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Abstract: In this paper, we study a system of nonlinear Riemann-Liouville fractional ordinary differential
equations with parameters, subject to coupled multi-point boundary conditions which contain fractional
derivatives. By using some properties of the associated Green's functions and the Guo-Krasnosel’skii fixed
point theorem, we prove the existence of positive solutions for this problem when the parameters belong to
various intervals. Then, we present sufficient conditions for the nonexistence of positive solutions.
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1. Introduction

We consider the system of nonlinear ordinary fractional differential equations

- {Déﬁu(t) +Af(tu(®),v(t)) =0, te(0,1),
DE v(t) + ug(t,u(®),v(®)) =0, te (0,1),

with the coupled multi-point boundary conditions

+

vD(0)=0, j=0,..,m—2; Dgzv(t)|t=1 =y, bl-Dgzu(t)|t=m,

+

(50) {u(j)(O) =0, j=0,..,n—2 Ditu(®)|e=y = XLy a:DF1v(O)] s,

+

where a,BER, ae(n—1,n], Be(m—1,m], nmeN, nm=3,p1,02,91.,9, €ER,p; € [1,n—2],p, €
[1,m—2], q. €10,p2),92 €[0,p4], é;,a; ER for all i=1,..,N(NEN), 0<§& <. <& <1,m,b;ER
for all i=1,...M(MEN),0<n, <-<ny<1 Au>0, and DX, denotes the Riemann-Liouville
derivative of order k (for k = a,,p1,92, 91, q2)-

Under some assumptions on the nonnegative functions f and g, we present intervals for the
parameters A and p such that positive solutions of (S)-(BC) exist. By a positive solution of problem ()-(BC)
we mean a pair of functions (u,v) € (C([O,l]), [o, 00)))2 satisfying (S) and (BC), with u(t) > 0 for all
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t € (0,1] or v(t) >0 for all t € (0,1]. The nonexistence of positive solutions for (S§)-(BC) is also
investigated. The system (S) without parameters A, u with the boundary conditions (BC) was investigated
in [1], where fand g are non-singular or singular functions. The existence of positive solutions of the system
(S) without parameters subject to the uncoupled multi-point boundary conditions

N
u(0)=0, j=0,..,n—2; DItu()|s=y = Z laiDgiu(t)lﬁfi'
— i=
(70) | p o
kv(])(o) = O' ] = OI e, M = 2' DOiv(t)|t=1 = Z__l bl'DOiv(t)lt:r]i )

L

was studied in [2], [3]. For other papers which investigate the existence, nonexistence and multiplicity of
positive solutions for systems of fractional differential equations with nonnegative or sign-changing
nonlinearities, subject to various nonlocal boundary conditions we mention [4]-[12].

Fractional differential equations describe many phenomena in several fields of engineering and scientific
disciplines such as physics, biophysics, chemistry, biology (for example, the primary infection with HIV),
economics, control theory, signal and image processing, thermoelasticity, aerodynamics, viscoelasticity,
electromagnetics and rheology (see [13-28]). Fractional differential equations are also regarded as a better
tool for the description of hereditary properties of various materials and processes than the corresponding
integer order differential equations.

The paper is organized as follows. In Section 2, we present some auxiliary results which investigate a
nonlocal boundary value problem for fractional differential equations, and we give the properties of the
Green functions associated to our problem. Section 3 contains the existence and nonexistence results for the
positive solutions of problem (S)-(BC). In the proof of our main existence theorems we use the
Guo-Krasnosel’skii fixed point theorem (see [29]). Finally, in Section 4, an example is given to support the
new results.

2. Auxiliary Results

In this section we present some auxiliary results from [1] that will be used to prove our main theorems.
We consider the fractional differential system
D§u(t) +x(t)=0, t€(0,1), L
Dy, v(t) +y(t) =0, te€(0,1), W

with the coupled multi-point boundary conditions (BC), where a, € R, a € (n—1,n], € (m—1,m],
nmeN, n,m = 3,p,02,41,92 € R,p; € [1,n—2],p, € [1,m —2], q; €[0,p;],q; €[0,p1], &,a; ER for
al i=1,.., N(NeN), 0<& < <éy<1Lm,b;eR for all i=1,... M(MEN),0<n <<y <
1, and x,y:(0,1) = R are continuous functions.

