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Abstract: In this paper, fractal properties of 7-point binary approximating subdivision scheme are 

presented. It is shown by the graphical presentation that the 7-point binary approximating scheme is 

helpful for fitting 2-dimensional data and has elegant well designed properties. Ranges of parameter are 

also defined to obtain fractals which lie inside and outside of the convex hull. Due to the parametric range, 

we can easily handle the limit curve according to our own choice. Since the given scheme is approximating, 

so we can get better smoothness as compare to interpolating scheme. Some numerical examples have been 

presented to fit the data points. It has been observed that 7-point scheme is quite suitable for fitting data 

points and a good selection for construction of fractals for the modeling purpose of decoration pieces and 

fabric designing etc. Nowadays one major approach of fractal is the generation of fractal antennas which are 

very helpful in the cell phone companies. 
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1. Introduction 

Nowadays, a field of mathematics, named as Computer Aided Geometric Design (CAGD) is growing rapidly. 

Its vast applications in computer aided images, industry, surgical equipments and robotics. Different 

approaches can be use for the designing of curves/surfaces in which one is the subdivision approach. 

Subdivision schemes can be divided into approximating and interpolating subdivision schemes. At every 

refinement level, if new points are located at the existing control polygon and initial points also remain in 

the subsequent sequences of limiting curve, the scheme is called interpolating otherwise approximating. 

The initial efforts on subdivision scheme was by Rham [1], he worked on recursively corner cutting 

piecewise linear approximation techniques to attain a 𝐂𝟎-continuous limiting curve. In 1987, Dyn et al. [2] 

proposed 4-point interpolating scheme instead of approximating scheme. Chaikin [3] proposed corner 

cutting subdivision approach for curve design. In 1986, Dubuc [4] proposed a new linear interpolation 

method which produces twice differentiable functions. Boor [5] discovered that corner cuttin technique by 

Chaikin's algorithm [3] generates continuous curves. In this scheme new methods are need to check the 

continuity and differentiability. Weissman [6] introduced 6-point binary interpolatory subdivision scheme 

in (1990). Romani [7] proposed different families of approximating schemes that produce piecewise 

exponential polynomial. A little focus has been given to the fractal property of subdivision schemes as 

compare to the smoothness. Fractal properties of some well known subdivision schemes have not been 

explore yet. A brief survey is given below. 
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Zheng et al. [8] analyze the fractal behavior of binary 4-point and ternary 3-point interpolating schemes. 

Wang et al. [9] worked on the fractal generation by generalized Chaikin scheme. Siddiqi et al. [10] worked 

on the fractal behavior of ternary 5-point interpolating subdivision scheme. Mustafa et al. [11] designed 

different images by fractal approach of different subdivision scheme. 

The paper arrangement is given as: Section 2 presenting the 7-point binary approximating subdivision 

scheme, also discuss the fractal generation by the scheme. Numerical examples showing the fractal behavior 

of the proposed work in Section 3. Section 4 contains conclusion. Finally acknowledgement is given. 

2. 7-Point Binary Approximating Scheme 

First we present the 7-point binary approximating subdivision scheme as follows  
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2.1. Continuity of 7-Point Binary Approximating Scheme 

First we will calculate the continuity of 7-point binary approximating scheme. Since the mask of the 

scheme is 
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after first divided difference of (2) 
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similarly by taking sixth divided difference of (1), we get  
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2.2. Fractal Approach of 7-Point Binary Approximating Scheme 

To generate the fractal behavior of 7-point binary approximating scheme, we have to calculate some basic 

results  

First we substitute i=-3,-2 in (1) and by putting i=-1 in (1), we get 
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by subtracting (5) from (4)  
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Further 
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Rearranging the above, we get 
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after some simplification, we get the characteristic equation 
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Similarly for 2 2
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Now we are going to establish different cases for the fractal range of (1), we have three cases in this 

regard 

Case 1: 
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The sum of the length of all small edges between 0
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1f  after k iteration grows without bound 

when k tends to infinity. So when 3360 3665
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3. Numerical Examples of 7-Point Binary Approximating Subdivision Scheme 

 

 
(a)               (b)                (c)                (d) 

Fig. 1. (a) is the initial rhombus where solid boxes show the initial control points. (b)-(d) show the fourth, 

fifth and sixth refinement level at the parametric value 0.01    of 7-point binary approximating 

scheme.   
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(a)                (b)                  (c)                (d) 

Fig. 2. (a) is the initial control pentagon where solid boxes show the initial control points. (b)-(d) show the 

fourth, fifth and sixth refinement level at the parametric value 0.03    of 7-point binary approximating 

scheme. 

 
Fig. 1 (a) shows the initial rhombus and Fig. 1 (b)-(d) show the fractal generation at fourth, fifth and sixth 

iteration. Similarly another initial closed polygon is shown in the Fig. 2 (a) and Fig. 2 (b)-(d) show the 

fractal generation at fourth, fifth and sixth iteration. Fig. 1-2, we pick the value of parameter   from the 

fractal range discuss in the Cases 1-3 of 7-point binary approximating scheme. 

4. Conclusion  

We calculate the fractal properties of 7-point binary approximating subdivision scheme. Fractal approach 

provide us the maximum deviation of limit curve instead of smoothness of the limit curve. As the scheme is 

parametric, so by using different values of parameter we can generate different fractal curves according to 

our own choice. In future, we will extend this work to regular and arbitrary topology. 
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