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Abstract: The paper investigates some divisibility traits on valuated binary trees, including some 

divisibility rules on T3 tree and some laws of multiples’ distribution on a Tp tree. It proves that the root of a 

valuated binary tree can always have a common divisor with certain nodes that appear periodically on the 

left most path or the left side-path of the tree and calculation of divisors of a node is highly related with the 

two’s power plus one and the two’s power minus one. Theorems and corollaries are proved with detail 

mathematical deductions and they provide a foundation for people to design algorithm for factoring odd 

integers. 
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1. Introduction 

Putting the odd integers bigger than 1 on a full binary tree from top to bottom and from left to right, you 

will obtain a valuated binary tree, as introduced in [1]. With the help of the valuated binary, many new 

properties of odd integers are discovered. For example, the properties of symmetric nodes and symmetric 

common divisors, the properties of subtrees duplication and subtrees transition, the properties of sum by 

level, root division and uniform sum, as introduced in [2] and [3], and the genetic properties that are 

disclosed in [4]. All these new properties enable people to know the integers in a different point of view, as 

stated and investigated in paper [5]. Divisibility, as a central content in number theory [6], is of course an 

important issue on the valuated binary tree. Accordingly, this paper makes an investigation on the 

divisibility rules on the valuated binary tree and obtains some new results related with factorization of odd 

integers. 

2. Preliminaries 

2.1. Definitions and Notations 

A valuated binary tree T is such a binary tree that each of its nodes is assign a value. An odd number 

N-rooted tree, denoted by TN is a recursively constructed valuated binary tree whose root is the odd number 

N with 2 1N  and 2 1N   being the root’s left and right sons, respectively. The left son is said to have a left 

attributive and the right son is to have a right attributive. Each son is connected with its father with a path, 

but there is no path between the two sons. T3 tree is the case N=3, as introduced in [5]. The root of the T3 

tree is assigned a right attributive. For convenience, symbol ( , )k jN is by default the node at the jth position on 
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the kth level of T3, where 0k  and 0 2 1kj   . 

Symbol 
( ,0)

N

iN is the leftmost node on level i ; use symbol 
( , 1)

N

iN  to denote the odd number left to 
( ,0)

N

iN , 

namely, 
( , 1) ( ,0) 2N N

i iN N   . Use symbol 
0

NP to indicate the leftmost path defined by 
0 (0,0) (1,0) ( ,0){ , ,..., ,...}N N N N

iP N N N , 

and symbol N

LP  to indicate the path defined by 
(1, 1), ( , 1),{ ..., ...}N

L iP N N  , which is also called a left side-path, 

as depicted in Fig. 1.  

 

 
Fig. 1. Tp tree and its side-paths. 

 

An odd interval [a, b] is a set of consecutive odd numbers that take a as lower bound and b as upper 

bound, for example, [3, 11] = {3, 5, 7, 9, 11}. Intervals in this whole article are by default the odd ones unless 

particularly mentioned. Symbol x   is the floor function, an integer function of real number x that satisfies 

inequality 1x x x     , or equivalently 1x x x         . 

Symbol A B means result B is derived from condition A or A can derive B out. In this whole article, 

symbol x    denotes the floor function, an integer function of the real number x such that 1x x x     or 

equivalently 1x x x         . Symbol a|b means b can be divided by a; symbol ( , )a b is to express the 

greatest common divisor (GCD) of integers a and b. For an integer n, symbols φ(n) and d(n) denote 

respectively the Euler’s totient function and the number of divisors function of n. Symbol Ordna means 

order of a modulo n. 

2.2. Lemmas 

    

 
1

( , ) 2 1 2 , 0,1,...,2 1, 0,1,2k k

k jN j j k       

 

Node ( , )k jN
of TN is computed by 

 

( , ) 2 2 2 1; 0,1,2,...; 0,1,...,2 1N k k k

k jN N j k j        

 

Lemma 2 (Genetic Law 1, see in [4]). If node N can divide ( , )

N

iN  of NT , then it can also divide ( ,2 1 )i

N

i
N

   of 

p= 

N0,0 

N1,0 N1,1 

N2,0 

 
N2,1 

 
N2,2 

 
N2,3 

 

Np-1,0 

 
Np-1,1 

 
Np-1,2 

 
Np-1,j 

, 
 

… 
 

Np-1,* 

 
 

…          …            …
          …          …   
      … 

… 

N1, -1 

N2, -1 

Np-1, -1 

 

p

LP  
p

RP  

N1, 2 

N2, 4 

Np-1, *+1 
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Lemma 1 (Node Calculation, see in [1], [5]). Node ( , )k jN of T3 is calculated by



  

NT .  