We denote by A the constant

___T@r@)  T@re) N B—ai-1\(yM 5 a-G;-1
T T(a-p)T(B-p2) r(a—qz)r(ﬁ—ql)( =1 ¢ )(lelb”’i ) (2)

Lemma 2.1 If A# 0 and x,y € C(0,1) N L!(0,1), then the pair of functions (u,v) € C[0,1] X C[0,1]
given by
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1

( 1
4|u(1:) = f G,(t,s)x(s)ds +f G,(t,s)y(s)ds, te[0,1],

3)
Ikv(t) = f Gs(t,5)y(s)ds + f 104@, $)x(s)ds, te€[01],

is solution of problem (1)-(BC), where

trg) -
G1(t,5) = 91(6,5) + srzrs (B0 gl ™) (S bigo (10 5)),

Ga(t,5) = j;’i(;“f))( PHGID)! “

Gs(t,s) = 94(t s) += F(a) (Z{V[1b 0 qz_l)(Z?]ﬂ aig3(fi,5)),

Ar(a—

(zte, by gz(ni,s)), vese01]

F(a)
-p1)

G4(t,s) =

And

1 (t¥ 1A =) Pl —(t—5)%1, 0<s<t<1,
%{ t*1(1—-s5)*P17l 0<t<s<1,

1 t 211 —5)* P17l — (¢ —5)* %"l 0<s<t<1,
F(a—qz){ t@ 4711 —s)* Pl 0<t<s<1.
1 (tFal(1— )PPl _(t—5)f 0l 0<s<t<1,
r(ﬂ—ql){ th~01=1(1 —s)f P71, 0<t<s<1.
1 (tP 11 =) Pl —(t —s5)F 1, 0<s<t<1,
@{ tF1(1—s)f P71 0<t<s<L.

gl(t' S) =

92(t,s) = (5)

gg(t, S) =

g4(t' S) =

Lemma 2.2 The functions g;,1 = 1, ...,4 given by (5) have the properties:
a;) g1(t,s) < hy(s) forall t,s €[0,1], where hi(s) = %(1 —§)*P171(1 — (1 —s)Pr), s € [0,1];
ay) g,(t,s) = t* th,(s) forallt,s € [0,1];
as) g.(t,s) < %t“‘l forall t,s € [0,1];
by) g,(t,s) = t* 927 1h,(s) forall t,s € [0,1], where
ha(s) = e (1= )" P71 = (1= )P, s € [0,1];

171 _ -1

b;) g.(t,s) < F(a — facay T A =)™ forallt,s € [0,1];

- —q,—-1 .
bs) g,(t,s) < F(a 0 )t“ =1 forall t,s €[0,1];
c1) g1(t,s) = th- ql‘lhg(s) forall t,s € [0,1], where

hs(s) = rms (1= s)BP2-1(1 — (1 — s)P2~%), s € [0,1];
cz) g3(t,s) < F(ﬁ )tﬁ ql-1(1 —5)F P21 forallt,s € [0,1];
B-q1-1

c3) g3(t,s) < F(ﬁ StPT forall ts € [0,1];
dy) ga(t,s) < hy(s) forall t,s € [0,1], where h,(s) = m(l — s)ﬁ P2=1(1 — (1 — s)P2), s € [0,1];
dy) ga(t,s) = tP~1h,(s) forallt,s € [0,1];
d3) ga(t,s) < Wtﬁ L forall t,s €[0,1];
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e) The functions g;,1=1,...,4 are continuous on [0,1] X [0,1]; g;(t,s) =0, for all t,s€[0,1];
gi(t,s) >0, forall t,s€ (0,1), i=1,..4
Lemma 2.3 If 4>0, a;20 for all i=1,..,N, and b; 20 for all i =1,.., M, then the functions

G;, i =1,..,4 given by (4) have the properties
ai) Gi(t,s) <J1(s), V (t,s) €[0,1] x [0,1], where

J1(8) = h(5) + g (T @il 747 ) (BHLy biga (ni,9)),V s € [0,1];

a,) G,(t,s) =t*1,(s), V(ts)€[0,1] x[0,1];
as) G,(t,s) < 6,;t* %, v (t,s) €[0,1] x [0,1], where

__ B (yN Bl M a—q,—1
1= F(a)+Ar(ﬁ—q1>r(a—q2>( =14 ) (ZHy b=

bi) Go(6,5) < Jo(s), ¥ (&) € [0,1] x [0,1], where J5(s) = 5025 (Si a1 g5 (60,)) Vs € [0.1;
by) Gy(t,s) =t Y,(s), V (t,5) €[0,1] x [0,1];

