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Abstract: This paper establishes exponential inequalities for the probability of the distance between kernel 

estimator and its means in nonparametric regression problem with mixing variables. We consider an 

operator equation taking the following form Y=A(Z)+, where A is a compact operator. 

The goal is to estimate the functional   when the variable Z is contaminated by measurements errors. 
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1. Introduction 

The nonparametric estimation of function is an important tool for analyzing data, as well as inferential 

statistics in graphical visualizations. To this end, confidence interval and uniform confidence bands are 

often used in statistics. Starting with the work of Bickel and Resenblatt [1], who built confidence bands for 

the kernel estimator of a density function of independent and identically distributed observations. Since 

then, their methods were much developed in the context of estimation of density function and regression 

function. M. Birke, N. Bissantz and H. Holzman [2] Have constructed uniform confidence intervals for an 

inverse regression function in a similar way to Bickel and Rosenblatt, based on approximations and the 

limit theorem of a stationary Gaussian process. Recently, L. Desole [3] studies a generalization of the 

Nadaraya-Watson type estimators in the case of the α-mixing functional variables 

In the context of inverse problems, such as calibration (inverse regression) estimator deconvolution 

kernel and Nadaraya-Wantson are often used. 

In this work, we consider a convolution operator equation of the form 

 
𝐘 = 𝐀(𝐙) +                                             (1) 

 
The goal is to estimate the functional  when the variable Z is contaminated by measurement errors. 

A: H→H is a convolution linear compact operator, given by 

 

𝐀(𝐬) = ∫(𝐬 − 𝐭)(𝐭)𝐝𝐭                                    (2) 
 
where  is a known density function. 

2. Notations and Preliminaries 
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We consider a sample of size n, (Y₁, Z₁),⋯,(Yn, Zn) of variable (Y,Z) satisfying the equation (1), assumed 

α-mixing.  

Assume that the sequence of regression errors (k)k≥1 are identically distributed random variables with 

zero mean and finite variance ². We assume that for al k=1,⋯,n, Zk is given by Xk=Zk+k where k is a 

mistake to contamination. 

We denote by X the characteristic function of the variable X or the Fourier transform of the density 

function and  is the density function of -. 

The sequence of random variables (Yk)k≥1 is assumed to be mixing. This amounts to assume that the 

sequence of random variables (k)k≥1 is mixing. 

3. Position of the Problem 

Consider the model given by equation (1), where the operator A is the operator of convolution with the 

assumed known density function ψ. The problem considered is equivalent to 

 

𝐘𝐤 = (𝐗𝐤 + 𝛆𝐤)    𝐚𝒏𝒅     𝐗𝐤 = 𝒁𝒌 + 𝛅𝐤  
 

We suppose that the random variables δk, Zk and εk are independent of each other. The regression error εk 

satisfies E(εk/Xk)=0. The regression function θ is such that θ(x)=E(Yk/Xk=x) Related to the observed 

regression function g(z)=E(Yk/Zk=z) by g(z)=θ∗ψ(z). Where ψ is the density function of -δ. 

In practice, two essential cases arise. The observations Zk are either fixed points (ex. M. Birke, N. Bissantz 

et H. Holzman [2]) or Zk are random variables (ex. L. Desol [4], A. Tadj [5]). In this work, we will consider 

the case where Zk_=zk are fixed point 

The model considered is a classical nonparametric regression model with deconvolution (see [6]). 

We propose a kernel type estimator for the functional , we assume that the Fourier transform of the 

density function  is such that ()≠0 for all ∈ℝ and the Fourier transform of the kernel k has compact 

support. The deconvolution kernel estimator of  is given by 

 

𝛉𝐧(𝐱) =
𝟏

𝟐
∫ 𝒆𝒙𝒑(−𝒊𝒙)

𝐤(𝒉)𝐠()



(

𝐝                              (3) 

 
where h>0 is a smoothing parameter and 

𝐠
(. ) is the empirical Fourier transform of g given by 

 


𝐠
() =

𝟏

𝒏𝒂𝒏
∑𝒀𝒌𝒆𝒙𝒑(𝒊𝝎𝒁𝒌)

𝒏

𝒌=𝟏

 

 
We have g=θ∗ψ and its estimator 

 

𝒈𝐧(𝒙) = 𝜽𝒏 ∗(𝐱) 
 

It's clear that 

 