And it can also divide nodes
( , )

( , )

N
iN

iN 

 ,
( , )

( ,2 1 )

N
i

i

N

i
N 

 

( ,2 1 )

( , )

N
ii

N

iN 


 

, and
( ,2 1 )

( ,2 1 )

N
ii

i

N

i
N 



 

  whose roots are ( , )

N

iN  and ( ,2 1 )i

N

i
N

 

respectively. Namely, N transmits its genes to its descendents by making itself a divisor of its certain 

descendents. 

Lemma 3 (Genetic Law 2, see in [4]) Let odd number N be a multiplication of two odd numbers, say 

( , )k jN
and ( , )l sN

, namely, ( , ) ( , )k j l sN N N 
; then subtree NT inherits all genetic traits from both ( , )k jN

 and 

( , )l sN
. In another word, if ( , )id  is a common divisor of ( , )k jN

and 
( , )

( , )
k jN

iN  , which lies at the 
th position on the 

thi level in ( , )k jNT
, then ( , )id  is also a common divisor of N  and ( , )

N

iN  . 

  

3.1. General Mathematical Foundations 

Theorem 1. Let a be a positive integer and p be a prime with (p, a)=1; if there exist positive integers α 

and   such that 1 0(mod )a p    and 1 0(mod )a p   , then for arbitrary positive integer , arbitrary odd 

integer o  and arbitrary even integer e, it holds 

 

                                  1 0(mod )a p                                      (1) 
 

1 0(mod )a p                                      (2) 
 

1 0(mod )oa p                                      (3) 
 

1 0(mod )oa p                                      (4) 
 

( 1) 1 0(mod )pa p                                     (5) 
 

( 1) 1 0(mod )pa p                                     (6) 
 

1 0(mod )a p                                      (7) 
 

1 0(mod )oa p                                      (8) 
 

1 0(mod )ea p                                      (9) 
 

Proof. Direct calculation shows 

 

  
1 ( 1 )1 ( ) 1 ( 1 ) ( . . . 1 )a a a a a a                     

 

1 1 ( 1) ( 1)a a a a a a a a                   
 

 1 1 ( 1) ( 1)a a a a a a a                   
 

 1 1 ( 1) ( 1)a a a a a a a a                   
 

3. Main Results and Proofs
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Thus (1), (2), (3) and (4) hold. Note that 

 
( 1) ( 1) ( 1)1 1 ( 1) 1p p pa a a a a a a a                     

 
( 1) ( 1) ( 1)1 1 ( 1) ( 1)p p pa a a a a a a a                     

 

By Fermat’s little theorem, it holds 
( 1) 1 0(mod )pa p    . Hence (5) and (6) hold.  

The last three ones hold since 

 
( 1) ( 2)1 ( 1)( ... 1)a a a a a               

 
( 1) ( 2) 1 ( ) 21 ( 1)( ... ( 1) ... 1)o o o k o ka a a a a a a                     

 
( 1) ( 2) 1 ( ) 21 ( 1)( ... ( 1) ... 1)e e e k e ka a a a a a a                     

 
 

Theorem 2. Let p and q be odd prime numbers with 1 p q  . Given 4 distinct congruence equations, 

(10), (11), (12) and (13), each of which is of variable x ,  

 
2 1 0(mod )x p                                        (10) 

 
2 1 0(mod )x p                                        (11) 

 
2 1 0(mod )x q                                        (12) 

 
2 1 0(mod )x q                                        (13) 

 

Then three of the 4 congruence equations must have their solutions, and if 2 1p q p   , the solutions lie 

in interval 

1
[( )( 1),( 1)( 1)]

2
p p    

 for arbitrary positive integer  , whereas if 2 1q p  , the solutions lie 

in interval 

1 1
[( )( 1),( )( 1)]

2 2
p q    

. 

Proof. By Fermat’s little theorem, it holds 

 
12 1 0(mod )p p                                      (14) 

 

Hence 1p   is a solution of (10).  

Furthermore, Since (14) indicates that either (15) or (16) holds. 

 
1

22 1 0(mod )
p

p


 
                                   (15) 

 
1

22 1 0(mod )
p

p


 
                                   (16) 

 

it knows that, 

1

2

p 

 is a solution of (10) or (11). 