_ r
bs) G,(t,s) < 8,t%1, ¥ (t,s) € [0,1] x [0,1], where &, :Wﬁ?w—qo N bt

c1) G3(t,s) <J5(s), V (t,s) €[0,1] x [0,1], where

J5(8) = ha(8) + g (Bt binf =) (T @193 (6 9)),V s € [0,1];

cz) Gs(t,s) = tF~15(s), V (t,s) € [0,1] x [0,1];
c3) G3(t,s) < 63tP~1, v (t,5) € [0,1] x [0,1], where

53=L+—F(a) (Zl 1 177:1 2= 1)( i= 1afﬁ = 1)

I'(B) = Ar(a—q)T(B—q1)
dy) Gu(t,s) < Ju(s), Y (t,s) €[0,1] X [0,1], where J4(s) = ( L1 b; gz('li'S)).VS € [0,1];

Ir'(a)
Ar(a—p4)

dy) Gu(t,s) = tF71,(s), ¥ (t,5) € [0,1] x [0,1];

— r
ds) Gu(t,s) < 64tﬁ 1, Vv (t,s) € [0,1] x [0,1], where 04 = m ?il bLT]? 2= 1.

e) The functions G;,1=1,...,4 are continuous on [0,1] X [0,1], and G;(t,s) =0, for all t,s € [0,1],
i=1,..,4.

Lemma 2.4 If 4 >0, ¢; =0 forall i=1,..,N, b; 20 forall i=1,..,M, and x,y € C(0,1) N L*(0,1)
with x(t) = 0,y(t) =0 for all t € (0,1), then the solution (u,v) of problem (1)-(BC) given by (3)
satisfies the inequalities u(t) = 0,v(t) = 0 for all t € [0,1]. Moreover, we have the inequalities u(t) =
t*1u(t") and v(t) = tF~tu(t") forall t,t' € [0,1].

Remark 2.1 Under the assumptions of Lemma 2.4, for any interval [c;,c,] € [0,1] with 0 < ¢; < ¢, <1,
the solution of  problem (1)-(BC) given by 3) satisfies the inequalities
mingeqe, ¢, u(t) = cf ™ max,repo1) U(t") and mingepc, ¢, V() = cf_l max, e, 1) V(t').

In the proof of our main existence results we will use the Guo-Krasnosel'skii fixed point theorem
presented below (see [29]).

Theorem 2.1 Let X be a Banach space and let € € X be a cone in X. Assume Q,; and (), are bounded
open subsets of X with 0€Q; cQ; € Q, and let A:CNn(Q,\Q;) = C be a completely continuous
operator such that, either

1) lAu|l < ||ull, w € C N dQy, and ||Au|l = ||u]l, u € C N dQ,, or

2) Au|l = |lull, u € C NdQy, and |[Au]] < |lull, u € C N dQ,.

Then A has a fixed pointin € N (Q, \ Q).

3. Main Results

In this section we give first some sufficient conditions on A, y, f and g such that positive solutions
with respect to a cone for our problem (S)-(BC) exist.
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We present now the assumptions that we will use in the sequel.

(H1) a,BeER ae(n—1,n], fe(m—1,m], nmeN, nnm=3,p,,02,91,9, €E R,p; €[1,n—2],p, €
[1,m—2], ¢, €[0,p2), 92 €[0,p1], & ER, a; =0 for all i=1,..,N(NEN),0<& <+ <&y <1, €
R, b; =0 forall i=1,... M(MEN),0<n, <--<ny<1 ALu>0and A>0 (givenby (2)).

(H2) The functions f, g:[0,1] X [0,) X [0,%) — [0,0) are continuous.