𝒈𝐧(𝒙) =
𝟏

𝒏𝒉𝒂𝒏
∑𝒀𝒌𝒌(

𝒙 − 𝒛𝒌
𝒉

)

𝒏

𝒌=𝟏

 

 
In this case, one can easily see that the estimator 𝛉𝐧(𝐱) of θ(x) given (3) is written in the kernel form as 
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𝛉𝐧(𝐱) =
𝟏

𝒏𝒉𝒂𝒏
∑𝒀𝒌𝑲(

𝒙 − 𝒛𝒌
𝒉

, 𝒉)

𝒏

𝒌=𝟏

 

 
where the kernel K is given by 

 

𝐊(𝐱, 𝐡) =
𝟏

𝟐
∫ 𝒆𝒙𝒑(−𝒊𝒙)

𝒌( )

 (


𝒉
 )
𝐝                              (4) 

 
From the estimate of the deconvolution density function, it is well known that the optimal rate for what is 

estimated θ depends on θ smoothing and that of ψ or equivalently, on the Fourier transform properties.  

ψ is said to be moderately smooth and the problem is moderately ill-posed if the Fourier transform  

|

 (ω)| decreases polynomialally when t tends to infinity. In this case, the optimal rate for estimating θ is 

also polynomial. If, on the contrary, |

 (ω)| decreases exponentially when t tends to infinity, ψ is said to be 

smoothed and the problem is said to be very badly posed. The optimal rate of convergence is logarithmic 

order. For more details on the estimation of density functions see Fan [7] and Pensky and Vidakovic [8].  

In the following, we will restrict ourselves to an ordinary smoothing of ψ which means that the model (1) 

is a moderately ill-posed problem. 

Assumes that 

 



 (ω)ωβ → 𝑪𝜺    𝒘𝒉𝒆𝒏 ω → ∞                             (5) 

 

For some β≥0 and 𝐶𝜀∈ℂ\{0}. 

Note that this implies that 

 



 (ω)|𝜔|𝛽 → 𝑪̅𝜺   𝒘𝒉𝒆𝒏 ω → ∞       

 
Under the hypothesis (5) and by the dominated convergence theorem [6], We have an asymptotic form of 

the deconvolution kernel (4) quite simple. 

 

𝐡𝛃𝐊(𝐱, 𝐡) =
𝐡𝛃

𝟐
∫ 𝒆𝒙𝒑(−𝒊𝒙)


𝒌
( )



 (

𝒉
 )
𝐝

+∞

𝟎

+
𝐡𝛃

𝟐
∫

𝒆𝒙𝒑(−𝒊𝒙)

𝒌
( )



 (

𝒉
 )
𝐝𝟎

−∞

    

𝐡𝛃𝐊(𝐱, 𝐡) →  
𝐡𝛃

𝟐𝑪𝜺
∫ 𝒆𝒙𝒑(−𝒊𝒙)


 (ω)ωβ𝐝

+∞

𝟎

+
𝐡𝛃

𝟐𝑪̅𝜺
∫

𝒆𝒙𝒑(−𝒊𝒙)

 (ω)|𝜔|𝛽𝐝

𝟎

−∞

= 𝐋(𝒙)  

 
It's clear that L(x)∈ℝ. This result will be used in the calculation of the variance of θn(x). 

Hypothesis 

H1: The Fourier transform 
𝒌

 of k est symétrique. 

H2: ∫K(z,h)|z|(3/2)(loglog⁺|z|)(1/2)dz=o(ℎ𝛽) with loglog⁺|z|=0 if |z|<e and loglog⁺|z|=loglog|z| somewhere 

else. 

H3 : θ is j-time differentiable and ℎ𝑗 = 𝑜 (
1

√𝑛ℎ
𝛽+
1
2

) equivalent to ℎ = 𝑜 (𝑛
−

1

2𝛽+2𝑗+1) 

H4 : (Yi)i≥1 is α-mixing. 

H5 : ∃M >0, suth that |εK(x,h)|<M. 

H6 : max{E(|YkYl|/Xk_Xl),E(|Yk|/XkXl)}≤C a.s. 
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H7 : ∃(un)∈ℕ^{ℕ},o(un)+o(n[α(un)](p-2)/2^)→0. 

The following lemma gives a simple asymptotic expression for the variance of θn(x). 

The following lemma gives the asymptotic expression of the variance of n(x), in the case of strong mixing 

variables. 

