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Abstract: In this paper, we relax the fully parametric distributional assumption of measurement errors 

(MEs) to establish mixture Bernoulli model by a centered Dirichlet process. A hybrid algorithm is presented 

to generate observations required for a Bayesian inference from the posterior distributions of parameters 

and covariates subject to MEs in Bernoulli model by combining the stick-breaking prior and the Gibbs 

sampler together with the Metropolis-Hastings algorithm. Two Monte Carlo studies illustrate the 

superiority of the measurement error estimators in certain situations.  
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1. Introduction 

In a logistic regression model when covariates are subject to measurement error the naïve estimator, 

obtained by regressing on the observed covariates, is asymptotically biased. A measurement error model is 

a linear or non-linear regression model with measurement error in the explanatory variables. Disregarding 

these measurement errors in estimating the regression parameters results in asymptotically biased, i.e. 

inconsistent estimators. This is the motivation for investigating measurement error models. On the other 

hand, most studies cannot be recorded exactly in the life sciences, biology, ecology and economics involve 

variables. Recently measurement error methods have been applied in the masking of data to assure 

anonymity [1]. In engineering, the cabibration of measuring instruments deals with measurement errors by 

definition [2], many more examples and contribution to this field can be found in the literature, in particular 

in [3]-[5].  

Due to the importance of the measurement error problems, there are huge amount of papers and several 

books on measurement errors. It is important for us to review relatively recent developments in 

econometrics and statistics literature on measurement error problems. Reviews of earlier results on this 

subject can be found in Fuller [3], Carroll, Ruppere and Stefanski [6], Wansbeek and Meijer [7], Bound, 

Brown and Matwiowetz [8], Hausman [9]. 

In this survey we aim at developing a semiparametric Bayesian approach to simultaneously obtain 

Bayesian estimations of parameters and covariates subject to MEs by combing the stick-breaking prior and 

Gibbs sampler together with the Metropolis-Hastings algorithm. 

2. Generalized Linear Measurement Error Models 
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Suppose iy  denote the observed outcome variable, iX  be a 1p  vector of the unobserved 

covariate variables, and iV  be a 1r  vector of the observed covariate variables for the i th individual 

with ni ,,1 . Giving T

i( , )T T

i iZ X V , we consider that iy 's are conditionally independent of each 

other, the conditional probability density function of iy
 is assumed by  
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  is a scale parameter,  ( )d  and  ( , )c    are specific differentiable functions. The conditional mean i  is 

given to satisfy 
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where ( )h   is a monotonic differentiable link function, TT
ux ),(    is a 1)(  rp  vector of 

unknown regression coefficients. If the true covariate iX  are measured m  times for individual i , giving 

outcomes 
ijW  for mj ,,1   the structural ME model can be defined as 

 

ij i ijW X    .                                       (3) 

 

where the MEs ij 's are assumed to follow an unknown distribution, and are independent of iX . 

Following Lee et al. [10], we assume the Dirichlet process (DP) mixture model to specify the distribution of 

ij
. 

The true covariate model for iX  can be defined as 

 

          ii
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where 0  is an intercept, T
ru ),,( 1    and T

ru ),,( 1   is a 1r  vector of 

unknown regression parameters. Let },,{ 1 nyyY  , },,{ 1 nXXX  , },,{ 1 nVVV  , 

},,{ 1 n   and },,{ 1 nWWW   in which, ),,( 1 imii    and },,{ 1 imii WWW   

for ni ,,1  . We let },{  y  ,  are parameters of equation (3) and },,{   y . 

The joint probability density function for },,,{ XWY   is given by 
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21,aa ,
00,  H ,

00，  H , 1c and 2c  are hyperparameters whose values are considered to be given by 

the prior information. We assume the following priors for parameters TT
u ),(，， 0    and 

2
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Using the above presented joint probability density function and priors, we develop the generalized 

linear measurement error models. At the same time, utilizing the Gibbs sampler together with the 

Metropolis-Hastings algorithm for our defined models, we make statistical inference on parameters in 

},,{   y with a Bayesian approach. 

3. Bernoulli Simulation and Bayesian Estimations 

We consider data that are composed of a response and a covariate iX  for ni ,,1 . We define the 

Bernoulli distribution ),1( ipB  with  T
iu

T
ixi

i

i
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log . Let iV ~

)25.0,0( 3IN  and iX  is generated via Equation (4). In this case,   relating to Equation (1) is a 

constant. The true values of x , u ,   and 2
x are taken to be x =0.9, u =

T)6.0,6.0,6.0( ,  =

T)6.0,3.0,3.0,3.0(  and 2
x =1 for 4,100  mn . To investigate the effectiveness of our proposed 

methods, we consider the following distributional assumption for ij  

Assumption 1: We assume the distribution of ij ~ )1.1,0( 2N . 

