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Abstract: In 2013, Liu and Xu introduced the concept of cone metric spaces over Banach algebras, replacing 

Banach spaces by Banach algebras. They proved some fixed point theorems in these spaces. Xu and 

Radenovic gave another proof for the results of Liu and Xu where the cone didn’t have the normality.  

In this paper we prove a new fixed point theorem for quasi - contractive mappings in cone metric space 

over Banach algebras. As an application of the main result, we give an example. Also the map in this 

example satisfies the conditions of our theorem but not the conditions of theorems of Liu and Xu and Xu 

amd Radenovic and it has a fixed point. 
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1. Introduction 

Fixed point theory is one of the most importance subject of Functional Analysis. It is applicated in 

different fields as in Geometry, Differential Equations, Informatics, Physics. S. Banach [1] proved a fixed 

point theorem for contractive mappings in metric space. Then, there are many authors who have 

generalized this result, as Ciric [2], Rhoades [3]. Metric spaces are generalized by many authors to other 

spaces cone metric spaces. The concept of cone metric space was reviewed by authors Huang and Zhang [4] 

by replacing the real axes in the definition of the distance by an ordered Banach space. They proved the 

Banach theorem in cone metric space. Many authors have worked over these spaces, as Karapinar [5], 

Rezapour. Sh, Hamlbarani. R [6]. Later, in 2013, Liu and Xu [7] introduced the concept of cone metric spaces 

over Banach algebras, replacing Banach spaces by Banach algebras. They proved some fixed point theorems 

of generalized Lipschitz mappings where cone is normal. Then, in 2014, Xu and Radenovic [8] gave original 

proofs for the results of Liu and Xu [7], but now without the assumption of normality of cone.  

In his paper, Rhoades [3] has collected various contractive mappings in metric space. One of them is quasi 

– contractive mapping  

𝑻:𝑿 → 𝑿, 𝒅(𝑻𝒙, 𝑻𝒚) ≤ 𝐦𝐚𝐱{𝒅(𝒙, 𝒚), 𝒅(𝒙, 𝑻𝒙), 𝒅(𝒚, 𝑻𝒚),
𝒅(𝒙,𝑻𝒚)+𝒅(𝒚,𝑻𝒙)

𝟐
}, ∀𝒙, 𝒚 ∈ 𝑿. 

 
In this paper we present quasi contractive mappings in cone metric spaces over and we give a new fixed 

point result for quasi - contractive mappings in these spaces. 

1.1. Preliminaries 
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Definition 1.1.1 [9] Let A be a real Banach space. In A, an operation of multiplication defined, that 

satifiesthe following properties (for all 𝑥, 𝑦, 𝑧 ∈ A, 𝛼 ∈ 𝑅): 

1) (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧); 

2) (𝑥 + 𝑦)𝑧 = 𝑥𝑧 + 𝑦𝑧 and 𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧; 

3) 𝛼(𝑥𝑦) = (𝛼𝑥)𝑦 = 𝑥(𝛼𝑦); 

4) ‖𝑥𝑦‖ ≤ ‖𝑥‖‖𝑦‖; 

In this paper we assume that a Banach algebra has a unit element 𝑒 such that 𝑒𝑥 = 𝑥𝑒 = 𝑥 for all 𝑥 ∈ 

A.  𝑥 ∈ A is said to be invertible if there is an inverse element 𝑦 ∈ A such that 𝑥𝑦 = 𝑦𝑥 = 𝑒. The inverse 

of 𝑥 is denoted 𝑥−1.  

Proposition 1.1.1 ([10]) Let A be a Banach algebra with a unit 𝑒 and 𝑥 ∈ A. If the spectral radius 

𝜌(𝑥) < 1 , i.e., 𝜌(𝑥) = lim𝑛→∞‖𝑥‖
1

𝑛 = inf𝑛≥1‖𝑥‖
1

𝑛 < 1  then 𝑒 − 𝑥  is invertible. Actually, (𝑒 − 𝑥)−1 =

∑ 𝑥𝑖∞
𝑖=0 . 

Let𝑃 be a non-empty closed convex of a Banach algebra A.  

𝑃 is called cone [1] if  

1) {𝜃, 𝑒} ⊂ 𝑃; 

2) for every 𝑥, 𝑦 ∈ 𝑃, and 𝛼, 𝛽 ∈ 𝑅, 𝛼𝑥 + 𝛽𝑦 ∈ 𝑃; 

3) for every 𝑥, 𝑦 ∈ 𝑃, 𝑥𝑦 ∈ 𝑃; 

4) if 𝑥 ∈ 𝑃 and −𝑥 ∈ 𝑃 then 𝑥 = 𝜃 

where 𝜃 is the null of the Banach algebra A. For a given cone 𝑃 ⊂A, we can define a partial ordering ≼

with respect to 𝑃, by 𝑥 ≼ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃, and 𝑥 ≺≺ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑖𝑛𝑡𝑃,where int𝑃 

denotes the interior of𝑃. P is called a solid cone if int𝑃 ≠ ∅. 𝑃 is called normal if there exists a positive 

constant 𝑀 > 0 such that for all 𝑥, 𝑦 ∈A, 𝜃 ≼ 𝑥 ≼ 𝑦 ⟹ ‖𝑥‖ ≤ 𝑀‖𝑦‖. 