Lemma : Under the assumptions H4 to H7, we have, 

 

∑ ∑ 𝑐𝑜𝑣(𝑌𝑘 , 𝑌𝑙)𝐾 (
(𝑥 − 𝑧𝑘)

ℎ
, ℎ)𝐾(

(𝑥 − 𝑧𝑙)

ℎ
, ℎ)

𝑛

𝑙=1,𝑙≠𝑘

𝑛

𝑘=1

= 𝑜 (∑𝑉𝑎𝑟(𝑌𝑘𝐾(
(𝑥 − 𝑧𝑘)

ℎ
, ℎ)) 

 
Proof 

 

∑ ∑ 𝑐𝑜𝑣(𝑌𝑘 , 𝑌𝑙)𝐾 (
(𝑥 − 𝑧𝑘)

ℎ
, ℎ)𝐾 (

(𝑥 − 𝑧𝑙)

ℎ
, ℎ)

𝑛

𝑙=1,𝑙≠𝑘

𝑛

𝑘=1
 

= ∑ 𝑐𝑜𝑣(𝑌𝑘 , 𝑌𝑙)𝐾 (
(𝑥 − 𝑧𝑘)

ℎ
, ℎ)𝐾(

(𝑥 − 𝑧𝑙)

ℎ
, ℎ)

1<|𝑘−𝑙|<𝑢𝑛

 

∑ 𝑐𝑜𝑣(𝑌𝑘 , 𝑌𝑙)𝐾 (
(𝑥 − 𝑧𝑘)

ℎ
, ℎ)𝐾(

(𝑥 − 𝑧𝑙)

ℎ
, ℎ)

𝑢𝑛<|𝑘−𝑙|<𝑛

 

= 𝐴 + 𝐵 
 

For the term B, use Ibraguimove inequality [9] 

If two random variables  1 2 Lp and 2 2 Lq with 1 ≤ p; q < 1; then we can find r satisfying 
1

𝑝
+
1

𝑞
+
1

𝑟
=

1, Such as 

 

|𝑐𝑜𝑣(
1
, 
2
)| ≤ 𝑐

1
𝑟‖

1
‖
𝑝
‖
2
‖
𝑞

 

 

where c is a positive constant. 

Consider p = q = 2; This implies that 𝑟 =
 𝑝

𝑝−2
, It comes 

 

|𝐵| ≤ 𝑐‖
1
‖
𝑝
‖
2
‖
𝑞
∑ [𝛼(𝑘 − 𝑙)]

𝑝−2
𝑝 𝐾 (

(𝑥 − 𝑧𝑘)

ℎ
, ℎ)𝐾(

(𝑥 − 𝑧𝑙)

ℎ
, ℎ)

𝑛

𝑢𝑛<|𝑘−𝑙|<𝑛
 

≤ 𝑐‖
1
‖
𝑝
‖
2
‖
𝑞
∑ [𝛼(𝑘 − 𝑙)]

𝑝−2
𝑝
𝟏

𝟐
[∫ |𝒆𝒙𝒑(−𝒊 (

𝒙 − 𝒛𝒌
𝒉

))|

𝒌
( )



 (

𝒉
 )
𝐝]

𝑛

𝑢𝑛<|𝑘−𝑙|<𝑛

∗ [∫ |𝒆𝒙𝒑(−𝒊 (
𝒙 − 𝒛𝒍
𝒉

))|

𝒌
( )



 (

𝒉
 )
𝐝] 

ℎ2𝛽|𝐵| ≤ 𝑐‖
1
‖
𝑝
‖
2
‖
𝑞
∑ [𝛼(𝑘 − 𝑙)]

𝑝−2
𝑝
𝟏

𝟐
[∫


𝒌
( )

 

 (

𝒉
 )
𝐝]

𝟐
𝑛

𝑢𝑛<|𝑘−𝑙|<𝑛
 

 

Using hypothesis (5) and positing 𝐶0 = 𝑐‖
1
‖
𝑝
‖
2
‖
𝑞

 

We have 

|𝐵| ≤ 𝐶0∑ [𝛼(𝑘 − 𝑙)]
𝑝−2
𝑝 [

𝟏

𝟐
∫ 𝛚𝛃


𝒌
( )

(

𝒉
)
𝜷


 (

𝒉
 )

𝐝

+∞

𝟎

+
𝟏

𝟐
∫|𝜔|𝛽


𝒌
( )

(|

𝒉
|)
𝜷


 (

𝒉
 )

𝐝

𝟎

−∞

]

