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Abstract: In this study, optimal perturbation iteration method is implemented to solve Korteweg de Vries 

(KdV)-like equation to obtain semi analytical solutions. We examine two illustrations to analyze the new 

optimal perturbation iteration method. This work displays that optimal perturbation iteration technique 

converges fast to the exact solutions of the differential equations at lower order of approximations. 
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1. Introduction 

Over the last century, much attention has been given to partial differential equations due to their usage to 

describe complex phenomena in various fields of science and engineering. Various methods have been 

constructed to get the more approximate solutions of linear and nonlinear partial differential equations. 

When the exact solutions do not exist, those approximate solutions provide important information about 

physical meanings behind the considered partial differential equations. Therefore numerous techniques 

have been devised to obtain the exact and approximate solutions of both ordinary and nonlinear partial 

differential equations [1]-[11]. 

The Korteweg–de Vries equation is used to model the waves on shallow water surfaces. It is especially 

noteworthy as a prototype example of a fully solvable model, that is, a non-linear partial differential 

equation whose solutions can be exactly defined. Over one hundred and fifty years ago, while conducting 

experiments to determine the most practical design for canal boats, a young Scottish engineer named John  

Russell (1808-1882) made a remarkable scientific revelation.  A nice story about the history and the 

underlying physical properties of the Korteweg-de Vries equation can be found at an Internet page of the 

Herriot-Watt University in Edinburgh [12].  

In this research, we take homogenous linear Korteweg-de Vries like equations as 

 

 0,   ( ,0) ( ),   0 1,   0t x xxxu u u u x f x x t                  (1) 

 
where ( , )u u x t  is the unknown function. Firstly, optimal perturbation iteration algorithm is constructed 

for the homogenous linear Korteweg-de Vries like equations. After that, approximate solutions are obtained 

by using these algorithms. Some figures will also be sketched to display the accuracy and effectiveness of 

the new technique.  
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2. OPIM for the Korteweg-de Vries Equation 

Optimal perturbation iteration method has been recently devised to deal with the nonlinear problems. It 

has been widely used to solve the ordinary and partial differential equations [13]-[19]. We now create an 

algorithm for solving homogenous linear Korteweg-de Vries like equations as follows: 

a) The Eq. (1) can be taken as: 

 

   , 0,,xxx x tF u u u            (2) 

 

where   is  the perturbation parameter can be put into the Eq. 2  as: 

 

           0x xxx tuF u u    .        (3) 

 

F can be decomposed as: 

 

F S R            (4) 

to make computations easier. Here S  is the simpler part, which can be easily conducted and R  is the 

remaining part which is dominant for OPIM algorithms. For the equation (2), one can choose 

 

 , ,xxxx x xxxR u u uu             (5i) 

 

and  

 

 t tS u u          (5ii) 

 

respectively. 

b) The approximate solution with one correction term in the perturbation expansion can be taken as  

 

 1n n c n
u u u            (6) 

 

where  c n
u  is the nth correction term. We then replace equation (6) into (3) to get an algorithm for OPIM.  

After substituting, we expand it in a series at 0  with first derivative as 

 

                  0
xx xt xu c u c u cn n nt xxx x

F F u F u F u F               (7) 

 

or equivalently 

 

               
xt xxxu c u c u cn n nt xxx x

R R u R u R u R S         .     (8) 

 

Here, we use the following notations 
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                       , , ,
xt xxx

x xxx

u u u

t

R R R R
R R R R

u u u




   
   
   

.      (9) 

 

By performing the necessary calculations for the Eq. (3), we get 

 

        c n n nn xx x txt
u u u u     .     (10) 

 

The above expression is the optimal perturbation iteration algorithm (OPIA) for the KdV-like equation (1). 

In order to start the OPIA iterations, 0u , an initial function is chosen appropriately according to the 

prescribed initial conditions.  

c) The first correction term 1u  can be computed from the algorithm (10). In order to increase the 

effectiveness of technique and to get better results, we optimize the solutions by using the equation 

 

 1n n n c n
u u P u   .          (11) 

 

Here, we call 0 1 2, , ,P P P  as convergence control parameters. These constants allow us to adjust the 

convergence. For 0,1,n   , we have 

 

 

 

 

1 0 0 0 0

2 0 1 1 1 1

0 1 1 1 1

( , ; )

( , ; , )

( , ; , , )

c

c

m m m m c m

u u x t P u P u

u x t P P u P u

u x t P P u P u   

  

 

  

.       (12) 