Definition 1.1.2 [1] Let 𝑋 be a non-empty set and A be a real Banach algebra. Suppose that the mapping 

𝑑: 𝑋 × 𝑋 → A satisfies: 

1) 𝜃 ≼ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 𝜃 if and only if 𝑥 = 𝑦; 

2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋; 

3) 𝑑(𝑥, 𝑦) ≼ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

Then𝑑 is called a cone metric on 𝑋 and (𝑋, 𝑑) is called a cone metric space over the Banach algebra A. 

Definition 1.1.3 [1] Let (𝑋, 𝑑) be a cone metric space over the Banach algebra A, 𝑥 ∈ 𝑋 and let {𝑥𝑛} 

be a sequence in 𝑋. Then: 

1) {𝑥𝑛} converges to 𝑥 if for each 𝑐 ∈ A with 𝜃 ≪ 𝑐, there exist a natural number 𝑛0 such that for all 

𝑛 > 𝑛0, 𝑑(𝑥𝑛, 𝑥) ≪ 𝑐. This is denoted by lim𝑛→∞ 𝑥𝑛 = 𝑥 or 𝑥𝑛 → 𝑥. 

2) {𝑥𝑛} is a Cauchy sequence if for each 𝑐 ∈ A with 𝜃 ≪ 𝑐, there exist a natural number 𝑛0 such that 

for all 𝑛,𝑚 > 𝑛0, 𝑑(𝑥𝑛, 𝑥𝑚) ≪ 𝑐.  

3) (𝑋, 𝑑) is a complete cone metric space if every Cauchy sequence is convergent. 

Definition 1.1.4 [5] Let P a solid cone in a Banach space A. A sequence {𝑥𝑛} in P is a c – sequence if for 

each 𝑐 ∈ A with 𝜃 ≪ 𝑐, there exist a natural number 𝑛0 such that for all 𝑛 > 𝑛0, 𝑥𝑛 ≪ 𝑐. 

Proposition 1.1.2 [8] Let (𝑋, 𝑑) be a complete cone metric space over the Banach algebra A and P a 

solid cone in a Banach space A. If {𝑥𝑛} converges to 𝑥, then we have: 

1) {𝑑(𝑥𝑛, 𝑥)} is a c – sequence. 

2) {𝑑(𝑥𝑛, 𝑥𝑛+𝑝)} is a c – sequence, for any 𝑝 ∈ 𝑁. 

Lemma 1.1.1 [8] Let A be a real Banach algebra and let 𝑥, 𝑦 ∈ A. If 𝑥 and𝑦 commute, then the 

following hold: 

1) 𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥)𝜌(𝑦); 

2) 𝜌(𝑥 + 𝑦) ≤ 𝜌(𝑥) + 𝜌(𝑦); 
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3) |𝜌(𝑥) − 𝜌(𝑦)| ≤ 𝜌(𝑥 − 𝑦). 

Lemma 1.1.2 [8] Let A be a real Banach algebra and let 𝑘 ∈ A. If 0 ≤ 𝜌(𝑘) < 1, then 𝜌((𝑒 − 𝑘)−1) ≤

(1 − 𝜌(𝑘))−1. 

Remark 1.1.1 [8] In general the condition 𝜌(𝑘) < 1 is weaker than ‖𝑘‖ < 1,and if 𝜌(𝑘) < 1 then 

‖𝑘𝑛‖
𝑛→∞
→   0. 

2. Main Results 

Definition 2.1 Let(𝑋, 𝑑) be cone metric space over a Banach algebra A. The mapping 𝑇: 𝑋 → 𝑋 is called 

quasi contractive in X if it satisfies: 

 
𝑑(𝑇𝑥, 𝑇𝑦) ≼ kmax{𝑑(𝑥, 𝑦), 𝑑(𝑇𝑥, 𝑥), 𝑑(𝑇𝑦, 𝑦), ℎ[𝑑(𝑇𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦)] 

 
for every 𝑥, 𝑦 ∈ 𝑋 and 𝑘, ℎ ∈ A, 𝜌(𝑘) < 1 and 𝜌(ℎ) < 1. 

Theorem 2.1 Let (𝑋, 𝑑) be a complete cone metric space over a Banach algebra A, 𝑃be a solid cone in A. 

Suppose that the mapping 𝑇: 𝑋 → 𝑋,is quasi – contractive, so it satisfies: 

 
𝑑(𝑇𝑥, 𝑇𝑦) ≼ 𝑘max{𝑑(𝑥, 𝑦), 𝑑(𝑇𝑥, 𝑥), 𝑑(𝑇𝑦, 𝑦), ℎ[𝑑(𝑇𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦)]} 

 
Where ℎ𝑘 = 𝑘ℎ, 𝜌(𝑘) < 1 and 𝜌(ℎ) < 1. Then 𝑇 has a fixed point in 𝑋. 

Proof. Let 𝑥0 ∈ 𝑋, we construct the sequence {𝑥𝑛}𝑛∈𝑁by 𝑥𝑛 = 𝑇𝑥𝑛−1 = 𝑇
𝑛𝑥0, 𝑛 ≥ 1.  

