
  

Characterizing the Spatial Distribution of Geolocated 
Categorical Values 

 

Pedro J. Zufiria1*, Miguel Á. Hernández-Medina2 
1 Dep. Matemática Aplicada a las TIC, Information Processing and Telecommunications Center (IPTC). 
2 ETSI Telecomunicación, Universidad Politécnica de Madrid, Spain. 
 
* Corresponding author. Tel.: +34 910672286; email: pedro.zufiria@upm.es 
Manuscript submitted May 14, 2018; accepted June 1, 2018. 

 
 

Abstract: We analyze the existence of some regularities in the spatial distribution of labelled individuals. 

Several indexes for measuring the relationship between the non-ordered categorical variable and the 

geolocation variables are evaluated together with a new proposed one. Simulations suggest that this new 

index is quite robust and efficient when compared with the previously known ones. 
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1. Introduction 

The increasing availability of large data sets containing heterogeneous information [1] encourages the 

development of new tools for the statistical analysis of random vectors containing different types of 

variables such as continuous, discrete and categorical ones. Existing techniques to characterize the 

relationship between random variables usually consider that these variables are of the same type. For 

instance, classical Pearson’s and G-test [2], [3] assess the independence between discrete variables; on the 

other hand, the independence between continuous variables has been addressed via several ways such as 

binning techniques [4], mutual information estimators [5], [6], kernel based methods [7], correlation 

distance estimators [8] or detectors based on the analysis of subsequences [9]. Regarding the relationship 

between heterogeneous variables, it can also be assessed using some of the above procedures after a 

previous binning step; in addition, ANOVA-type tests can also be employed in some specific scenarios. 

Alternatively, some new tools have already been developed [10] which address the estimation of the mutual 

information between discrete and continuous variables. Most of the mentioned techniques behave well in 

specific scenarios, whereas the analysis of their behavior in other scenarios remains a challenging problem. 

Many sources of data such as Call Detail Records (CDRs) from mobile operators [11], [12], vehicle 

location systems [13], [14] or population surveys [15] provide geolocated data containing some categorical 

variables. In all these cases, data vectors contain at least two continuous variables determining the latitude 

and longitude, and some other categorical variables which may take values belonging to a (non-necessarily 

ordered) finite set of labels. 

In this paper we address the analysis of the relationship between non-ordered categorical variables and 

the geolocation ones. We begin by formalizing the problem statement in Section 2, where different 

alternatives for testing independence are also presented. These alternatives are computationally evaluated 

on two examples in Section 3. Finally, conclusions are presented in Section 4.  
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2. Problem Definition. Tests for Independence 

Let us consider a set of measurements (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, … , 𝑁 sampled from random variables (𝑋, 𝑌), where 

𝑋 ∈ ℝ2 represents geolocation and 𝑌 ∈ 𝐶 = {𝑐1, … , 𝑐𝐾}  is a categorical variable representing some 

property or feature. Each sample (𝑥𝑖 , 𝑦𝑖) represents an individual satisfying property 𝑦𝑖 at location 𝑥𝑖 .  

As mentioned in the introduction, traditional tests to check the independence between random variables 

are defined for either categorical variables [2], [3] or continuous random variables or vectors [4]–[9]. 

Alternatively, some ANOVA-type tests are also available for cases where the dependent variable is 

continuous and the independent ones are categorical. 

The problem of testing independence between a dependent categorical variable and independent 

continuous variables has been addressed mainly for the two categories (i.e., binary) case. When considering 

dependent categorical variables with more than two categories, binning of the continuous independent 

variable could be performed to apply tests between categorical variables. This procedure loses much 

information specially if the independent variable 𝑋 is a vector. A k-nearest neighbors based procedure for 

estimating the mutual information has been recently proposed for the scalar 𝑋 case [10], but its extension 

to vector cases has not been assessed. Hence, no tests seem to be consolidated for the case of dependent 

categorical variables (with more than two categories) and continuous independent vector variables, which 

happens to be the case under consideration. 