 

d) When mu  is substituted into the equation (1), the overall problem will become: 

 

 0 1( , ; , , ) ( ) , ( ) ( ,, )m m xx m tt m t mRe x t P P F u u u u        (13) 

 

or likewise 

 

                0 1 0 1 0 1( , ; , , ) ( , ; , , ) ( , ; , , ) .m m m m mRe x t P P R u x t P P S u x t P P           (14) 

 

Apparently, when 0 1( , ; , , ) 0mRe x t P P    then it means that 0 1( , ; , , )m mu x t P P   is the exact 

solution. However, such a situation will not usually occur for nonlinear equations, but one can minimize the 

functional as: 

2

0 1 0 1

0

( , , ) ( , ; , , )

T b

m m

a

J P P Re x t P P dxdt            (15) 

where ,a b  and T  are picked on the domain of the problem. Finally, the convergence parameters 
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0 1, ,P P  can be optimally reached by imposing the following equality 

 

     
0 1 1

... 0.
m

J J J

P P P 

  
   

  
          (16) 

 

The approximate solution of order m can be obtained after putting  0 1, ,P P   into the last one of the 

equations (12). For more detailed information about OPIM, please see [13-19]. 

3. Illustrations 

To verify the validity and the potential of OPIM, we solve two examples about KdV like equations. The 

obtained results are also compared with the exact solutions to test the effectiveness of the recommended 

technique. 

Example 1) Consider the following homogeneous linear KdV like equation [20],  

 

0xxx x tu u u                                        (17) 

                          
with the initial conditions 
  

     ( ,0) sinhu x x     0 1, 0x t   .        (18) 

 

Firstly, a starting function can be taken as 

0 sinhu x .           (19) 

 

Then, by the help of equations (10) and (19) with initial conditions, first correction term can be 

calculated as:  

 

                                   0( ) 2 coshcu t x            (20) 

 

Thus, the first order OPIM solution is found as follows:  

 

         1 0sinh 2 coshu x P t x    .       (21) 

 

Using the same algorithm to find the other individual terms of the solutions, we get 

 

               2

2 0 0 0 1sinh 2 cosh 2 cosh 2 cosh 2 sinhu x t x P t x t x P t x P P           (22) 

 

           

          

         

     

2

3 0 0 0 1

2 2

0 0 1 1

23 2

0 1 0 1 0 1

sinh 2 cosh 2 cosh 2 cosh 2 sinh

2 cosh 2 cosh 2 sinh 2 cosh 2 sinh

4
2 cosh cosh 4 sinh

3

u x t x P t x t x P t x P P

t x t x P t x P t x P t x P

P
t x P P t x P P t x P P

     

     
 
   
 

   (23) 
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          

       

       

         

2

4 0 0 0 1

2

0 0 1

22 3 2

1 0 1 0 1 0 1

2 2

0 0 1 1

sinh 2 cosh 2 cosh 2 cosh 2 sinh

2 cosh 2 cosh 2 sinh 2 cosh

4
2 sinh 2 cosh cosh 4 sinh

3

2 cosh 2 cosh 2 sinh 2 cosh 2 sinh

u x t x P t x t x P t x P P

t x t x P t x P t x P

P
t x P t x P P t x P P t x P P

t x t x P t x P t x P t x P

     

   
  
     
 

   

         

       

       

   

3 2 2

0 1 0 1 0 1 2 2

3 2

0 2 0 2 0 2 1 2

3 2 3

1 2 1 2 0 1 2 0 1 2

2 4

0 1 2 0 1 2

4
2 cosh cosh 4 sinh 2 cosh 2 sinh

3

4
2 cosh cosh 4 sinh 2 cosh

3

4
cosh 4 sinh 2 cosh 4 cosh

3

2
6 sinh sinh

3

t x P P t x P P t x P P t x P t x P

t x P P t x P P t x P P t x PP

t x PP t x PP t x P PP t x P PP

t x P PP t x P PP




    

   

  

 


3P


 
 
 
 
 
 
 
 
 
 
 
 



   (24) 

 

and so on. In order to obtain the unknown parameters, we need to calculate the residuals for each order of 

approximate solutions. For instance, the following residual is constructed for the third order approximation 

as: 

 

      
   

      

           

      
   

