilistic search, and the paper [9] gave some

criterions to see if the objective integer hides in an interval. It seems that, those papers broke out a way in

finding a satisfactory solution for the problem. However, summarizing the common essences of the

approaches proposed in those papers, one can see that, such a subdivision-plus-parallel-computing

approach will essentially costs large computing resources because there is merely one subinterval

containing the objective integer, and consequently, only one process assigned by the parallel computing

system can find out the objective integer whereas the rest processes merely waste their time. Facing such a

International Journal of Applied Physics and Mathematics

173 Volume 9, Number 4, October 2019

doi: 10.17706/ijapm.2019.9.4.173-181

mailto:xbwang@fosu.edu.cn

International Journal of Applied Physics and Mathematics

174 Volume 9, Number 4, October 2019

dilemma and considering the success of the Monte Carlo approach applied in integer factorization, the

probabilistic searching strategy that is of efficiency and simplicity, as Juraj Hromkovic declaimed in his book

[10], is naturally worthy of exploring.

This paper makes an investigation on applying a random approach to searching a large interval. It puts

forward an approach that randomly selects subinterval from the subintervals subdivided from the large

interval and searches the selected subinterval with proper deterministic algorithm.

2. Preliminaries

This section introduces symbols, definitions and lemmas that are necessary in later sections.

2.1. Symbols and Notations

Throughout this paper, an odd interval [,]a b is a set of consecutive odd numbers that take a as their

lower bound and b as their upper bound. For example, [3,11] {3,5,7,9,11} . An interval can also abstractly

denoted with the capital letter I. Symbol x I means number x is an odd integer in interval I. Symbols 

and  are respectively union and intersection of set operations; two odd intervals, 1I and 2I , are said to

have intersection and denoted by 1 2I I  if they contain some common items, for example,

[3,11] [7,19]  . Symbol x   is to express x’s floor function defined by 1x x x     , where x is a

real number. Symbol ()O x is the big O symbol defined in calculus.

2.2. Definitions

Definition 1 (Subdivision of Interval). A subdivision of interval I is to have finite intervals 1 2, ,...,I I I such

that 1i iI I   and 1 2...I I I I   , where i and  are positive integers, and iI means the thi

subinterval.

Definition 2 (Expected Computing Times (ECT)). The ECT is a number that an algorithm is expected to

compute the objective result successfully.

Remark 1. Hromkovic Juraj made it a rule in [10] that the ECT is not an infinite number. Hence the

definition 2 makes it a rule that the ECT is not an infinite number, neither a static number. It may be

changed to reach the goal of the task to be computed. For example, an ECT might be initialized a value
162 ,

and be updated to
322 or

82 depending on the realization of the computing goal.

2.3. Lemmas

Lemma 1 (See in [10], pp. 38-39) Let 1 2, ,..., nA A A be a finite collection of deterministic strategies

algorithms; a randomized algorithm A is a probability distribution over the collection.

Lemma 2 (See in [11]) Let { }ix be a sequence of non-negative integers generated by

1 (mod)i ix ax c m 

then the sequence has full period m provided that

1) c is relatively prime to m;

2) 1(mod)a p if p is a prime factor of m;

3) 1(mod4)a  if 4 is a factor of m.

Particularly, if m is a power of 2, it suffices to have 1(mod4)a  and c odd.

Lemma 3. The number of odd integers contained in the odd interval [,]a b is 1
2

b a
 .

International Journal of Applied Physics and Mathematics

175 Volume 9, Number 4, October 2019

Lemma 4 Let M be a positive integer and
1

0

2
M

i

i

i

X c




 , where 0ic  or 1; then 2MX 

Proof. Simply see the fact that X reaches its maximal value when 0 1 1... 1Mc c c     and

max 2 1 2M MX    .

3. Method and Its Mathematical Foundations

Suppose o is an odd integer lying somewhere in a large odd interval [,]I s e that contains n odd integers;

this section presents a search approach to find out o efficiently. The approach is based on a subdivision that

subdivides the large interval I into finite small subintervals that are suitable for both parallel computing and

random computing. This section also shows the mathematical validity of the approach.