Assumption 2: We assume the distribution of ij ~0.6 )2.0,4.0( 2N +0.4 )2.0,6.0( 2N . 

In order to inspect sensitivity of Bayesian estimates by different prior inputs, we select the following 

three types of priors for   and  . 

Type A. The hyperparameters corresponding to the priors of  and   are chosen to be 

T)6.0,6.0,6.0,9.0(0  , 4
0 25.0 IH  , T)6.0,3.0,3.0,3.0(0   and 4

0 25.0 IH  . This 

can be regarded as a situation with good prior information. 

Type B. The hyperparameters corresponding to the priors of   and k  are taken to be 

T)6.0,6.0,6.0,9.0(5.10  , 4
0 75.0 IH  , T)6.0,3.0,3.0,3.0(5.10   and 

4
0 75.0 IH  .This can be regarded as a situation with inaccurate prior information. 

Type C. The hyperparameters corresponding to the priors of   and k  are taken to be 

T)6.0,6.0,6.0,9.0(00  , 4
0 10IH  , T)6.0,3.0,3.0,3.0(00   and 4

0 10IH  . This 

can be regarded as a situation with noninformative prior information. 

After 10000 burn-in iterations 5000 observations are collected in each of the generated 100 data sets, we 
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evaluate Bayesian estimates via Markov chain Monte Carol (MCMC) samples from the full data posterior 

distribution. Results of Table 1-2 are presented under assumption together with three types of prior inputs.  

In Table 1-2, `Bias' is the absolute difference between the true value and the mean of the estimates based on 

100 replications and `RMS' is the root mean square between the estimates based on100 replications and its 

true value. 

 
Table 1. Parameter Estimates in the First Simulation  

Parameter 
True 
value 

Type 
Bias 

A 
RMS 

  Type 
Bias 

B 
RMS 

Type 
Bias 

C 
RMS 

0  0.3   0.0103     0.0742     0.0031     0.0789     0.0088     0.0744 

1  0.3   0.0172     0.1918     0.0055     0.1872     0.0026     0.2181 

2  0.3   0.0105     0.2045     0.0421     0.1777     0.0083     0.2160 

3  0.6   0.2988     0.3723     0.0022     0.2093     0.0008     0.1760 

x  0.9   0.0164     0.2744     0.1194     0.3725     0.0738     0.5163 

1  0.6   0.0189     0.2610     0.0630     0.3616     0.0108     0.4539 

2  0.6   0.0332     0.2584     0.1334     0.3855     0.0283     0.5220 

3  0.6   0.0009     0.1658     0.0512     0.1774     0.0582     0.1907 

2
z  1.0   0.1058     0.1555     0.0657     0.1387     0.0897     0.1520 

 
Table 2. Parameter Estimates in the Second Simulation  

Parameter 
True 
value 

Type 
Bias 

A 
RMS 

 Type 
Bias 

B 
RMS 

Type 
Bias 

C 
RMS 

0  0.3   0.0065     0.0738     0.0075     0.0698     0.0025     0.0637 

1  0.3   0.0042     0.1888     0.0085     0.2028     0.0145     0.1979 

2  0.3   0.0278     0.2019     0.0224     0.1994     0.0001     0.1903 

3  0.6   0.0336     0.1900     0.0050     0.2052     0.0251     0.1705 

x  0.9   0.0267     0.2706     0.1094     0.3969     0.0260     0.5386 

1  0.6   0.0011     0.2144     0.0669     0.4128     0.0146     0.4630 

2  0.6   0.0119     0.2398     0.0636     0.3576     0.0339     0.4945 

3  0.6   0.0146     0.1452     0.0110     0.1524     0.0002     0.1559 

2
z  1.0   0.0270     0.0924     0.0441     0.1046     0.0578     0.1050 

 

4. Conclusion 

Results from Tables 1-2 shows that 1) even if the different distributional assumptions of ij  and prior 

inputs of unknown parameters, Bayesian estimates the Bernoulli model with measurement error are 

reasonably accurate because their Bias values were less than 0.10 and their RMS values were less than 0.20; 

2) using our proposed method, we can estimate the mean and standard deviation of the true distribution of 

ij  well; 3) the performance of the proposed procedures is developed in the Bernoulli model with 

measurement error. 
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