𝟐

𝑛

𝑢𝑛<|𝑘−𝑙|<𝑛
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→ 𝐶₀𝐾²(0)[𝛼(𝑘 − 𝑙)]
𝑝−2
𝑝 (𝑛 − 𝑢𝑛 − 1)(𝑛 − 𝑢𝑛) 

 
Let us now return to the term A 

 

|𝐴| ≤∑ |𝐸(𝐸(𝑌𝑘𝑌𝑙/𝑌𝑘𝑌𝑙))𝐾 (
(𝑥 − 𝑧𝑘)

ℎ
, ℎ)𝐾(

(𝑥 − 𝑧𝑙)

ℎ
, ℎ)|

𝑛

1<|𝑘−𝑙|<𝑢𝑛

 

≤ 𝑐∑ |𝐾 (
(𝑥 − 𝑧𝑘)

ℎ
, ℎ)𝐾(

(𝑥 − 𝑧𝑙)

ℎ
, ℎ)|

𝑛

1<|𝑘−𝑙|<𝑢𝑛

 

≤ 𝑛𝑢𝑛𝑐 max
1<|𝑘−𝑙|<𝑢𝑛

(|𝐾 (
(𝑥 − 𝑧𝑘)

ℎ
, ℎ)𝐾(

(𝑥 − 𝑧𝑙)

ℎ
, ℎ)|) 

≤ 𝑛𝑢𝑛𝑐 max
1<|𝑘−𝑙|<𝑢𝑛

(
𝟏

𝟐
[∫


𝒌
( )

 

 (

𝒉
 )
𝐝]

𝟐

) 

 
By hypothesis (5), 

 

ℎ2𝛽|𝐴| ≤ 𝑛𝑢𝑛𝑐 max
𝑢𝑛<|𝑘−𝑙|<𝑛

(

 
𝟏

𝟐
[∫


𝒌
( )

 (

𝒉
)
𝜷


 (

𝒉
 )

𝛚𝛃𝐝

∞

𝟎

+ ∫

𝒌
( )

 (|

𝒉
|)
𝜷


 (

𝒉
 )

|𝜔|𝛽𝐝

𝟎

−∞

]

𝟐

)

  

≤ 𝑛𝑢𝑛𝑐𝐾²(0) 
 

When h tends to 0, we have 

 

h2β∑ ∑ cov(Yk, Yl)K (
(x − zk)

h
, h) K(

(x − zl)

h
, h)

n

l=1,l≠k

n

k=1

≤  𝑛𝑢𝑛𝑐𝐾
2(0) + 𝐶₀𝐾²(0)[𝛼(𝑘 − 𝑙)]

𝑝−2
𝑝 (𝑛 − 𝑢𝑛 − 1)(𝑛 − 𝑢𝑛)

≤ 𝑛𝐶1𝐾
2(0)(𝑢𝑛 + 𝑛)[𝛼(𝑘 − 𝑙)]

𝑝−2
𝑝  

 
On the other hand 

   

∑𝑉𝑎𝑟 (𝑌𝑘𝐾 (
(𝑥 − 𝑧𝑘)

ℎ
, ℎ))

𝑛

𝑘=1

=∑𝑉𝑎𝑟(𝑌𝑘)𝐾
2 (
(𝑥 − 𝑧𝑘)

ℎ
, ℎ)

𝑛

𝑘=1

=∑𝑉𝑎𝑟(𝜀𝑘)𝐾
2 (
(𝑥 − 𝑧𝑘)

ℎ
, ℎ) =

𝜎2

ℎ2𝛽
∑ ℎ2𝛽𝐾2 (

(𝑥 − 𝑧𝑘)

ℎ
, ℎ)

𝑛

𝑘=1

𝑛

𝑘=1

 

 

For ℎ →0, ∑ 𝑉𝑎𝑟 (𝑌𝑘𝐾 (
(𝑥−𝑧𝑘)

ℎ
, ℎ))𝑛

𝑘=1  is asymptotically equal to 𝑛𝜎2𝐾2(0) 

And 

 

∑ ∑ 𝑐𝑜𝑣(𝑌𝑘 , 𝑌𝑙)𝐾 (
(𝑥 − 𝑧𝑘)
ℎ

, ℎ)𝐾(
(𝑥 − 𝑧𝑙)
ℎ

, ℎ)𝑛
𝑙=1,𝑙≠𝑘

𝑛
𝑘=1

∑ 𝑉𝑎𝑟 (𝑌𝑘𝐾 (
(𝑥 − 𝑧𝑘)
ℎ

, ℎ))𝑛
𝑘=1

≤
𝐶1
𝜎2
(𝑢𝑛 + 𝑛)[𝛼(𝑘 − 𝑙)]