3.1. Rule of Subdivision

In order to meet the needs of the Monte Carlo algorithm, a subdivision rule, which is briefly called a

randomization oriented subdivision (ROS), is made as follows.

(1) In accordance with the proposed ECT number, define an odd integer ECTN that is in the form of

4 1x  , namely,

1(mod 4)ECTN  (1)

(2) Express n by

2M

ECTn N R  (2)

(3) Subdivide the interval I into two parts by

P RI I I  (3)

where PI contains 2M

ECTN consecutive odd integers, RI contains R consecutive odd integers and

P RI I  .

(4) Subdivide the interval PI into 2M subintervals each of which contains ECTN odd integers.

Consequently, the large interval I is subdivided into 2 1M  subintervals among which each of the

first 2M ones contains ECTN consecutive odd integers and the last one contains R consecutive odd

integers, as depicted with Fig. 1.

Fig. 1. Subdivision of a large interval.

From now on, an ROS is by default composed of an PI part and an RI with RI containing R items and PI

containing 2M subintervals each of which contains ECTN items.

3.2. Rule of Search

Based on the ROS and a deterministic algorithm dA , a randomized algorithm that is embedded with dA ,

briefly called deterministic plus randomized search (DPRS), can be accomplished as follows.

 NECT NECT R

 2M NECT+R

International Journal of Applied Physics and Mathematics

176 Volume 9, Number 4, October 2019

Step 1. Select RI and search it with dA ;

 If o is found, output it and stop.

Step 2. Begin random search

0 1x  ;

Loop

Calculate 1

1 2 1(mod 2)M M

n n ECTx x N 

   ;

Select the subinterval
nxI in PI and search it with dA .

If o is found, output it and stop.

End loop

3.3. Mathematical Foundations

This subsection presents the mathematical foundations to show that the ROS is a universal subdivision,

and thus the DPRS can always be performed. The main contents are 3 theorems and 1 corollary.

Theorem 1. The DPRS can always find out the objective in the large interval. The searching time in the

best case is ()ECTO N while in the worst case it is (2)M

ECTO N provided that () ()ECTO R O N .

Proof. The condition () ()ECTO R O N means that the Step 1 in the DPRS can be accomplished in ()ECTO N .

Therefore, if Ro I , it is surely found out in ()ECTO N . If Po I and it happens to lie in the subinterval that

is picked by the first random selection, the searching time is ()ECTO N . By Lemma 2 it knows that, it requires

2M picks to have each of the 2M subintervals picked once. Since each subinterval in PI contains ECTN items,

it knows that (2)M

ECTO N is the time cost in the worst case that searches all the items in PI .

Theorem 2. There always exists an ECTN that enables () ()ECTO R O N .

Proof. First give an 1N satisfying 1 1(mod 4)N  and express n in terms of the Euclidean division by

1n aN r 

where 10 r N a  .

Then express a by

2m

aa r  (4)

and then

1 12m

an N r N r   (5)

which is also

1

1 12 (2)m m

an N r N r    (6)

Let in (5) 0 1aR r N r  and in (6) 1 1(2)m

aR r N r   ; it can see

1 0 1(1)a ar N R r N   (7)

Since the maximal value of ar is 2 1m  , e.g., in the case 1 22 2 2 ... 2 1m m ma        , and 10 r N  , it

knows

1 0R  (8)

Obviously, if 0 1R N , then the formula (5) can be the basis of choosing ECTN and R . Actually ECTN and

R can be chosen by 1ECTN N and 0R R , and it yields () ()ECTO R O N . If 0R is much bigger than 1N , then

International Journal of Applied Physics and Mathematics

177 Volume 9, Number 4, October 2019

the simplest choice of ECTN and R is to take 1ECTN N and 1R R in terms of the formula (6). The

inequality 0R  means that there is not an item in RI , thereby it costs no computing time, which is

(1) ()ECTR O O N  .

Theorem 3. For a given positive integer N such that 1(mod 4)N  , an arbitrary positive integer n

satisfying 2n N can always be expressed by either

*2 (2 1)Mn N R   (9)

or

12 (2 (1) 1)Mn N R      (10)

where 2log
n

M
N

  
   

  
, *0 2MR  , 10 2MR   and 2  are integers.