For [c;,¢;] € [0,1] with 0 < ¢; < ¢, <1, we introduce the following extreme limits

: ftu,v) . gt v)
f& = limsup max —, g4 = limsup max —————
utv-0+ t€[01] U+ v ut+v-0+ t€[01] U+ TV
D e _ feuwv) _g9(tuv)
fo = liminf min ———, g¢ = liminf min ———,
u+v-0t t€[cy,c] U+ vV u+v-0t t€lcy,c] U+ UV
: ftw,v) : 9(tu,v)
fos = limsup max —, g3, = limsup max ————,
u+v-oo telo,1]] u+v u+v—-oo telol] u+v
D e - fGuwv) - gtuv)
f& = liminf min ———, g% = liminf min ———~
utv-omwt€lcy,c] U+ v utv-owt€lcy,c,] U+ V

In the definitions of the extreme limits above the variables u and v are nonnegative.
By using Lemma 2.1, a solution of the following nonlinear system of integral equations

1 1
u(t) = AJ G(t,s)f(s,u(s),v(s))ds + uf G,(t, s)g(s,u(s),v(s))ds, t € [0,1],
0 0

1 1
Lv(t) = uJ G;5(t, s)g(s,u(s),v(s))ds + Af G,(t,8)f (s,u(s),v(s))ds, te[0,11],
0 0

is solution of problem (S)-(BC).
We consider the Banach space X = C[0,1] with the supremum norm ||-||, and the Banach space
Y = X X X with the norm ||(u, v)|ly = |lull + ||v||. We define the cone P c Y by

P = {(u, v) €Y; u(t) = t* Y |ul, v(t) = tF1|v|, Vte [0,1]}.

For A,u > 0, we introduce the operators Q,,Q,:Y = X and Q:Y = Y defined by

Q:(u,v)(t) = Af G, (t, s)f(s,u(s),v(s))ds + uf G, (t, s)g(s,u(s),v(s))ds, t €[0,1],
0 0

1 1
020, v)(©) = u f G5(t,5)9(s,u(s), v(s))ds + 4 f Ga(t, ) (s, u(s),v(s))ds, t € [0,1],
0 0

and Q(u,v) =(Q;(w,v),Q,(u,v)), (u,v) €Y. Thenif (u,v) is a fixed point of operator Q, then (u,v)isa
solution of problem (S)-(BC). Using Lemma 2.4 and similar arguments as those used in the proof of Lemma
3.1 from [5], we deduce that under assumptions (H1)-(H2), the operator Q:P — P is a completely
continuous operator.

For [c1,c2] € [0,1] with 0<c<c <1 , we denote by
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A= [} 11()ds, B = [[J2(s)ds, € = [} Js(s)ds, D = [ Ja(s)ds, A= [?]y(s)ds, B = [;*]o(s)ds, C =
fcczj3(s)ds, D= fCC2]4(s)ds,where Ji, i =1,...,4 are defined in Section 2 (Lemma 2.3).
1 1

For f$, g3, fit, gk € (0,00) and numbers a;,a, € [0,1], as a4 € (0,1), a €[0,1] and b € (0,1), we
define the numbers

aa; (1-a)ay, } L= mi {ba3 (1- b)(x4}
’ 2 ’

L, = max —, — n ,
! {wlfoéA YYafsD foA foD

a(l—a;) 1-a)(1—ay) } . {b(l —az) (1-b)(1- a4)}
, , L, =min < , ,
Y1958 YY295C 9goB 9oC

L { b 1-—- b} L, = { b 1- b}
= min min
foSA foD QSB 95C

Ly = max{

where y; = ¢, y, = c1 Yand y = min{yy, 7, }.
Theorem 3.1 Assume that (H1) and (H2) hold, [c;,c,] € [0,1] with 0 <¢; < ¢y, <1, aq,a, € [0,1],
as,a, €(0,1), a €[0,1] and b € (0,1).

1)

2)

3)

4)

5)

6)

7)

8)

If 15, 95, foﬁ',, gfx, €(0,0), L; <L, and L3 <L,, then for each A€ (L, L,) and u € (L3, L,)
there exists a positive solution (u(t), v(t)), t € [0,1] for (S)-(BC).

If f5=0,95 fi g&%€(0,0), and L; <L), then for each A€ (L;,) and u € (Ls,L},) there
exists a positive solution (u(t),v(t)),t € [0,1] for (S)-(BC).

If g5=0, f3, fL, g& € (0,), and L; <L), then for each A€ (L;,L,) and pu € (L3, ) there
exists a positive solution (u(t),v(t)),t € [0,1] for (S)-(BC).

If f$=g5=0, f, gl € (0,0), then for each 1€ (L;,©) and u€ (Ls, ) there exists a
positive solution (u(t),v(t)),t € [0,1] for (S)-(BC).

If £5, g5 € (0,00), and at least one of fi, gl is o, then for each A € (0,L;) and u € (0,L,) there
exists a positive solution (u(t),v(t)),t € [0,1] for (S)-(BC).