In the following we begin by presenting some known ad hoc indexes which estimate spatial 

autocorrelation for labeled data in 𝑋 ∈ ℝ2. 

2.1. Case 𝒀 Real Variable. Spatial Autocorrelation 

For the cases that 𝑌 ∈ ℝ (i.e., it represents a real value), spatial autocorrelation was formally addressed 

in [16] based on the work in [17], [18]. Since then, some improvements have been proposed [19]. If we 

denote 𝑤𝑖,𝑗 =
1

𝑑(𝑥𝑖,𝑥𝑗)
 for 𝑖 ≠ 𝑗 and 𝑤𝑖,𝑗 = 0, ∀𝑖, among the several measurements of spatial correlation 

that can be defined, the most common ones are Moran's I [17]: 
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and Geary's C [18]: 
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These indexes quantify space autocorrelation; hence, a test for the existence of such correlation can be 

formalized by estimating the corresponding 𝑝-values via a Bootstrap simulation procedure. 

2.2. Categorical Variables 

When 𝑌 ∈ 𝐶 = {𝑐1, … , 𝑐𝐾} only takes categorical values, the previous indexes cannot be directly defined 

unless an arbitrary number is assigned to label each class. Alternatively, the continuous variable 𝑋 ∈ ℝ2 

can be binned so that standard independence test between categorical variables can be applied. In order to 

illustrate these procedures, a simple Mutual Information (MI) based index is proposed in the following 

section. 

2.3. Mutual Information Based Index 
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The simplest procedure to estimate the mutual information index between 𝑋  and 𝑌  relies on a 

discretization or binning of the continuous vector 𝑋 ∈ ℝ2. Let us consider a partition of the region of 

interest into a list of subsets 𝐴𝑙 ⊂ ℝ2, 𝑙 ∈ 𝐿, so that each subset is assigned a label category 𝑙 ∈ 𝐿. Hence, 

each location pair (𝑥1𝑖 , 𝑥2𝑖) is assigned the label 𝑙 of the unique set 𝐴𝑙 where it belongs to.  

Then, the mutual information between the discretized and categorical variables can be computed as: 

 

 
M=I(X,Y)= ∑  ∑  

ck∈C'l∈L
𝑝(𝑙, 𝑐𝑘) log (

𝑝(𝑙, 𝑐𝑘)

𝑝(𝑙)𝑝(𝑐𝑘)
), (3) 

 

Note that this quantity can be normalized by the joint entropy 𝐻(𝑋, 𝑌), but such normalization will not 

be necessary when computing the corresponding p-values associated with each case (via the Bootstrap 

procedure). 

Obviously, this index will be sensitive to the discretization or binning of variable 𝑋 ∈ ℝ2. Therefore, new 

alternative statistics which avoid such approximations may valuable for testing independence. In the 

following, we present a statistic proposed in [20].  

2.4. Herrera's Index 

This index employs the information gathered in the categories or classes 𝑐𝑘 ∈ 𝐶′ ⊂ 𝐶 which have more 

than one element, i.e., such that 𝑁𝑘 = #{𝑖 ∈ {𝑖, … , 𝑁}: 𝑦𝑖 = 𝑐𝑘} > 1 . Defining an ordering among the 

measurements in each class 𝑐𝑘 ∈ 𝐶′  (e.g., the one induced from the ordering of the whole set of 

measurements), and denoting 𝑘𝑖 the (absolute) index in the whole set for the 𝑖-th element of class 𝑘, 

Herrera’s index computes: 
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In [20], the 𝐷 index was computed for a random distribution of labels (preserving the 𝑁𝑘 values) on the 

same 𝑥𝑖  location values, and the ratio between this index 𝐷𝑟 and the one obtained in (3) was provided as 

a final index: if the ratio is clearly larger than 1, this suggested that 𝑋 and 𝑌 were not independent. Again, 

this heuristic procedure will be formalized in this work by estimating the 𝑝-value corresponding to 𝐷 via 

an appropriate Bootstrap simulation scheme. 