Similarly, it can show that 1q  is a solution of (9) and 

1

2

q 

 is a solution of (12) or (13). Consequently, of 
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the 4 equations there are always 3 ones that have their solutions respectively by 1x p  ,

1

2

p
x




 and 

1

2

q
x




, which lie in interval 

1
[ , 1]

2

p
p




if 2 1p q p    or lie in 

1 1
[ , ]

2 2

p q 

 if 2 1q p  . Then referring to 

Theorem 1. 

□ 

3.2. Some Divisibility Rules on T3 

Theorem 3. Among three nodes, ( , )kN  and its two sons, namely ( , )kN  , ( 1,2 )kN  and ( 1,2 1)kN   , there is exact 

one multiple of integer 3. 

Proof. We prove an alternative conclusion: if ( , ) (mod3),( 0,1,2)kN r r  
then ( 1,2 ) 2( 1)(mod3)kN r  

and 

( 1,2 1) 2( 1)(mod3)kN r   
. In fact, the following deductions validate the conclusion. 

 

( , ) ( , ) ( , ) ( 1,2 )(mod3) 2 2 (mod3) 2 1 2 1(mod3) 2( 1)(mod3)k k k kN r N r N r N r              

 

( , ) ( , ) ( , ) ( 1,2 1)(mod3) 2 2 (mod3) 2 1 2 1(mod3) 2( 1)(mod3)k k k kN r N r N r N r               

 

Taking 0,1,2r   respectively yields the following results  

 

( , ) ( 1,2 ) ( 1,2 1)0(mod3) 2(mod3), 1(mod3)k k kN N N         

 

( , ) ( 1,2 ) ( 1,2 1)1(mod3) 1(mod3), 0(mod3)k k kN N N         

 

( , ) ( 1,2 ) ( 1,2 1)2(mod3) 0(mod3), 2(mod3)k k kN N N         

 

which validate the theorem. 

Fig. 2 can intuitionally illustrates Theorem 3.  

 

  

r 

 

 

  

            (mod 3) 

 

 

   2(r+1)               2(r-1) 

 
Fig. 2. A node and its two sons modulo 3. 

 

Theorem 4. Let ( , )nN  be a node of 
3T ; then 1

( , )gcd(2 1, ) |n

nN   . If there exist positive integers a and b 

that satisfy 12 1n ab   ; then  

 

( , ) ( , ) ( , )gcd( , 1) | ,gcd( , 1) | ,gcd( , 1) |n n na N b N ab N        
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Proof. 
1 1

( , ) 2 1 2 2 1 2( 1)n n

nN          
. it is sure the theorem holds. 

Theorem 5. Let ( , )nN  be a node of T3. If there exist a positive integer a and an odd number 1m   such 

that ( ) 1n a m  and | ( 1)m   , then ( , )| nm N  . 

Proof. The condition ( ) 1n a m  yields 
1 ( )

( , ) 2 1 2 2 1 2( 1)n a m

nN 

        
. The Euler’s totient formula 

says that an arbitrary odd number m yields
( )| (2 1)mm    and consequently 

( )| (2 1)a mm   ; by | ( 1)m   , it 

holds ( , )| nm N  . 

Example 1. For nodes (5,2) 69N 
, positive integers 3m  and 3a  satisfy 5 3 (3) 1   and 

( 3) | (2 1)m   . Hence it must yields ( 3) | 69m  . 

 

Example 2. For node (5,5) 75N 
, positive integers 3m  and 3a  satisfy 5 3 (3) 1   and 

( 3) | (5 1)m   . Hence it must yields ( 3) | 75m  . 

Theorem 6.Integers m and  such that 2(mod3)m   and 1 0(mod7)   yield ( , )7 | mN  . 

Proof. 
12(mod3) 1 3 2 1 8 1 7 ,( , 0)m sm m s t s t         

. Hence  

 
1 1

( , ) 2 1 2 2 1 2( 1)m m

mN                                       (17) 

 

Consequently 1 0(mod7)   yields ( , )7 | mN  . 

Example 3. Taking 5m  will see (5,6) (5,13) (5,20) (5,27), , ,N N N N  are all multiples of 7. 

Theorem 7. If positive integer 1m   and 1m p   is a prime number; then the following conclusions 

hold. 