If =0, g5 € (0,0), and at least one of fi, g is o, then for each 1 € (0,) and u € (0,L})
there exists a positive solution (u(t), v(t)), t € [0,1] for (S)-(BC).

If f§ € (0,), g5 =0, and at least one of fi, gl is o, then for each 1 € (0,L},) and u € (0, )
there exists a positive solution (u(t), v(t)), t € [0,1] for (S)-(BC).

If ff = g5=0, and at least one of f, gi is o, then for each 1 € (0,) and u € (0,00) there
exists a positive solution (u(t), v(t)), t € [0,1] for (S)-(BC).

Proof. We consider the above cone P c Y and the operators Q,,Q, and Q. Because the proofs of the

above cases are similar, in what follows we will prove one of them, namely Case 3). So, we suppose

gs=0and f§, fi, g € (0,00). Let 1€ (Ly,L,) and p € (L3, ). We choose @; € (O, 1 —Ub#) and

(0 1- )‘f" ) Let & > 0 be a positive number such that e < £}, € < gt and

am <A a(lfal) < (1 —_a)ozZ~ <2 (1—a)(1—az) <
Yv1(fo — €)A Y¥1(geo — €)B YY2(foo — €)D Yv2(gk — )€
b(l_&3)2/1, @Zu. 1-b)A—a,) -1 (1—b)t>f42
(fo +8)A eB (fS+¢)D eC

58 Volume 8, Number 4, October 2018



By using (H2) and the definitions of f; and gj, we deduce that there exists R; > 0 such that
fuv) <(ff+e)u+v) and g(t,u,v) <e(u+v) for all t€[0,1], u,v €[0,00) with 0 <u+v <
R;. We define the set Q; = {(u,v) €Y, |[(w,v)|ly < R1}. Nowlet (u,v) € P n dQ,, thatis (u,v) € P with
[|(u,v)|ly = Ry or equivalently ||lu|| + ||v|| = R;. Then u(t) + v(t) <R, for all t € [0,1], and by Lemma
2.3, we obtain

1 1
01w v)(D) < A f 1 ()f (5,u(s),v(s))ds + u f ()9 (s, u(s), v(s))ds
0 0
1 1
<2 j L) + ) uls) +v(s))ds + f Jo()e(u(s) + v(s))ds
0 0

1 1
<A(f5 +¢) f J)lell + Ivll)ds + e f L) lull + Ivl)ds
0 0
= [A(fos + E)A + #SB]”(U, U)”Y < [b(l - 5(3) + bd3]||(% U)”Y = b||(u, 17)”1/' Vvt € [0.1]-

Therefore ||Q,(u, V)|l < bll(w, v)lly.
In a similar manner, we conclude

1 1
02 v)(0) < u f J5()g(s,u(s), v(s))ds + A f Jo()f(s,u(s),v(s))ds
0 0
1 1
< uf J3(s)e(u(s) +v(s))ds + AJ J4(S)(fo + &) (u(s) + v(s))ds
0 0

1 1
< e f J5&)lull + olDds + A + &) f Ja)(lull + vl ds
0 0

= [ueC + A(fg + DIl vy < [(1 = b)a, + (1 = b)(1 — @)l )lly
= (1 - b)”(u, U)”y, vVt € [011]

Hence [1Q2(w, v)Il < (1 — b)lI(w, v)lly.
Then, for (u,v) € P N 9dQ,, we deduce

IR, ly = 101w, Il + Q2 (w, V)|l < bll(w, V)ly + (1 = bl V)ly = [[(w, V)ly- (6)

By the definitions of f. and gl,, there exists R, >0 such that f(t,u,v)> (foi, - e)(u +v) and
gt,u,v) = (géo - s)(u +v) for all u,v>=0 with u+v>R, and tE€ [c;,c,]. We consider R, =
max{2R;,R,/y} and we define Q, = {(u,v) €Y, ||(w,v)|ly < R,}. Then for (u,v) € P with ||(u,v)|ly =
R,, we obtain u(t) + v(t) = t* ull + t5~ vl = yll(w, v)|ly = YR, = R,, forall t € [cy, c;].