2.5. New Voronoi Based Entropy Index 

Keeping in mind that 𝑥𝑖 ∈ ℝ2 the new method proposed in this paper first computes the Voronoi 

tessellation associated with the set {𝑥1, … , 𝑥𝑁}. Let us call cell 𝑉𝑖  the region associated with 𝑥_𝑖. We can 

define that two cells 𝑉𝑖  and 𝑉𝑗 are adjoining if they share a common face, where only faces within the 

region of interest may be considered. Hence, the Voronoi tessellation allows the definition of a graph 𝐺 so 

that each vertex represents a cell 𝑉𝑖  with label 𝑦𝑖 , and two vertices are connected if their corresponding 

cells are adjoining. Note that if we select those nodes with a given label value 𝑦𝑖 = 𝑐𝑘 the corresponding 

subgraph 𝐺𝑘 can be also defined.  

For each subgraph 𝐺𝑘 we compute the connected components 𝐶𝐶𝑘
𝑙  of the graph, so that each  

𝐶𝐶𝑘
𝑙 , 𝑙 = 1, … , 𝐿𝑘 is again a subgraph of 𝐺𝑘 . Denoting |𝐶𝐶𝑘

𝑙 | the number of nodes of each connected 

component of 𝐺𝑘 , we have that ∑ |𝐶𝐶𝑘
𝑙 | = 𝑁𝑘

𝐿𝑘
𝑙=1 , the number of nodes of subgraph 𝐺𝑘 . 

This new proposed ratio also employs the information gathered in such classes 𝑐𝑘 ∈ 𝐶′′ ⊂ 𝐶 having at 
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least two elements, i.e., such that 𝑁𝑘 > 1. It computes for each class the ratio between the entropy of the 

distribution of the sizes of the corresponding connected components and the maximal entropy associated 

with the size of such class. Then, all such entropy ratios are added to provide this new index 𝐸: 

 

 

𝐸 = − ∑

∑ 1

|𝐶𝐶𝑘
𝑙 |

log (|𝐶𝐶𝑘
𝑙 |)

𝐿𝑘
𝑙=1

log (𝑁𝑘)
𝑐𝑘∈𝐶′′

 (5) 

 

Once again, this new procedure can be also formalized by estimating the 𝑝-value corresponding to 𝐸 via 

an appropriate Bootstrap simulation scheme. 

3. Simulation Results 

The following two examples illustrate different scenarios in order to assess the behavior of the different 

indexes presented.  

3.1. Example 1 

The indexes presented in equations (1)-(5) perform quite well in regions that cover similar ranges of 

distances in all directions. Nevertheless, the performance of some of these indexes deteriorates in regions 

which do not satisfy such regularity condition, as shown in the following example. To illustrate this 

sensitivity to the region characteristics, a high aspect ratio rectangular region with three ribbons each 

corresponding to a different class has been considered:  

 

𝑥 = (𝑥1, 𝑥2) ∈ 𝑆 = [0,3] × [0,100], 𝑓(𝑥1, 𝑥2) = {

𝐴, 𝑖𝑓 0 ≤ 𝑥1 ≤ 1,
𝐵, 𝑖𝑓 1 ≤ 𝑥1 ≤ 2,
𝐶, 𝑖𝑓 2 ≤ 𝑥1 ≤ 3.

    (6) 

    

Two different number assignments to the labels, 𝑎1  and 𝑎2 , will be considered so that: 𝑎1(𝐴) =

0, 𝑎1(𝐵) = 1, 𝑎1(𝐶) = 2 and 𝑎2(𝐴) = 0, 𝑎2(𝐵) = 2, 𝑎2(𝐶) = 1. 