Proof. Here first presents a method to express n in the forms (5) and (6) as following 4 steps

Step 1. Take an initial 1N such that 1 1(mod 4)N  ;

Step 2. Calculate
1

n
a

N

 
  
 

 and 1r n a N   ;

Step 3. Calculate 2logm a    and 2m

ar a  ;

Step 4. Calculate 0 1aR r N r  and 1 1(2)m

aR r N r   .

By now

1

1 0 1 12 2m mn N R N R   

Since 1 0R  , as proved in Theorem 2, let 2 12 1N N  , which obviously satisfies 2 1(mod 4)N  ; then it

holds

1 1 1

2 1 1

2 1

2 1

2 (2 1) 2 2

2 2 2

2 (2) 2

2 2

m m m

a

m m m

a

m m m

a

m m

n N N r N r

N N r N r

N r N r

N R

     

    

    

  

 (11)

If 1 2 0mR   , then take 2N N and 1 2mR R  . Since 1 0R  , it is sure 0 2mR  . Referring to Theorem

2, it knows the case corresponding to (9) is true. Next is for the formula (10).

If 1 2 0mR   , letting 3 22 1N N  and 2 1 2mR R  yields

1 1

2 1

1 1

3 2

2 (2 1) 2 2

2 2

m m m

m m

n N R

N R

 

 

    

  
 (12)

If 1

2 2 0mR   , then take 2

3 2 1 12 1 2(2 1) 1 2 (1) 1N N N N N         and 1 1

2 12 2 2m m mR R R     

1

1 2 3mR    . Since 1 2 0mR   , it is sure 10 2mR   .

If 1

2 2 0mR   , letting 4 32 1N N  and 1

3 2 2mR R   yields

2 1 1

3 2

2 1

4 3

2 (2 1) 2 2

2 2

m m m

m m

n N R

N R

  

 

    

  
 (13)

International Journal of Applied Physics and Mathematics

178 Volume 9, Number 4, October 2019

If 1

3 2 0mR   , then take 3

4 3 12 1 2 (1) 1N N N N      and 1 1 1

12 2 2 4m m mR      1

3 22mR R R   

1 1 1 1 1

1 12 2 2 2 2 2 4m m m m m mR R            . Since 1

2 2 0mR   , it is sure 10 2mR   .

If 1

3 2 0mR   , letting 5 42 1N N  and 1

3 2 2mR R   yields

3 1 1

4 3

3 1

5 4

2 (2 1) 2 2

2 2

m m m

m m

n N R

N R

  

 

    

  
 (14)

The formulas (11), (12), (13) and (14) indicate that, when 2i  it always can find an 12 1i iN N   that

makes it hold

 2 1 2 1

1 12 2 2 2m i m m i m

i i in N R N R i     

      (15)

and there must be an i that satisfies 1

1 2 (1) 0mR i   and 1

1 2 0mR i  . Then taking ECT iN N and

1

1 2mR R i  leads to 12mR  Since 1

1 12(1) 1 2 (1) 1i

i iN N N

      , it knows the theorem holds.

Remark 3. In practice, the initial 1N is proposed to be the form 2 2 1s t  , where s and t are positive

integers and 0s t  .

Corollary 1. For a given large positive integer n and an initial positive integer N satisfying 1(mod 4)N  ,

an almost-proper ECTN can always be obtained by means of adjusting (reducing or enlarging) the value of N.

Proof. Referring to the proof process, it knows that reducing the value of the ECTN will make M bigger and

R smaller and enlarging the value of the ECTN will make M smaller and R bigger. Thereby, an ECTN within a

scope can always be obtained.

4. Application in Factoring Integers

Let O be a semiprime; Consider in a large interval I containing n odd integers in which an objective o

that has a common divisor with O. This section presents how to apply the ROS subdivision and the DPRS

search on integer factorization.