Then by Lemma 2.3, we conclude

01 (u,v)(ey) = AcE f () f (5,u(s), v(s))ds + pci f J2()9(s, u(s),v(s))ds
> f T (L — €)(uls) + v())ds + uy f 12() (gl — €) uls) + v(s))ds

> Ayn(fi - €) f TN v)llyds + myra(ghs — €) f TNl @ )llyds

= [y (fE — e)A+ uyvi (g — €)B]Ilw )y
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2 [aa; + a1 = a)]ll@w v)lly = all(w, v)lly.

So, [1Q1(w, V)|l = Q1 (w, v)(c1) = all(w, v)lly-
In a similar manner, we conclude

Q2w v)(cp) = pck ™ f J5()g9(s, uls), v(s))ds + AP f Ja()f (5, u(s), v(s))ds

€1

> 1y, f J5(5) (gl — €) u(s) + v(s))ds + Ay, f T4 (i — ) (uls) + v(s))ds

> 1yy>(gis — €) f Ta N v)llyds + Ayys(fi — €) f TN v)llyds

= [urv.(gs — €)C + Ayy, (£ — €)D]ll(w, v)lly
2[1-a)d-ay)+ (A -a)a]llwv)lly = A —a)l(w,v)lly.

So, [1Q;(w, V)|l = Q2 (v, v)(¢1) = (1 — a)|[(w, V) ly-
Hence, for (u,v) € P N dL,, we obtain

Q@ Vly = 1€ I + 1Q2(w, V)| = all(w, V)ly + (1 = [ Iy = |, )y (7)

By using (6), (7) and Theorem 2.1, i), we conclude that Q has a fixed point (u,v) € P n (Q, \ ;) such
that Ry < |lu]l + |[v]l £ Ry, u(t) = t* Yull, v(t) = tA~Y|v|| for all t € [0,1]. If Jlu|]| > 0 then u(t) >0
forall t € (0,1], andif ||v||> 0 then v(t) > 0 forall t € (0,1].

In what follows, for f¢, g, f3, g3 € (0,00) and numbers a;,a, € [0,1], a3, a, € (0,1), a € [0,1] and
b € (0,1), we define the numbers

7 { ae; (1—-a)a, } 7 _ {ba3 (1- b)a4}

= max T = (, = min , ————¢,

' YYifaA’ yyafyD ’ fSA*  fiD

- al-—a) 1-a)(1-az)| - _(b(1—a3z) (1-b)(1—ay)

L; = max = = , L, = min < , S X
YY190B YY290C JooB 9xC

(b 1-b (b 1-b
L2 = min {fﬁ’ ﬁ)g—D}, L4_ = min {gg.j, gg,T}

By using similar arguments as those used in the proof of Theorem 3.1 (see also [5]) we obtain the
following result.

Theorem 3.2 Assume that (H1) and (H2) hold, [c;,c,] ©[0,1] with 0 <¢; < ¢, <1, aq,a;, € [0,1],
as,a, € (0,1), a €[0,1] and b € (0,1).

1) If £, gb f3, 95, €(0,00), Ly <L, and L3< L, then for each A€ (L, L,) and p€ (L3, L,)
there exists a positive solution (u(t), v(t)), t € [0,1] for (S)-(BC).

2) If fi, g f3€(0,0), g5 =0 and L; <L), then for each A€ (L;,L}) and p € (L3, ) there
exists a positive solution (u(t), v(t)), t € [0,1] for (S)-(BC).

3) If fi g g5 €(0,0), f5=0, and L; <L), then for each A€ (L;,) and u€ (l~,3,l~,ﬁ}) there
exists a positive solution (u(t), v(t)), t € [0,1] for (S)-(BC).

4) If f}, gl € (0,0), f5= g5 =0, then foreach 1 € (L;,) and u € (Z3,00) there exists a positive
solution (u(t),v(t)),t € [0,1] for (S)-(BC).
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5 If f3, 95 € (0,0), and at least one of foi, g(i, is oo, then for each A€ (0, Zz) and u € (0, Z4)
there exists a positive solution (u(t),v(t)),t € [0,1] for (S)-(BC).

6) If £5€(0,0), g5 =0 and at least one of f{, g} is oo, then for each 1 € (0,L}) and u € (0, )
there exists a positive solution (u(t), v(t)), t € [0,1] for (S)-(BC).

7) If £5=0, g5 € (0,) and at least one of f}, gi is oo, then for each 1 € (0,) and u € (0, Z’4)
there exists a positive solution (u(t),v(t)),t € [0,1] for (S)-(BC).