We have 𝑑(𝑥𝑛+1, 𝑥𝑛) = 𝑑(𝑇𝑥𝑛, 𝑇𝑥𝑛−1) 

 
≼ 𝑘max{𝑑(𝑥𝑛, 𝑥𝑛−1), 𝑑(𝑇𝑥𝑛 , 𝑥𝑛), 𝑑(𝑇𝑥𝑛−1, 𝑥𝑛−1), ℎ[𝑑(𝑇𝑥𝑛, 𝑥𝑛−1) + 𝑑(𝑥𝑛, 𝑇𝑥𝑛−1)]} 

 
= 𝑘max{𝑑(𝑥𝑛, 𝑥𝑛−1), 𝑑(𝑥𝑛+1, 𝑥𝑛), 𝑑(𝑥𝑛, 𝑥𝑛−1), ℎ[𝑑(𝑥𝑛+1, 𝑥𝑛−1) + 𝑑(𝑥𝑛, 𝑥𝑛)]} 

 
= 𝑘max{𝑑(𝑥𝑛, 𝑥𝑛−1), 𝑑(𝑥𝑛+1, 𝑥𝑛), ℎ𝑑(𝑥𝑛+1, 𝑥𝑛−1)} 

 
Case 1. If max{𝑑(𝑥𝑛, 𝑥𝑛−1), 𝑑(𝑥𝑛+1, 𝑥𝑛), ℎ𝑑(𝑥𝑛+1, 𝑥𝑛−1)} = 𝑑(𝑥𝑛, 𝑥𝑛−1),  

we have 𝑑(𝑥𝑛+1, 𝑥𝑛) ≼ 𝑘𝑑(𝑥𝑛, 𝑥𝑛−1) ≼ 𝑘
2𝑑(𝑥𝑛−1, 𝑥𝑛−2) ≼ ⋯ ≼ 𝑘

𝑛𝑑(𝑥1, 𝑥0) 

Using the same technique as [8], we prove that the sequence {𝑥𝑛}𝑛∈𝑁 is Cauchy. Taking 𝑛 < 𝑚, we have 

 
𝑑(𝑥𝑛, 𝑥𝑚) ≼ 𝑑(𝑥𝑛, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1, 𝑥𝑛+2) + ⋯+ 𝑑(𝑥𝑚−1, 𝑥𝑚) 

 
≼ (𝑘𝑛 + 𝑘𝑛+1 +⋯+ 𝑘𝑚−1)𝑑(𝑥1, 𝑥0) ≤ 𝑘

𝑛(𝑒 + 𝑘 +⋯+ 𝑘𝑚−𝑛−1)𝑑(𝑥1, 𝑥0) 

≼ 𝑘𝑛 (∑𝑘𝑖
∞

𝑖=0

)𝑑(𝑥1, 𝑥0) = 𝑘
𝑛(𝑒 − 𝑘)−1𝑑(𝑥1, 𝑥0) 

 
Since𝜌(𝑘) < 1 then ‖𝑘𝑛‖

𝑛→∞
→   0, so we have that ‖𝑘𝑛(𝑒 − 𝑘)−1𝑑(𝑥1, 𝑥0)‖

𝑛→∞
→   0. From Proposition 1.1.2 

[8], for every 𝑐 ∈A, with 𝑐 ≫ 0, there exist 𝑛0 ∈ 𝑁, such that for every 𝑚 > 𝑛 > 𝑛0, we have:  

𝑑(𝑥𝑛, 𝑥𝑚) ≼ 𝑘
𝑛(𝑒 − 𝑘)−1𝑑(𝑥1, 𝑥0) ≪ 𝑐. So the sequence{𝑥𝑛}𝑛∈𝑁 is Cauchy. Since (𝑋, 𝑑) is complete, 

the sequence {𝑥𝑛}𝑛∈𝑁 = {𝑇
𝑛𝑥0}𝑛∈𝑁  is convergent. 

Case 2. If max{𝑑(𝑥𝑛, 𝑥𝑛−1), 𝑑(𝑥𝑛+1, 𝑥𝑛), ℎ𝑑(𝑥𝑛+1, 𝑥𝑛−1)} = 𝑑(𝑥𝑛+1, 𝑥𝑛) , we have 

𝑑(𝑥𝑛+1, 𝑥𝑛) ≼ 𝑘𝑑(𝑥𝑛+1, 𝑥𝑛), so (𝑒 − 𝑘)𝑑(𝑥𝑛+1, 𝑥𝑛) ≼ 𝜃.By multiplying by (𝑒 − 𝑘)−1both sides, we take 

𝑑(𝑥𝑛+1, 𝑥𝑛) ≼ 𝜃, so 𝑥𝑛+1 = 𝑥𝑛 = ⋯ = 𝑥0. The sequence {𝑥𝑛}𝑛∈𝑁 is constant so it is convergent. 