0 1

2 1 2

2

2

2

2
0

2

3

1

2 3 3( , ; , ) ( ) ( ) ( ) =

cosh 2 sinh
2 cosh cosh 2 sinh

cosh 2 cosh 4 sinh

3 cosh 2 sinh cosh 2 cosh 4 sinh

2
3 1 6 cosh

3 3 cosh 2 cosh h

,

4 sin

xx x txRe x t P P u u u

x t x
x x t x P P

x t x t x P

x t x x t x t x P

P t x
P x t x t

P

x



    
    

   
  

    

 
   

 

   
2

22 9 2 sinh
P

t t x

 
 
      
    

   

         (25) 

 

For 0, 1a b   and 1T   the Eq. (15) becomes 

 
1 1

2

0 1 0 1 2

0

2

0

( , ,, ) ( , ; ),J P P Re x t P P xP P d dt    .      (26) 

 

After computing the above integral, we need to solve the following equality 

  

1 20

... 0
J J J

P P P

  
   

  
          (27) 

 

to get the convergence control parameters. Upon substituting these parameters into the equation (23) and 

(24) respectively, we obtain the third and fourth order approximate OPIM solutions as  
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Fig. 1. Absolute errors for seventh order OPIM solution for example 1. 

 

        

      

2

3

3 2

1.795987 cosh sinh 0.756153 0.2040129 cosh 1.795987 sinh

0.90112 0.049785 cosh 0.90536 cosh 0.59221 sinh

u t x x t x t x

t x t x t x

    

  
  (28) 

 

        

      

   

   

2

4

3 2

7 3

2 4

1.97002205 cosh sinh 0.9805536 0.029977 cosh 1.97002 sinh

0.999020 0.000582 cosh 1.2878081 cosh 0.06770478 sinh

5.7123337 10 cosh 0.0463541 cosh

0.00064873 sinh 0.6432731 sinh

u t x x t x t x

t x t x t x

t x t x

t x t x



     

  

   

 

3P





 (29) 

 

By continuing the computations, more approximate solutions can also be obtained using the algorithms. 

Fig. 1 displays the absolute errors for the 7th order OPIM solutions. 

Example 2) Let us now consider the following homogeneous linear KdV like equation [20],  

 

                                0xxx x tu u u   ,  0 1, 0x t                    (30)                   

   

with the initial conditions ( ,0) xu x e .        

The initial condition is the best candidate for being a test function, so we take 

 

0

xu e  .          (31) 

 

With the aid of the equations (10), (12) and (30) we can start to construct the algorithms. Advancing as in 

first problem, we can find the following approximate OPIM results: 

 

     
1 0e 2ex xu tP              (32) 

 

                   2

2 0 0 0 1e 2e 2e 2e 2ex x x x xu tP t tP t P P                 (33) 
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and so on. After finding these approximations, corresponding residual can be computed as: 

 

 

     

  
 

2

2 1 2

2
0 1

2

0 2 1 2 3

2

2

3 1 1 2 1 2 1 4 2

2
( , ; , ) e 3 12 6

3 3 1 2 1 4 2
3 18

,

18 4

x

t P P t t t P

Re x t P P t t
P t t t P P

t t t P

P 

          
 
                      

   

  (35) 

 

for the third order OPIM approximate solution. Solving the equality (26) and (27) and substituting the 

appropriate constants into the suitable solutions, we can get the following approximate results: 

 

 

 

2

3

2 3

e 1.995987e 0.956153 0.004012e 1.995987e

0.991123 0.000175e 0.0913541e 1.272313e

x x x x

x x x

u t t t

t t t

   

  

    

   
      (36) 

 

         

 

 

 

2

2 3

8 2 3 4

3

4 e 1.96024e 0.99901 0.0397532e 1.9602e

0.999 0.000039e 0.041652e 1.3055387e

3.921 10 e 0.000080821e 0.0290428e 0.652118272e

x x x x

x x x

x x x x

t t t

t t t

t P

u

t t t

   

  

    

   

    

    



      (37) 

 

and so on. Fig. 2 presents the absolute errors between the exact solution 
2x tu e   and 7th order OPIM 

approximate solution. 

 

 
Fig. 2. Absolute errors for seventh order OPIM solution for example 2. 

 

4. Conclusion 
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In this paper, optimal perturbation iteration method is implemented to get the approximate solutions of 

homogenous linear Korteweg-de Vries like equations. We analyze two examples to prove the effectiveness 

and applicability of the proposed technique. Figures clearly display the accuracy in higher order 

approximate OPIM solutions. Mathematica 9.0. is used to deal with the calculations due to huge amount of 

computations. We can lastly say that this work proves the flexibility and potential of the OPIM for 

complicated nonlinear problems in engineering. 
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