8) If £5= g5 =0 and at least one of f}, gi is oo, then for each A € (0,00) and u € (0,) there
exists a positive solution (u(t), v(t)), t € [0,1] for (S)-(BC).

Next we present intervals for 1 and u for which there exists no positive solutions of problem (S)-(BC),

viewed as fixed points of operator Q.
Theorem 3.3 Assume that (H1) and (H2) hold. If there exist positive numbers M;, M, such that

ftuv)<M;(u+v), git,u,v) < M,(u+v), vt €[0,1], u,v =0, (8)

then there exist positive constants A, and p, such that for every A € (0,4,), u € (0,4,) the boundary

value problem (S)-(BC) has no positive solution.

1 1

In the proof of Theorem 3.3 we can show that 4, = min {;,—} and pg = min {L,—}, where
4M,A’ 4M;D 4M,B’ 4M,C

A= foljl(s)ds, B = foljz(s)ds, C = foljg(s)ds, D= f01]4(s)ds, satisfy the conditions of our theorem. If
1, 95, fo, g3, < o, then there exist positive constants M; and M, such that (8) holds, and then we obtain
the conclusion of Theorem 3.3.

Theorem 3.4 a) Assume that (H1) and (H2) hold. If there exist positive numbers c;,c, with 0 < ¢; <
¢c; <1 and m,; > 0 suchthat

ft,w,v) 2m(u+v), vVt €[cy, ¢, u,v=0, 9)

then there exists a positive constant 1, such that for every A > 1, and u > 0, the boundary value
problem (S)-(BC) has no positive solution.

b) Assume that (H1) and (H2) hold. If there exist positive numbers c;,c, with 0 <¢; < ¢, <1 and
m, > 0 such that

gt,u,v) =Zmy(u+v), Vt € lcy,cy], u,v=0, (10)

then there exists a positive constant fi, such that for every 4 >0 and u > fi;, the boundary value
problem (S)-(BC) has no positive solution.

c) Assume that (H1) and (H2) hold. If there exist positive numbers c;,c, with 0 <c¢; <c, <1 and
mq,m, > 0 such that

ft,w,v) =m(u+v), git,u,v) =2my(u+v), vVt € [c;, ¢, u,v =0, (1

then there exists positive constants A, and f, such that for every A > 1, and u > fi,, the boundary
value problem (S)-(BC) has no positive solution.

In the proof of Theorem 3.4 we define 1, = min{ ! -%} iy = min{ ! —, ! ~},where
YYimiA yyam,D YYimzB yy,m,C
i _ [C2 5 _ (C2 A (G2 = e A 1 L 1
A= fcl Ji(s)ds, B = fcl J2(s)ds, C = fcl J3(s)ds, D = fcl Ja(s)ds, and 4y = 2y m A Ho = 277 m,C

If for cj,c, with 0<c; <c; <1, f}, fiL>0 and f(t,u,v) >0 for all t € [¢c;,c;] and u,v =0 with
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u + v > 0, then relation (9) holds and we obtain the conclusion of Theorem 3.4 a). If for ¢, c, with
0<c,<c;<1, g& g&>0 and g(t,u,v) >0 for all t€[cy,c;] and u,v=0 with u+v >0, then
relation (10) holds and we obtain the conclusion of Theorem 3.4 b). If for ¢;,c, with 0 <c¢; <c, <1,
foi, 1L, g(i), g9%>0 and f(t,u,v) >0,g(t,u,v) >0 for all t € [c;,c,] and u,v >0 with u+v >0, then
relation (11) holds and we obtain the conclusion of Theorem 3.4 c).

4. An Example
9 8
Let =E(n=5), ,8=§ m=3), p1=4/3, p.=1, .1=1/2, q,=2/3, N=1,M=2, & =1/2,
a, = 2, n = 1/3, Ny = 2/3, bl =1 and b2 = 1/2
We consider the system of fractional differential equations
50) D2 u(t) + A(t + 1)2(u2(t) + v2(t)) = 0, t € (0,1),
° DEPv(t) + utb (e*®+® — 1) =0, te (0,1),

with the coupled multi-point boundary conditions

w(0) = u'(0) = u"(0) = u"(0) = o DPu(t)] =y = ZD”Zv(t)u:l/z,

(BCo) { B B B
v(0) =v'(0) = 0, v'(1) = DI Pu(®) |15 + ;Do+ u(t)|t=2/3-

Here we have f(t,u,v) = (t+ 1)%u? +v?), g(t,u,v) = tP(e**V — 1) for t €[0,1], u,v >0, where
50(9/2) ['(9/2)r(8/3)(1+211/6)
3r(19/6) 21/6317/6T(13/6)I'(23/6)
and (H2) are satisfied. In addition, we deduce (see [1])

d,b > 0. Then we obtain A = ~ 7.6683666, and so the assumptions (H1)