Case 3. If max{𝑑(𝑥𝑛, 𝑥𝑛−1), 𝑑(𝑥𝑛+1, 𝑥𝑛), ℎ𝑑(𝑥𝑛+1, 𝑥𝑛−1)} = ℎ𝑑(𝑥𝑛+1, 𝑥𝑛−1),  we have 𝑑(𝑥𝑛+1, 𝑥𝑛) ≼

𝑘ℎ𝑑(𝑥𝑛+1, 𝑥𝑛−1) ≼ 𝑘ℎ[𝑑(𝑥𝑛+1, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑥𝑛−1)],  and (𝑒 − 𝑘ℎ)𝑑(𝑥𝑛+1, 𝑥𝑛) ≼ 𝑘ℎ𝑑(𝑥𝑛, 𝑥𝑛−1),  so  

𝑑(𝑥𝑛+1, 𝑥𝑛) ≼ (𝑒 − 𝑘ℎ)
−1𝑘ℎ𝑑(𝑥𝑛, 𝑥𝑛−1). 
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Write down (𝑒 − 𝑘ℎ)−1𝑘ℎ = 𝜆 , and we have 𝑑(𝑥𝑛+1, 𝑥𝑛) ≼ 𝜆𝑑(𝑥𝑛, 𝑥𝑛−1) ≼ 𝜆
2𝑑(𝑥𝑛−1, 𝑥𝑛−2) ≼ ⋯ ≼

𝜆𝑛𝑑(𝑥1, 𝑥0). 

Now we have to prove that 𝜌(𝜆) = 𝜌((𝑒 − 𝑘ℎ)−1𝑘ℎ) < 1. 

Since 𝜌(𝑘) < 1 and 𝜌(ℎ) < 1 andℎ𝑘 = 𝑘ℎ, we have 𝜌(𝑘ℎ) ≤ 𝜌(𝑘)𝜌(ℎ) < 1. Noting that (𝑒 − 𝑘ℎ)−1 

and 𝑘ℎ commute, 𝜌((𝑒 − 𝑘ℎ)−1𝑘ℎ) ≤ 𝜌((𝑒 − 𝑘ℎ)−1)𝜌(𝑘ℎ) ≤ (1 − 𝜌(𝑘ℎ))
−1
𝜌(𝑘ℎ) < 1. 

Now we prove that the sequence {𝑥𝑛}𝑛∈𝑁 is Cauchy. Taking 𝑛 < 𝑚, we have 

 
𝑑(𝑥𝑛, 𝑥𝑚) ≼ 𝑑(𝑥𝑛, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1, 𝑥𝑛+2) + ⋯+ 𝑑(𝑥𝑚−1, 𝑥𝑚) 

 
≼ (𝜆𝑛 + 𝜆𝑛+1 +⋯+ 𝜆𝑚−1)𝑑(𝑥1, 𝑥0) ≼ 𝜆

𝑛(𝑒 + 𝜆 +⋯+ 𝜆𝑚−𝑛−1)𝑑(𝑥1, 𝑥0) 

≼ 𝜆𝑛 (∑𝜆𝑖
∞

𝑖=0

)𝑑(𝑥1, 𝑥0) = 𝜆
𝑛(𝑒 − 𝜆)−1𝑑(𝑥1, 𝑥0) 

 
Since 𝜌(𝜆) < 1 then ‖𝜆𝑛‖

𝑛→∞
→   0, so we have that ‖𝜆𝑛(𝑒 − 𝜆)−1𝑑(𝑥1, 𝑥0)‖

𝑛→∞
→   0. For every 𝑐 ∈A, with 

𝑐 ≫ 0, there exist 𝑛0 ∈ 𝑁, such that for every 𝑚 > 𝑛 > 𝑛0, we have:  

𝑑(𝑥𝑛, 𝑥𝑚) ≼ 𝜆
𝑛(𝑒 − 𝜆)−1𝑑(𝑥1, 𝑥0) ≪ 𝑐. 

 

So the sequence{𝑥𝑛}𝑛∈𝑁 is Cauchy. Since (𝑋, 𝑑) is complete, the sequence {𝑥𝑛}𝑛∈𝑁 = {𝑇
𝑛𝑥0}𝑛∈𝑁  is 

convergent. 

In all cases, we proved that the sequence{𝑥𝑛}𝑛∈𝑁 is convergent. So, suppose that it converges to 𝑥∗. 

Now we prove that 𝑥∗ is a fixed point of 𝑇, so 𝑇𝑥∗ = 𝑥∗. 

𝑑(𝑇𝑥∗, 𝑥∗) ≼ 𝑑(𝑇𝑥∗, 𝑇𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥
∗) 

 
≼ 𝑘max{𝑑(𝑥∗, 𝑥𝑛), 𝑑(𝑇𝑥

∗, 𝑥∗), 𝑑(𝑇𝑥𝑛 , 𝑥𝑛), ℎ[𝑑(𝑇𝑥
∗, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥

∗)]} + 𝑑(𝑇𝑥𝑛, 𝑥
∗) 

 
Case 1. If max{𝑑(𝑥∗, 𝑥𝑛), 𝑑(𝑇𝑥

∗, 𝑥∗), 𝑑(𝑇𝑥𝑛, 𝑥𝑛), ℎ[𝑑(𝑇𝑥
∗, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥

∗)]} = 𝑑(𝑥∗, 𝑥𝑛) so we have 

 

𝑑(𝑇𝑥∗, 𝑥∗) ≼ 𝑘𝑑(𝑥∗, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥
∗). 