(1). ( , )( , 2 3) | mp N   ; 

(2). 
1

( , )

2 1
(2 3, ) |

p

mN
p


 

 . 

Proof. 
1 1 1 1

( , )1 2 1 2 1 2 2 1 2(2 1) 2 3m p p p p

mm p N                  
. Then it is easy to drive out 

the conclusions the theorem declaims. 

Example 4. When 4m  , 1 5m  is a prime. Node 
5 12 1 15   is a multiple of 5, and it is easy to verify 

the following fact. 

(1) 
5

(4,1)1 2 3 5 5 | ( 2 1 2 35).N           

(2) 
4 5

(4,6)6 (2 3 15) | (2 1) 15 | ( 2 1 12 45)N           . 

(3) 
5

(4,1) (4,6) (4,11){1,6,11} 5 | (2 3) 5 |{ , , ( 2 1 2 11 55)}N N N          . 

(4) (4,0) (4,3) (4,15)

15
{0,3,6,9,12,15} ( 3) | (2 3) 3 |{ , ,..., }.

5
N N N       

Theorem 8. If 1m is a composite number and 1m ab  with a and b being two primes, then the 

following conclusions hold. 

(1) ( , )2 1 0(mod( 1)) ( 1) |a

mN       ; 

(2) ( , )2 1 0(mod( 1)) ( 1) |b

mN       ; 

(3) ( , )1 0(mod(2 1)) (2 1) |a a

mN       ; 
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(4) ( , )1 0(mod(2 1)) (2 1) |b b

mN       ; 

(5) ( , ) ( , )( 1,2 1) | , ( 1,2 1) |a b

m mN N      . 

Proof. Formula 
1 1

( , ) 2 1 2 2 1 2( 1)m m

mN          
 shows every thing. 

Example 5. When 5m  , 1 6 2 3m    .  It can see each {2,5,6,8,11,13,14,17,20,23,26,27,29}   fits its 

corresponding case in Theorem 8. 

Corollary 2. If 
1 2

1 21 ... k

kn p p p
 

  , where ip is prime and i is a nonnegative integer, then the following 

conclusions hold. 

(1) ( , )2 1 0(mod( 1)) ( 1) |ip

nN       ,
2

( , )2 1 0(mod( 1)) ( 1) |ip

nN       ,……,  

( , )2 1 0(mod( 1)) ( 1) |
i

ip

nN


      ; 

(2) ( , )1 0(mod(2 1)) (2 1) |i ip p

nN       ,
2 2

( , )1 0(mod(2 1)) (2 1) |i ip p

nN       ,……, 

( , )1 0(mod(2 1)) (2 1) |
i i

i ip p

nN
 

      ; 

(3) 
1 1

( , )

2 1 2 1
1 0(mod( )) ( ) |

2 1 2 1i i

n n

np p
N 

  
  

 
, 2 2

1 1

( , )

2 1 2 1
1 0(mod( )) ( ) |

2 1 2 1i i

n n

np p
N 

  
  

 
,……, 

1 1

( , )

2 1 2 1
1 0(mod( )) ( ) |

2 1 2 1
i i

i i

n n

np p
N

  
  

  
 

. 

Proof. (Omitted) 

Example 6. Let 8m  , then
21 9 3m   .  

(1) 6   fits
32 1 0(mod( 1))    and 

9

( , ) (8,6)( 1) | 6 | ( 2 1 2 6 7 75)nN N         . 

(2) {6,72}  yields 92 1 0(mod( 1))   , namely, 7 73 0(mod( 1))   ，and 
9

( , ) (8,72)( 1) | 6 | ( 2 1 2 72 9 73)nN N         . 

(3) 
31 0(mod(2 1))    yields 

 
10{6 7 | 0,6 7 2 1} {6,13,20,27,34,41,48,55,62,69,...}s s s         

 

In fact, 
9

(8,13) 2 1 2 13 7 77N      
，

9

(8,20) 2 1 2 20 7 79N      
， 

9

3

2 1
1 0(mod( ))

2 1



 

 , namely, 1 0(mod(73))   , yields 

 
10{72 73 | 0,...,72 73 2 1} {72,145,...}s s s         

 

Actually, 
9

(8,13) 2 1 2 72 73 9N      
，

9

(8,145) 2 1 2 145 73 11N      
. 

Theorem 9 Suppose ( , )mN  and ( , )nN  be two nodes of T3; let ( 1, 1)d m n   and 
2 1dg  

; then 

| ( 1, 1)g     yields ( , ) ( , )| ( , )n m ag N N . 