𝑝−2
𝑝 → 0,𝑤ℎ𝑒𝑛 𝑛 → ∞ 

 
This shows that the variance of n (x) is asymptotically proportional to  
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𝜎2

𝑛ℎ2−2𝛽𝛼𝑛2
 

 
Then 

 

𝑉𝑎𝑟(𝜃𝑛(𝑥)) =
1

(𝑛ℎ𝑎𝑛)2
∑𝑉𝑎𝑟 (𝑌𝑘𝐾 (

(𝑥 − 𝑧𝑘)

ℎ
, ℎ))

𝑛

𝑘=1

+
1

(𝑛ℎ𝑎𝑛)2
∑∑𝑐𝑜𝑣 (𝑌𝑘𝐾 (

(𝑥 − 𝑧𝑘)

ℎ
, ℎ) , 𝑌𝑙𝐾 (

(𝑥 − 𝑧𝑙)

ℎ
, ℎ))

𝑛

𝑙≠𝑘

𝑛

𝑘=1

=
1

(𝑛ℎ𝑎𝑛)2
𝑆1 +

1

(𝑛ℎ𝑎𝑛)2
𝑆2 

 
  

And S2 = 𝑜 (∑ 𝑉𝑎𝑟 (𝑌𝑘𝐾 (
(𝑥−𝑧𝑘)

ℎ
, ℎ))𝑛

𝑘=1 ) 

Thus, we obtain an asymptotic expression of the variance of the estimator n (x) 

 

𝑉𝑎𝑟(𝜃𝑛(𝑥)) =
2

𝑛2ℎ2+2𝛽𝑎𝑛2
𝐾²(0) +

1

𝑛2ℎ2𝑎𝑛2
 𝑜 (

n2

ℎ2𝛽
𝐾²(0)) 

 

4. Exponential Inequality 

We will establish an exponential inequality of the probability of deviation of the estimator θn(x) given by 

(3) of θ(x) to its mathematical expectation. 

We put 

 

𝑍𝑛(x) =
√nh1+βan

σ
[n(x) − E(n(x))] 

 

Theorem : Under some assumptions, for all >0, ∀(n≥4) ∀k∈{1,⋯,[(n/2)-1]} ∀∈]0,⋯,(4kMe)⁻¹[, we have 

 

P(|𝑍𝑛(𝑥)| >  ) ≤ 2exp(−𝑛  [(


ℎ𝛽√𝑛
) − 6 𝑒(𝑉 + 8𝑀2∑𝛼𝑙) − (

2√𝑒

𝑘
)𝛼

𝑘

2𝑒
3𝑛]) 

 
Proof 

 

𝑍𝑛(x) =
√nh1+βan

σ
[
𝟏

𝒏𝒉𝒂𝒏
∑𝒀𝒌𝑲(

𝒙 − 𝒛𝒌
𝒉

, 𝒉)

𝒏

𝒌=𝟏

−
𝟏

𝒏𝒉𝒂𝒏
∑ E(𝒀𝒌)𝑲 (

𝒙 − 𝒛𝒌
𝒉

, 𝒉)

𝒏

𝒌=𝟏

] 

 

𝑍𝑛(x) =
hβ

√nσ
[∑(𝒀𝒌 − E(𝒀𝒌))𝑲 (

𝒙 − 𝒛𝒌
𝒉

, 𝒉)

𝒏

𝒌=𝟏

] 

 

𝑍𝑛(x) =
hβ

√nσ
[∑𝜺𝒌𝑲(

𝒙 − 𝒛𝒌
𝒉

, 𝒉)

𝒏

𝒌=𝟏

] 

 
From the exponential type inequality for the mixed random variables, the Carbon inequality [9] applied 

to centred 𝛼 −mixing variables for 
𝑘
= 𝜺𝒌𝑲(

𝒙−𝒛𝒌

𝒉
, 𝒉) 

We have E(k)=0 
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With S1 is asymptotically proportional to n2 



  

 

P(|
𝑘
| >  ) ≤ 2exp(−𝑛  [(



ℎ𝛽√𝑛
) − 6 𝑒(𝑉 + 8𝑀2∑𝛼𝑙) − (

2√𝑒

𝑘
)𝛼

𝑘

2𝑒
3𝑛]) 