 
Now, we see that the sequence { 𝑘𝑑(𝑥∗, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥

∗)}  is 𝑐 −  sequence, because ‖𝑘𝑑(𝑥∗, 𝑥𝑛) +

𝑑(𝑇𝑥𝑛, 𝑥
∗)‖≤‖𝑘‖‖𝑑(𝑥∗, 𝑥𝑛)‖ + ‖𝑑(𝑇𝑥𝑛, 𝑥

∗)‖
𝑛→∞
→   0. For any 𝑐 ≫ 0, 𝑑(𝑇𝑥∗, 𝑥∗) ≼ 𝑘𝑑(𝑥∗, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥

∗) ≪

𝑐, so 𝑑(𝑇𝑥∗, 𝑥∗) = 0 and 𝑇𝑥∗ = 𝑥∗. 

Case 2. If max{𝑑(𝑥∗, 𝑥𝑛), 𝑑(𝑇𝑥
∗, 𝑥∗), 𝑑(𝑇𝑥𝑛, 𝑥𝑛), ℎ[𝑑(𝑇𝑥

∗, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥
∗)]} = 𝑑(𝑇𝑥∗, 𝑥∗) 

we have𝑑(𝑇𝑥∗, 𝑥∗) ≼ 𝑘𝑑(𝑇𝑥∗, 𝑥∗) + 𝑑(𝑇𝑥𝑛, 𝑥
∗) and(𝑒 − 𝑘)𝑑(𝑇𝑥∗, 𝑥∗) ≼ 𝑑(𝑇𝑥𝑛, 𝑥

∗). 

So 𝑑(𝑇𝑥∗, 𝑥∗) ≼ (𝑒 − 𝑘)−1𝑑(𝑇𝑥𝑛, 𝑥
∗) . The sequence { (𝑒 − 𝑘)−1𝑑(𝑇𝑥𝑛, 𝑥

∗)}  is 𝑐 −  sequence, because 

‖(𝑒 − 𝑘)−1𝑑(𝑇𝑥𝑛, 𝑥
∗)‖

𝑛→∞
→   0. For any 𝑐 ≫ 0, 𝑑(𝑇𝑥∗, 𝑥∗) ≼ (𝑒 − 𝑘)−1𝑑(𝑇𝑥𝑛, 𝑥

∗) ≪ 𝑐, so 𝑑(𝑇𝑥∗, 𝑥∗) = 0 and 

𝑇𝑥∗ = 𝑥∗. 

Case 3. If max{𝑑(𝑥∗, 𝑥𝑛), 𝑑(𝑇𝑥
∗, 𝑥∗), 𝑑(𝑇𝑥𝑛, 𝑥𝑛), ℎ[𝑑(𝑇𝑥

∗, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥
∗)]} = 𝑑(𝑇𝑥𝑛, 𝑥𝑛) 

we have𝑑(𝑇𝑥∗, 𝑥∗) ≼ 𝑘𝑑(𝑇𝑥𝑛, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥
∗) ≼ 𝑘𝑑(𝑇𝑥𝑛, 𝑥

∗) + 𝑘𝑑(𝑥∗, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥
∗).  

The sequence { 𝑘𝑑(𝑇𝑥𝑛, 𝑥
∗) + 𝑘𝑑(𝑥∗, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥

∗)}  is 𝑐 −  sequence, because ‖𝑘𝑑(𝑇𝑥𝑛, 𝑥
∗) +

𝑘𝑑(𝑥∗, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥
∗)‖

𝑛→∞
→   0. For any 𝑐 ≫ 0, 𝑑(𝑇𝑥∗, 𝑥∗) ≼ 𝑘𝑑(𝑇𝑥𝑛, 𝑥

∗) + 𝑘𝑑(𝑥∗, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥
∗) ≪ 𝑐, so 

𝑑(𝑇𝑥∗, 𝑥∗) = 0 and 𝑇𝑥∗ = 𝑥∗. 

Case 4. If max{𝑑(𝑥∗, 𝑥𝑛), 𝑑(𝑇𝑥
∗, 𝑥∗), 𝑑(𝑇𝑥𝑛, 𝑥𝑛), ℎ[𝑑(𝑇𝑥

∗, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥
∗)]} = ℎ[𝑑(𝑇𝑥∗, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥

∗)], 

we have 

𝑑(𝑇𝑥∗, 𝑥∗) ≼ 𝑘ℎ[𝑑(𝑇𝑥∗, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥
∗)] + 𝑑(𝑇𝑥𝑛, 𝑥

∗)𝑘 ≼ ℎ[𝑑(𝑇𝑥∗, 𝑥∗) + 𝑑(𝑥∗, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛, 𝑥
∗)] +
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𝑑(𝑇𝑥𝑛, 𝑥
∗). So (𝑒 − 𝑘ℎ)𝑑(𝑇𝑥∗, 𝑥∗) ≼ 𝑘ℎ𝑑(𝑥∗, 𝑥𝑛) + (𝑒 + 𝑘ℎ)𝑑(𝑇𝑥𝑛, 𝑥

∗). 