 

 
Fig. 1. Estimation of $p$-value distributions corresponding to basic Moran's I (with different assignment 

values for labels, a1 and a2), Geary's C (also with different assignment values for labels, a1 and a2), 

Herrera's ratio D and the new proposed Voronoi based entropy ratio index E for the region in Example 1. 

Number of points=120; Bootstrap samples=200, Montecarlo simulations=200; prob. of noise pn = 0.2. 

 

A bootstrap technique, randomly shuffling the labels over the different geolocations, was employed to 
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estimate the 𝑝-value associated to each index (Moran's I, Geary's C, Mutual Information M, Herrera's D and 

the Voronoi-based new proposed E). In addition, the distribution of such 𝑝-values was estimated via 

Montecarlo simulations. Some noise level was also incorporated in the data so that points belonging to a 

given region where assigned the correct label with probability 1 − 𝑝𝑛 and a label corresponding to each of 

the two alternative regions with probability 𝑝𝑛 2⁄ . Figure 1 displays the distribution of 𝑝-values provided 

by all the indexes. 

 

 
Fig. 2. Estimation of $p$-value distributions corresponding to basic Moran's I (with different assignment 

values for labels, a1 and a2), Geary's C (also with different assignment values for labels, a1 and a2), 

Herrera's ratio D and the new proposed Voronoi based entropy ratio index E for the region in Example 2. 

Number of points=120; Bootstrap samples=200, Montecarlo simulations=200. 

 

Simulations show that Moran and Geary's are sensitive to the numbers assigned a priori to each class (as 

well as to the region aspect ratio), whereas the Mutual Information based method performs very well. The 

behavior of Herrera’s index D is quite poor, below the performance of Moran and Geary's indexes. Finally, 

the Voronoi based index E performs better than Moran and Geary's indexes, independently of the number 

assignment for these. 

3.2. Example 2 

This example illustrates the behavior of the indexes when the categorical labels are conditioned by some 

geolocated topological patterns such as streets or rivers: 

 

 

𝑥 = (𝑥1, 𝑥2) ∈ 𝑠 = [−5,5] × [−1,1], 𝑓(𝑥1, 𝑥2) = {
𝐴, 𝑖𝑓 |𝑥2 −

2

5
𝑥1(

𝑥1
2

25
− 1)| ≤ 0.2,

𝐵,                   𝑖𝑓 |𝑥1 − 𝑥2| ≤ 0.2,

𝐶,           𝑖𝑓 (𝑥1, 𝑥2)  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.

    (7) 

 

Again, two different number assignments to the labels, 𝑎1 and 𝑎2, will be considered so that: 𝑎1(𝐴) =

0, 𝑎1(𝐵) = 1, 𝑎1(𝐶) = 2 and 𝑎2(𝐴) = 0, 𝑎2(𝐵) = 2, 𝑎2(𝐶) = 1. 

The same bootstrap technique, randomly shuffling the labels over the different data geolocations, was 

employed to estimate the 𝑝-value associated to each index (Moran's I, Geary's C, Mutual Information M, 

Herrera's D and the Voronoi-based new proposed E). In addition, the distribution of such 𝑝-values was 

estimated via Montecarlo simulations. Figure 2 displays the distribution of 𝑝-values provided by all the 

International Journal of Applied Physics and Mathematics

51 Volume 9, Number 1, January 2019



  

indexes. Note that, in this case, the Voronoi-based new proposed method outperforms all the other 

procedures, since it is the most robust (smallest standard deviation) and most efficient (smallest average 

𝑝-value) index. The good behavior of the Voronoi-based in this example may be due to the fact that the 

existing relationship between the variables is grounded on topological patterns which may not be detected 

so easily by distance-based schemes. 

4. Concluding Remarks 

 The results for the new index based on the Voronoi tessellation for measuring the relationship between 

the non-ordered categorical variable and the geolocation variables are quite promising in terms of 

robustness and efficiency, deserving further research for a more complete characterization.  
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