 

P(|𝑍𝑛(𝑥)| >
hβ

√nσ
 ) ≤ 2exp(−𝑛  [(



ℎ𝛽√𝑛
) − 6 𝑒(𝑉 + 8𝑀2∑𝛼𝑙) − (

2√𝑒

𝑘
)𝛼

𝑘

2𝑒
3𝑛]) 

 

 We put, ′ =
hβ

√nσ
, we obtain 

 

P(|𝑍𝑛(𝑥)| > ′ ) ≤ 2exp(−𝑛  [(


ℎ𝛽√𝑛
) − 6 𝑒(𝑉 + 8𝑀2∑𝛼𝑙) − (

2√𝑒

𝑘
)𝛼

𝑘

2𝑒
3𝑛]) 

 
Corollary : Under assumptions of the theorem, and if in addition, the mixing coefficients αk satisfy αk≤ak 

for a>0 and 0<ρ<1, then, for all γ∈]0,1[, there exists γ such that for all n≥, we have 

 

P(
1

n
|Zn(x)| > ) ≤ 2exp(−

n1−
γ
2⁄

hβ5de
) 

 
See the corollary of the inequality of large deviation given by Carbone [10] 

5. Conclusion 

Under the assumptions of theorem, the sequence (θn) converges almost completely (a.co.) to the exact 

solution θ of the equation (1). 

Under the assumptions of Theorem, we have 

 

𝜃𝑛 − 𝜃 = 𝑜(√
𝑙𝑜𝑔(𝑛)

𝑛
) 

 

Under the assumptions of Theorem, for a given significance threshold γ, it exists an integer n for which 

 

𝑃(|𝜃𝑛 − 𝜃| ≤ 𝜀) > 1 −  

 

ie, the exact solution θ of equation (1) belongs to the closed ball with center θn and radius ε with probability 

greater than or equal to 1-γ. 

Exponential inequality helps build confidence bands of the deconvolution kernel estimator n(x). 

References  

[1] Bickel, P. J., & Rosemblatt, M. (1973). On some global measures of the deviation of density function 

estimates. Ann. Stat. 

[2] Birke, M., et al. (2010). Confidence Bands for inverse regression models. Inverse Problems, 26, 115020. 

[3] Desol, L. (2008). Régression sur variables fonctionnelles : estimation, testes de structure et 

applications. Thése Doctorat. 

[4] Bosq, D. (1975). Inégalité Bernstein pour un processus mélangeant. C.R.A.S. Paris Série A, 275, 

1095-1098. 

[5] Tadj, A. (2011). Sur les modèles non paramétriques conditionnels en statistique fonctionnelle. Thése 

International Journal of Applied Physics and Mathematics

257 Volume 7, Number 4, October 2017



  

Doctorat. 

[6] Cavalier, L., & Tsybakov, A. (2002). Sharp adaptation for inverse problems with random noise. Probab. 

Theory Relat. Fields, 123, 323-354. 

[7] Fan, J. (1991). Asymptotique normality for deconvolution kernel densite estimators. Sankhya Ser. A, 53, 

97-110. 

[8] Pensky, M., & Vidakovic, B. (1999). Adaptive wavelet estimator for nonparametric density 

deconvolution. Ann. Stat., 27, 2033-2053. 

[9] Carbon, M. (1983). Inégalité de type exponentielle pour un processus fortement mélangeant. 

Applications. Pub. IRMA Lille v, 5(2), 16p. 

[10] Ibragimov, I. A. (1962). Some limit theorems for stationary processes. Th. Prob. Appl., 7, 349-382. 

 

K. Belaide was born in Bejaia, Algeria. After obtained magister from Sciences and 

technology Houari Boumedienne University in Algiers Algeria, she was recruited as a 

master assistant at A / Mira University in Bejaia and enrolled in PhD in Mathematic option 

Analysis and Probabily. A dissertation thesis of her thesis was in 2013 and Habilitation in 

2015. She works actually in Laboratory of Applied Mathematics (LMA), in Stochastic 

inverse problems, and fractionary processes. She teaches in mathematics since 1995 to 

this day and Supervision of students Ingenieur, Licences, Master and PhD. She published 2 papers in 

refereed international journals. She has been involved in many international conferences as tutorial 

presenter. 

 

 

 

 

International Journal of Applied Physics and Mathematics

258 Volume 7, Number 4, October 2017