Furthermore, since 𝜌(ℎ𝑘) < 1, we have  

 
𝑑(𝑇𝑥∗, 𝑥∗) ≼ (𝑒 − 𝑘ℎ)−1[𝑘ℎ𝑑(𝑥∗, 𝑥𝑛) + (𝑒 + 𝑘ℎ)𝑑(𝑇𝑥𝑛, 𝑥

∗)] 
 

Reasoning as in the other cases we get: for any 𝑐 ≫ 0, 𝑑(𝑇𝑥∗, 𝑥∗) ≪ 𝑐, so 𝑑(𝑇𝑥∗, 𝑥∗) = 0 and 𝑇𝑥∗ = 𝑥∗. 

So 𝑥∗ is a fixed point of𝑇. 

Example 2.1. Let A = 𝑅2. For each 𝑥 = (𝑥1, 𝑥2) ∈ A, let ‖𝑥‖ = |𝑥1| + |𝑥2|. The multiplication is defined 

by 𝑥𝑦 = (𝑥1, 𝑦1)(𝑥2,𝑦2) = (𝑥1𝑦1, 𝑥2𝑦2). The unit of Banach algebra A is 𝑒 = (1,1).  

Let 𝑃 = {(𝑥1, 𝑥2) ∈ 𝑅
2|𝑥1 ≥ 0, 𝑥2 ≥ 0} and 𝑋 = [0,1]. A cone metric over Banach algebra is defined by 

𝑑(𝑥, 𝑦) = {
(max(𝑥, 𝑦) ,max(𝑥, 𝑦))𝑥 ≠ 𝑦
(0,0)𝑥 = 𝑦

. 

(𝑋, 𝑑)is a complete cone metric space over the Banach algebra A.  

Now define mapping 𝑇: 𝑋 → 𝑋  by 𝑇𝑥 =
1

4
𝑥2 +

1

2
𝑥  and 𝑘 = (

7

8
,
7

8
) , ℎ = (

2

3
,
2

3
) , 𝜌 ((

7

8
,
7

8
)) < 1  and 

𝜌 ((
2

3
,
2

3
)) < 1. 

 

𝑑(𝑇𝑥, 𝑇𝑦) = (max(
1

4
𝑥2 +

1

2
𝑥,
1

4
𝑦2 +

1

2
𝑦),max(

1

4
𝑥2 +

1

2
𝑥,
1

4
𝑦2 +

1

2
𝑦)) 

 
Suppose 𝑥 < 𝑦. 

Case 1. If 𝑥 <
1

4
𝑦2 +

1

2
𝑦 < 𝑦, we have 𝑑(𝑇𝑥, 𝑇𝑦) = (

1

4
𝑦2 +

1

2
𝑦,
1

4
𝑦2 +

1

2
𝑦) 

Now we see  

 

𝑑(𝑥, 𝑦) = (max(𝑥, 𝑦) ,max(𝑥, 𝑦)) = (𝑦, 𝑦), 

𝑑(𝑇𝑥, 𝑥) = (max (𝑥,
1

4
𝑥2 +

1

2
𝑥) ,max (𝑥,

1

4
𝑥2 +

1

2
𝑥)) = (𝑥, 𝑥),  

𝑑(𝑇𝑦, 𝑦) = (max (𝑦,
1

4
𝑦2 +

1

2
𝑦) ,max (𝑦,

1

4
𝑦2 +

1

2
𝑦)) = (𝑦, 𝑦),  

𝑑(𝑇𝑥, 𝑦) = (max (
1

4
𝑥2 +

1

2
𝑥, 𝑦) ,max (

1

4
𝑥2 +

1

2
𝑥, 𝑦)) = (𝑦, 𝑦), 

𝑑(𝑇𝑦, 𝑥) = (max (
1

4
𝑦2 +

1

2
𝑦, 𝑥) ,max (

1

4
𝑦2 +

1

2
𝑦, 𝑥)) = (

1

4
𝑦2 +

1

2
𝑦,
1

4
𝑦2 +

1

2
𝑦), 

𝑑(𝑇𝑥, 𝑦) + 𝑑(𝑇𝑦, 𝑥) = (
1

4
𝑦2 +

3

2
𝑦,
1

4
𝑦2 +

3

2
𝑦),  

ℎ[𝑑(𝑇𝑥, 𝑦) + 𝑑(𝑇𝑦, 𝑥)] = (
2

3
,
2

3
) (

1

4
𝑦2 +

3

2
𝑦,
1

4
𝑦2 +

3

2
𝑦) = (

1

6
𝑦2 + 𝑦,

1

6
𝑦2 + 𝑦). 

 
So  

max{𝑑(𝑥, 𝑦), 𝑑(𝑇𝑥, 𝑥), 𝑑(𝑇𝑦, 𝑦), ℎ[𝑑(𝑇𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦)]} = max {(𝑥, 𝑥), (𝑦, 𝑦), (
1

6
𝑦2 + 𝑦,

1

6
𝑦2 + 𝑦)}

= (
1

6
𝑦2 + 𝑦,

1

6
𝑦2 + 𝑦). 