1 t72(1—=s)B/6 —(t—5)7/2, 0<s<t<1,
o) = b (A= =)

re/2) t7?2(1—-s)13/%, 0<t<s<1,
1 (tV7/8(1—s)B3/6 —(t—3)1/6, 0<s<t<1,
g2(t,s) = r(23/6){ t17/6(1 _ 5)13/6’ 0<t<s<l,
1 (t7/°(1—5)?3 —(t—5)/°, 0<s<t<1,
93(t,s) = r(13/6){ t776(1—-5)%3, 0<t<s<1,
1 (531 -2 —(t—5)%3, 0<s<t<1,
r(s/a){ t53(1-5)?3, 0<t<s<1,

94(t1 S) =

7 (1= 9)¥/5(1 = (1= 5)*73), hz(S) = (1=5)/5(1= (1 =5)%?), hy(s) =

hl(s) r(9/2)
(1=5)*3(1 =1 =5)?), hy(s) =

F(23/6)

——5(1 —5)?/3 for all s€[0,1]. For the functions J;, i =

F(13/6) F(8/3)

1, ...,4, we obtain

r(8/3)

(- 1-9)°(1-1-9%3)+ [2(1—s)t3/e

r/2) 27/6317/6AT'(13/6)I'(23/6)
—2(1 —35)17/6 4 217/6(1 — 5)13/6 — (2 — 35)17/%], 0<s<1/3,
1 r(8/3)
) — | r(9/2) (1—-9)B¥e(1 -1 -95)¥)+ 27763 TAT(13/6)1(23/6) [2(1 - s)13/6
fils) = +217/6(1 — §)13/6 — (2 — 35)17/6], 1/3 < s < 2/3,
———— (1 -1 - (1-9)*%) + 18/3) [(1—s)t3/8

r(9/2) 21/6317/6 AT(13/6)T'(23/6)

2
| +211/6(1 — 5)13/6], 3Ss<1,
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5 (1—-5)23—-(1-25)7° 0<s<1/2,

J2(s) = 3-21/6AT(13/6) (1—s)2/3, % <s<1,
1 (1 + 2'/%)r(9/2)
f 1“(8/3) s(1- 5)2/3 + 21/6317/6AF(13/6)F(23/6) [(1- 5)2/3
J3(s) = —(1-25)7/°], 0<s5<1/2,
(1+2'/%)r9/2)
e S 2176375 AT(13/6)(23/6) - O, 12ss<d
2(1 - 5)13/6 -2(1 - 35)17/6 + 217/6(1 _ 5)13/6
re/2) -(2-3s)17/%,  0<s<1/3,

Ja(s) = 2(1 — 5)13/6 4 217/6(1 — )13/6
-(2-39)17/%,  1/3<s<2/3

2 - 317/6AT'(19/6)I'(23/6)
l2(1 —§)18/6 4 217/6(1 —s)13/6, 2/3<s<1.

For ¢; = 1/2, ¢, = 1, we deduce y; = (1/2)7/?, y, = (1/2)5/3, ¥ = ;. In addition, we obtain f§ =0,

g5 =1 fh=gl=w, B=[J(s)ds~ 006605546, C = [} Js(s)ds ~ 016869513, B =[] J,(s)ds ~
0.03381002, C = fll/zjg(s)ds ~ 0.09615861. Besides, for b = 1/2, we get L, = % ~ 2.96392. Then, by
Theorem 3.1, 6) we conclude that for each 1 € (0,) and u € (0,L}), there exists a positive solution

(u(t),v(t)), t € [0,1] for problem (S,)— (BC,). Because g = 27b and gl, =, we can also apply

Theorem 3.4, b). Then there exists fi, such that for every p > i, and A > 0, problem (S,) — (B(C,) has

no positive solution. For example, if b = 1, then we deduce m, =% and fi, = win F = 747.074.
21702
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