Proof. By
1 12 1 (2 1,2 1)d n mg      

, it yields
1 12 1 ,2 1 , ( , ) 1m ngs gt s t     

; hence 

 
1

( , ) 2 1 2( 1) 2( 1)m

mN gs          

 
1

( , ) 2 1 2( 1) 2( 1)n

nN gt          
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Obviously, | ( 1, 1)g    must lead to ( , ) ( , )| ( , )n m ag N N . 

Example 7. Take 5m  and 8n  ; then (5 1,8 1) 3   ,
32 1 7  . So if take 6   , (5,6)N

and (8,6)N

have 7 to be their common divisor 7. In fact, a simple calculation shows 
5 1

(5,6) 2 12 1N   
 77 7 11   ，

8 1

(8,6) 2 1 12 525 7 75N      
,which says (5,6) (8,6)( , ) 7N N 

. 

3.3. Some Divisibility Rules on Tp 

Theorem 10. Let p be an odd prime; then counting from the root and along the leftmost path of pT
, there 

are at least two multiples of p on 0

NP every p levels. 

Proof. The nodes on the leftmost path are calculated by 

 

( ,0) 2 2 1 2 (2 1); 0,1,2,...;p k k k k

kN p p k        

 

Note that, by Fermat’s little theorem, it always holds when ( 1)k p   

 
( 1)2 1 0(mod ); 0,1,2,...;p p      

 

Obviously, 0  and 1  yield two p’s multiples, (0,0) 0(mod )pN p p 
and 

1 1

( 1,0) 2 (2 1) 0(mod )p p p

pN p p 

    
, 

and arbitrary  and 1  yield two p’s multiples. Since there are p levels between level ( 1)p  and 

( 1)( 1)p   , hence the theorem holds. 

Corollary 3. Let p be an odd prime; then counting from the root and along the leftmost path of pT
, there 

are 

1
1

p






multiples of p on 0

NP  every p levels, where 
Ord 2p 

 is the order of 2 modulo p. 

Proof. By Fermat’s little theorem, it holds 

 
12 1 0(mod )p p    

 

Since 
Ord 2p 

, it holds 2 1 0(mod )p   , | ( 1)p  and 2 1 0(mod )p   with 

1
1,2,...,

p







. That is to say, 

there are 

1p





 multiples of p from level 1 to level p-1 along the leftmost path of pT
. Considering the root p, 

there are 

1
1

p






 multiples of p from level 0 to level p-1 along the leftmost path of pT
. By genetic property, 

the corollary holds.  

□ 

Example 8. Let 7p  ; then 1 2 3p     and 7Ord 2 3 . Hence it holds
32 1 0(mod7)   and 

62 1 0(mod7)  , 

and thus 
7 0 0

(0,0) 2 7 (2 1) 7N     
, 

7 3 3

(3,0) 2 7 (2 1) 49N     
 and 

7 6 6

(6,0) 2 7 (2 1) 385N     
are 3 multiples of 7 

from level 0 to level 6 along the leftmost path of 7T . 

Theorem 11. Let p be an odd integer and Tp be the p-rooted valuated binary tree and d be a positive 

integer with 1 1d p   ; if there exits a positive integer e such that 
11 2 1de    and 
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2 (2 1) 0(mod )d

odd

e p  

, then ( , 1)| p

d ep N  ; if there exits a positive integer f 
10 2 2dp f     and 

2 (2 1) 0(mod )d

odd

f p  

, then ( , )| p

d p fp N  . Particularly, ( ,0) 0(mod )p

dN p
if 2 1 0(mod )d p  , and 

( , 1) ( , 1) 0(mod )p p

d p dN N p  
 if 2 1 0(mod )d p  . 