4.1. Hybrid Searching Procedure

The hybrid searching procedure means a random search (RS) is embedded with a brutal search (BS). The

BS calculates the greatest common divisor (GCD) between O and each item in a subinterval, and the RS

randomly selects the subinterval. Accordingly, the hybrid searching procedure is simply said to be an RS+BS

procedure. Generally, the BS is designed to finish the search in the ECT. The procedure is designed as follows

==========RS+BS Procedure==========
Input: O, n;
Step 1. Determine the ECTN and R by Theorem 2;

thus I can be subdivided into PI and RI

by the ROS.
Step 2. If 0R  , perform BS on RI ;

 If o is found out, go to Step 4.
Step 3. Perform the DPRS procedure on PI

 until o is found out.
Step 4. Output o and return.
===========End of Procedure==========

4.2. Parallel Computing Strategy

Suppose there are n integers to be searched in large interval I and there are m processes taking part in

the searching. Here proposes a two-stage subdivision (2S2) to perform parallel computing.

International Journal of Applied Physics and Mathematics

179 Volume 9, Number 4, October 2019

Stage 1. By the Euclidean division, express n by

(1) ,0 1n g m r r m     

Then the first subdivision is to subdivide the n integers into m subintervals, 0 1, ,...I I , and 1mI  , among

which there are 1m  subintervals each of which has the length g and the other one has the length r. The

purpose to make such a subdivision is to assign each subinterval a process to perform the search.

Stage 2. Without loss of generality, suppose 1 2, ,...m mI I  , and 1I are of the length g and 0I is the length

r; assign the process 0 to search 0I , and each of the other processes to search one of the subintervals

1 2, ,...m mI I  , and 1I , as illustrated by Fig. 2. Then perform ROS subdivision and DPRS on subintervals

1 2, ,...m mI I  , and 1I ; perform BS on 0I . Because there are merely r integers in 0I , the process 0 will soon

finish its task and then it plays a role of communicating among the processes. The other processes continue

their tasks until the objective integer is found.

Fig. 2. Subintervals vs. computing processes.

Example. Use a computer with E5450 3.0GHz and 4GB RAM, perform MPI parallel computing with 6

processes. The applied algorithms are pure BS one, which perform BS on the whole interval, and the DPR

one that is introduced above. The experiment results are list in Table 1. It can see the DPRS is generally

faster than the pure BS and the global results quite match to Theorem 1. Meanwhile, if compared with the

Pollard 's method [12], the DPRS is much faster. Fig. 3 depicts the data in the table.

Table 1. Comparison of Time Cost by Pollard , Pure BS with DPRS

Index Semiprimes Divisor interval Pollard  (ms) BS (ms) DPRS (ms) Found divisor

N1 448316072600119
[13360861,

21173475]
3516 80 31 15402707

N2 35249679931198483
[131315291,

187748981]
1062 1375 340 59138501

N3 208127655734009353
[387667969,

456210100
24250 1954 750 430470917

N4 331432537700013787
[402653185,

575701778]
14641 3735 1343 114098219

N5 3070282504055021789
[1429711703,

1752222161]
380812 8578 672 1436222173

N6 1129367102454866881
[1051805077,

1062716849]
31 281 140 25869889

N7 32391050471337716069
[3770814565,

5691313598]
19281 1375 750 12152389

N8 29742315699406748437
[3462461255,

5453651593]
139891 6984 319 372173423

N9 10188337563435517819
[2372157193,

3191917537]
33063 1672 844 70901851

N10 24928816998094684879
[3221225473,

4992876625]
42018 24031 21922 347912923

 process m-1 process m-2 process 0

 Im-1 Im-2 I0

International Journal of Applied Physics and Mathematics

180 Volume 9, Number 4, October 2019

5. Application in Big-Data Search

The finding integer problem can be of course an abstract model of the problems that find an objective

item in a large number of data sets. For example, find out an item that exits in of m different data sets,

1 2, ,...D D and mD . Regarding one data set to be one subinterval subdivided from a large interval surely,

the finding integer problem is surely an instance of finding out an objective item in a large number of data

sets. This can surely draw out the following Proposition 1.

Fig. 3. Factorization time cost by Pollard , BS and DPR search.

Proposition 1. Let D be a large number of data sets that collect n different data sets, 1 2, ,...D D and nD ,

where iD is the thi data set; if 1i iD D   and 1 2 ... nD D D D   , then the approach and the

procedures applying on integer factorization can also be available for finding an item in D.