 

Now we have: 

 

𝑘max{𝑑(𝑥, 𝑦), 𝑑(𝑇𝑥, 𝑥), 𝑑(𝑇𝑦, 𝑦), ℎ[𝑑(𝑇𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦)]} = (
7

8
,
7

8
) (

1

6
𝑦2 + 𝑦,

1

6
𝑦2 + 𝑦) = (

7

48
𝑦2 +

7

8
𝑦,

7

48
𝑦2 +

7

8
𝑦). 
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It’s clearly that for each 𝑦 ∈ [0,1],
7

48
𝑦2 +

7

8
𝑦 >

1

4
𝑦2 +

1

2
𝑦, so  

 

𝑑(𝑇𝑥, 𝑇𝑦) ≼ 𝑘max{𝑑(𝑥, 𝑦), 𝑑(𝑇𝑥, 𝑥), 𝑑(𝑇𝑦, 𝑦), ℎ[𝑑(𝑇𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦)]} 
 

Case 2. If 
1

4
𝑦2 +

1

2
𝑦 < 𝑥 < 𝑦, we have 𝑑(𝑇𝑥, 𝑇𝑦) = (

1

4
𝑦2 +

1

2
𝑦,
1

4
𝑦2 +

1

2
𝑦) 

Now we see  

 

𝑑(𝑥, 𝑦) = (max(𝑥, 𝑦) ,max(𝑥, 𝑦)) = (𝑦, 𝑦), 

𝑑(𝑇𝑥, 𝑥) = (max (𝑥,
1

4
𝑥2 +

1

2
𝑥) ,max (𝑥,

1

4
𝑥2 +

1

2
𝑥)) = (𝑥, 𝑥), 

𝑑(𝑇𝑦, 𝑦) = (max (𝑦,
1

4
𝑦2 +

1

2
𝑦) ,max (𝑦,

1

4
𝑦2 +

1

2
𝑦)) = (𝑦, 𝑦), 

𝑑(𝑇𝑥, 𝑦) = (max (
1

4
𝑥2 +

1

2
𝑥, 𝑦) ,max (

1

4
𝑥2 +

1

2
𝑥, 𝑦)) = (𝑦, 𝑦), 

𝑑(𝑇𝑦, 𝑥) = (max (
1

4
𝑦2 +

1

2
𝑦, 𝑥) ,max (

1

4
𝑦2 +

1

2
𝑦, 𝑥)) = (𝑥, 𝑥). 

𝑑(𝑇𝑥, 𝑦) + 𝑑(𝑇𝑦, 𝑥) = (𝑥 + 𝑦, 𝑥 + 𝑦), 

ℎ[𝑑(𝑇𝑥, 𝑦) + 𝑑(𝑇𝑦, 𝑥)] = (
2

3
,
2

3
) (𝑥 + 𝑦, 𝑥 + 𝑦) = (

2

3
(𝑥 + 𝑦),

2

3
(𝑥 + 𝑦)). 

 

So  

 

max{𝑑(𝑥, 𝑦), 𝑑(𝑇𝑥, 𝑥), 𝑑(𝑇𝑦, 𝑦), ℎ[𝑑(𝑇𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦)]} = 

max {(𝑥, 𝑥), (𝑦, 𝑦), (
2

3
(𝑥 + 𝑦),

2

3
(𝑥 + 𝑦))} = (𝑦, 𝑦). 

 

Now we have 𝑘max{𝑑(𝑥, 𝑦), 𝑑(𝑇𝑥, 𝑥), 𝑑(𝑇𝑦, 𝑦), ℎ[𝑑(𝑇𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦)]} = (
7

8
,
7

8
) (𝑦, 𝑦) = (

7

8
𝑦,
7

8
𝑦).  

It’s clearly that for each 𝑦 ∈ [0,1],
7

8
𝑦 >

1

4
𝑦2 +

1

2
𝑦, so  

 

𝑑(𝑇𝑥, 𝑇𝑦) ≼ 𝑘max{𝑑(𝑥, 𝑦), 𝑑(𝑇𝑥, 𝑥), 𝑑(𝑇𝑦, 𝑦), ℎ[𝑑(𝑇𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦)]} 

 
Thus 𝑇 is quasi contractive in 𝑋, and we are in the condition of Theorem 2.1, so 𝑇 has a fixed 

point𝑥 = 0. 

Remark 2.1. We see that this example doesn’t complete the conditions of Theorem 3.2 [8], because it 

doesn’t exist any𝑘such that 𝜌(𝑘) <
1

2
 and 𝑑(𝑇𝑥, 𝑇𝑦) ≼ 𝑘[𝑑(𝑇𝑥, 𝑦) + 𝑑(𝑇𝑦, 𝑥)] for all 𝑥, 𝑦 ∈ 𝑋. 

So if we take 𝑥 <
1

4
𝑦2 +

1

2
𝑦 < 𝑦,  

 

𝑑(𝑇𝑥, 𝑇𝑦) = (
1

4
𝑦2 +

1

2
𝑦,
1

4
𝑦2 +

1

2
𝑦) ≼ 𝑘[𝑑(𝑇𝑥, 𝑦) + 𝑑(𝑇𝑦, 𝑥)] = (𝑘(𝑥 + 𝑦), 𝑘(𝑥 + 𝑦)), 

 
where 𝑘 = (𝑘1, 𝑘2).  