Proof. The leftmost node on level d of Tp is given by 

 

( ,0) 2 2 1p d d

dN p    

 

Direct calculation yields 

 

2 2 1 2 (2 (2 1)) 2( 1)d d d dp p e e         

 

Hence the condition 

2 (2 1) 0(mod )d

odd

e p  

 yields 

 

( ,0) ( , 1)2( 1) 0(mod )p p

d d eN e N p     

 

Since 
11 2 1de    , it yields 

10 1 2 2de     , which shows ( , 1)

p

d eN  is a valid node that lies on the 

left branch of Tp. Consequently, it holds  

 

( , 1)2 (2 1) 0(mod ) 0(mod )d p

d e

odd

e p N p    
                     (18) 

 

For the case 

2 (2 1) 0(mod )d

odd

f p  

 with 
11 2 2dp f     , it yields 

 

( ,0) 2 2 1 2 (2 (2 1)) 2 2 (mod )p d d d d

dN p p f f f p          

 

that is  

 

( ,0) 2 0(mod )p

dN f p                                  (19) 

 

Since ( ,0) ( , )2 0(mod )p p

d d p fN f N p  
 and the condition 

10 2 2dp f     ensures the validation of ( , )

p

d p fN  , 

it knows 

 

( , )2 (2 1) 0(mod ) 0(mod )d p

d p f

odd

f p N p    
                   (20) 

 

Taking 1e  and 1f  respectively in (1) and (3) immediately yields  

 

( ,0)2 1 0(mod ) 0(mod )d p

dp N p     

and 
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( , 1) ( , 1)2 1 0(mod ) 0(mod )d p p

d p dp N N p       

 

Example 9. 5p  and 3d  yield 
32 3 0(mod5)  and 2e  ; 

hence on level 3,  

 
5 3

(3,1) 2 (5 1) 1 2 1 35 0(mod5)N         

 

Example 10. 17p   and 5d  yield 
52 19 0(mod17)  and 10e  ;  

hence on level 5, 

 
17 5

(5,17 10) 2 (17 1) 1 2 7 527 0(mod5)N          . 

 

Example 11. 11p   and 5d  yield 
52 1 0(mod11) 

;  

hence on level 5,  

 
11 5

(5,10) 2 (11 1) 1 2 10 341 0(mod11)N         and 
11 5

(5, 1) 2 (11 1) 1 2 319 0(mod11)N         

 

Example 12. 13p   and 6d  yield 
62 1 0(mod13) 

;  

hence on level 6,  

13 6

(6,12) 2 (13 1) 1 2 12 973 0(mod13)N         and 
13 6

(6, 1) 2 (13 1) 1 2 767 0(mod13)N         

Corollary 4. Let N pq with p and q being odd prime number; then on 0

NP and 
N

LP from level 

1

2

p 

 to 

level 1p  , there are at least 3 nodes each of which has a common divisor p or q with N if 2 1p q p   , 

whereas on 0

NP and 
N

LP from level 

1

2

p 

 to level 

1

2

q 

, there are at least 3 nodes each of which has a 

common divisor p or q with N if 2 1q p  . 

Proof. Note that, by definition, nodes on 
N

LP  are given by 

( , 1) ( ,0) 2 2 (2 1)N N i i

i iN N N                                   (21) 

Then referring to Theorem 11 and Theorem 12, Corollary 4 is surely true. 

Theorem 12. Let N pq with1 p q  being odd integers; then on 0

NP and 
N

LP , there periodically appear p’s 

multiple-nodes and q’s multiple-nodes. 

Proof. By Corollary 4, there must be p’s multiple-nodes and q’s multiple-nodes on 0

NP and 
N

LP .  Lemma 

3 and Lemma 4 show that, once a p’s multiple-node occurs on 0

NP or 
N

LP , there are always p’s 

multiple-nodes on the path. By theorem 1, all the p’s multiple-nodes periodically distribute on the path. By 

Theorem 2 and Theorem 11, there are always p’s multiple-nodes on both 0

NP and 
N

LP .  

4. Conclusion and Future Work  

Looking through the theorems and corollaries proved in previous sections, one can easily know that, for 

an odd composite integer N, with the help of the valuated binary tree NT , odd integers that have a common 
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divisor with N can always be found along the path 0

NP and 
N

LP . This obviously provides a foundation for 

people to design algorithm for factoring N by searching along the path 0

NP and 
N

LP  the nodes that have 

common divisors with N. By formulas ( , 1) 2 (2 1)N k k

kN N  
 and ( ,0) 2 (2 1)N k k

kN N  
, it knows that the 

algorithm can be highly related with 2 1k  and 2 1k  modulus to N’s divisors. In fact, the famous Pollard p-1 

method is the one to find the greatest common divisor between 2 1k  mod N and N. So this paper proved the 

validity of the Pollard p-1 method in a different way. In addition, this paper also points out new direction 

beyond the Pollard p-1 method. In the future, work will be done on finding more marvelous properties of 

the valuated binary tree and designing efficient algorithms to factorize big integers. 
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