6. Conclusion

It is a popular problem to search an objective item in an interval. The calculus provides many methods to

perform the search. Unfortunately, those methods provided in the calculus are suitable for the continuous

sets but not for the discrete sets. It is known that the divide-and-conquer philosophy is available for both

the continuous sets and the discrete sets. The subdivision ideal adopted in this paper is surely a way of

divide-and-conquer. To meet the needs of the Monte Carlo algorithm, it is necessary to make a special

subdivision on a large interval. Since the Monte Carlo method can merely select a computed unit,

performing deterministic algorithm on the selected unit is a natural consequence if the unit itself is an

interval too. This paper merely realizes the stated thoughts. Actually, comparing to the Pollard  method, it

can see that, the DPRS is an extensive Pollard  method because it extends the original Pollard  method

that select one integer each time to the selection of a subinterval. This is one advantage of the DPRS;

another advantage of the DPRS is that, it is available for both sequential computing and parallel computing

because the approach can be applied on every computing process; and the third one, as the Proposition 1

stated, the approach can be applied on other aspects such as the big data searches. That is why this paper is

so entitled.

On the other hand, since a randomized algorithm greatly depends on the pseudorandom number

generator and there are other pseudorandom number generator except for the one mentioned by Lemma 2,

the DPRS is improvable when utilizing some other pseudorandom number generator. This leaves a future

task. Hope to see splendid work in the future.

Acknowledgment

The research work is supported by the State Key Laboratory of Mathematical Engineering and Advanced

International Journal of Applied Physics and Mathematics

181 Volume 9, Number 4, October 2019

Computing under Open Project Program No.2017A01, Department of Guangdong Science and Technology

under project 2015A010104011, Foshan Bureau of Science and Technology under projects 2016AG100311,

Project gg040981 from Foshan University. The authors sincerely present thanks to them all.

References

[1] Goodman, E. S., & Hedetniemi, S. T. (1977). Introduction to the Design and Analysis of Algorithms.

McGraw-Hill, Inc.

[2] Steven, S. S. (2008). The Algorithm Design Manual. Springer New York.

[3] Anany, L. (2012). Introduction to the Design & Analysis of Algorithms. Pearson.

[4] Richardson, H. R., & Corwin, T. L. (1980). An overview of computer assisted search information

processing. Search Theory and Applications, Springer US.

[5] Fu, D. (2017). A parallel algorithm for factorization of big odd numbers. IOSR Journal of Computer

Engineering, 19(2), 51-54.

[6] Wang, X. (2017). Strategy for algorithm design in factoring RSA numbers. IOSR Journal of Computer

Engineering, 19(3,ver.2), 1-7.

[7] Li, J. (2017). Algorithm design and implementation for a mathematical model of factoring integers.

IOSR Journal of Mathematics, 13(I Ver. VI), 37-41.

[8] Li, J. (2018). A parallel probabilistic approach to factorize a semiprime. American Journal of

Computational Mathematics, 8(2), 175-183.

[9] Wang, X. (2019). Two number-guessing problems plus applications in cryptography. International

Journal of Network Security, 21(3), 498-504

[10] Hromkovic, J. (2005). Design and analysis of randomized algorithms. Introduction to Design Paradigms.

Springer-Verlag GmbH .

[11] Hull, T. E., & Dobell, A. R. (1962). Random number generator. SIAM Review, l.4(3), 230-254.

[12] Pollard, J. M. (1975). A monte carlo method for factorization. BIT Numerical Mathematics, 15, 331-334.

Xingbo Wang was born in Hubei, China. He got his master and doctor’s degree at National

University of Defense Technology of China and had been a staff in charge of researching

and developing CAD/CAM/NC technologies in the university. Since 2010, he has been a

professor in Foshan University with research interests in computer application and

information security. He is now the chief of Guangdong engineering center of information

security for intelligent manufacturing system. Prof. Wang was in charge of more than 40

projects including projects from the National Science Foundation Committee, published 8 books and over

90 papers related with mathematics, computer science and mechatronic engineering, and invented 30 more

patents in the related fields.

Jianxiang Guo was born in Hubei. He received a bachelor’s degree at Hubei Polytechnic

University and became a graduate student of Foshan University in 2018. He is now a

member of Guangdong engineering center of information security for intelligent

manufacturing system