Thus 
1

4
𝑦2 +

1

2
𝑦 < 𝑘𝑖(𝑥 + 𝑦) = 𝑘𝑖𝑥 + 𝑘𝑖𝑦 < 𝑘𝑖 (

1

4
𝑦2 +

1

2
𝑦) + 𝑘𝑖𝑦, where 𝑖 ∈ {1,2},  

so (1 − 𝑘𝑖) (
1

4
𝑦2 +

1

2
𝑦) < 𝑘𝑖𝑦and (

1

4
𝑦2 +

1

2
𝑦) <

𝑘𝑖

1−𝑘𝑖
𝑦 < 𝑦.  

We see that 
𝑘𝑖

1−𝑘𝑖
< 1 only for 𝑘𝑖 >

1

2
, so 𝑘 > (

1

2
,
1

2
) and 𝜌(𝑘) >

1

2
. Thus, our result is more general than 

the result of [7] and [8]. 

Remark 2.2 In Theorem 2.1 we prove the existence but not the uniqueness of fixed point for pseudo 

contractive mappings. If we take𝜌(ℎ) <
1

2
,we prove the uniqueness of fixed point as in following theorem.  

International Journal of Applied Physics and Mathematics

132 Volume 9, Number 3, July 2019



  

Theorem 2.2. Let (𝑋, 𝑑) be a complete cone metric space over a Banach algebra A, 𝑃be a solid cone in 

A. Suppose that the mapping 𝑇: 𝑋 → 𝑋is quasi contractive, so it satisfies: 

 
𝑑(𝑇𝑥, 𝑇𝑦) ≼ 𝑘max{𝑑(𝑥, 𝑦), 𝑑(𝑇𝑥, 𝑥), 𝑑(𝑇𝑦, 𝑦), ℎ[𝑑(𝑇𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦)]} 

 

where ℎ𝑘 = 𝑘ℎ, 𝜌(𝑘) < 1 and 𝜌(ℎ) <
1

2
. Then 𝑇 has a unique fixed point in 𝑋. 

Proof. The existence can be proved as in Theorem 2.1 because 𝜌(ℎ) <
1

2
 and 𝜌(𝑘ℎ) < 𝜌(𝑘)𝜌(ℎ) < 1. 

Now we prove the uniqueness. 
Suppose that exist 𝑦∗another fixed point of 𝑇, then  

 
𝑑(𝑥∗, 𝑦∗) = 𝑑(𝑇𝑥∗, 𝑇𝑦∗) ≼ 𝑘𝑚𝑎𝑥{𝑑(𝑥∗, 𝑦∗), 𝑑(𝑇𝑥∗, 𝑥∗), 𝑑(𝑇𝑦∗, 𝑦∗), ℎ[𝑑(𝑇𝑥∗, 𝑦∗) + 𝑑(𝑇𝑦∗, 𝑥∗)]} 

 
= 𝑘𝑚𝑎𝑥{𝑑(𝑥∗, 𝑦∗), 2ℎ𝑑(𝑥∗, 𝑦∗)} 

 
Case 1. If 𝑚𝑎𝑥{𝑑(𝑥∗, 𝑦∗), 2ℎ𝑑(𝑥∗, 𝑦∗)} = 𝑑(𝑥∗, 𝑦∗), we have 𝑑(𝑥∗, 𝑦∗) ≼ 𝑘𝑑(𝑥∗, 𝑦∗). 

Thus (𝑒 − 𝑘)𝑑(𝑥∗, 𝑦∗) ≼ 𝜃, by multiplying both sides with(𝑒 − 𝑘)−1 we have𝑑(𝑥∗, 𝑦∗) = 0 so 𝑥∗ = 𝑦∗ 

Case 2. If 𝑚𝑎𝑥{𝑑(𝑥∗, 𝑦∗), 2ℎ𝑑(𝑥∗, 𝑦∗)} = 2ℎ𝑑(𝑥∗, 𝑦∗), using the same technique as [8], we have: 

𝑑(𝑥∗, 𝑦∗) ≼ 2𝑘ℎ𝑑(𝑥∗, 𝑦∗) ≼ (2𝑘ℎ)𝑛𝑑(𝑥∗, 𝑦∗), 𝑛 ≥ 1. 

Since 𝜌(ℎ𝑘) <
1

2
, ‖(2𝑘ℎ)𝑛‖ → 0 , so { (2𝑘ℎ)𝑛𝑑(𝑥∗, 𝑦∗)}  is 𝑐 −  sequence and 𝑑(𝑥∗, 𝑦∗) ≪ 𝑐,  thus 

𝑑(𝑥∗, 𝑦∗) = 0, 𝑥∗ = 𝑦∗ 

This result is true for quasi contractive mappings in cone metric space. So we have: 

Corollary 2.1. Let (𝑋, 𝑑) be a complete cone metric space, 𝑃be a solid cone in A. Suppose that the 

mapping 𝑇: 𝑋 → 𝑋is quasi contractive, so it satisfies: 

 
𝑑(𝑇𝑥, 𝑇𝑦) ≼ 𝑘max{𝑑(𝑥, 𝑦), 𝑑(𝑇𝑥, 𝑥), 𝑑(𝑇𝑦, 𝑦), ℎ[𝑑(𝑇𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦)]} 

 

where 𝑘 < 1 and ℎ <
1

2
. Then 𝑇 has a unique fixed point in 𝑋. 
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