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Abstract: This paper establishes exponential inequalities for the probability of the distance between kernel
estimator and its means in nonparametric regression problem with mixing variables. We consider an
operator equation taking the following form Y=A6(Z)+¢, where A is a compact operator.

The goal is to estimate the functional & when the variable Z is contaminated by measurements errors.
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1. Introduction

The nonparametric estimation of function is an important tool for analyzing data, as well as inferential
statistics in graphical visualizations. To this end, confidence interval and uniform confidence bands are
often used in statistics. Starting with the work of Bickel and Resenblatt [1], who built confidence bands for
the kernel estimator of a density function of independent and identically distributed observations. Since
then, their methods were much developed in the context of estimation of density function and regression
function. M. Birke, N. Bissantz and H. Holzman [2] Have constructed uniform confidence intervals for an
inverse regression function in a similar way to Bickel and Rosenblatt, based on approximations and the
limit theorem of a stationary Gaussian process. Recently, L. Desole [3] studies a generalization of the
Nadaraya-Watson type estimators in the case of the a-mixing functional variables

In the context of inverse problems, such as calibration (inverse regression) estimator deconvolution
kernel and Nadaraya-Wantson are often used.

In this work, we consider a convolution operator equation of the form

Y=A0(Z)+ ¢ (1)

The goal is to estimate the functional  when the variable Z is contaminated by measurement errors.

A: H—H is a convolution linear compact operator, given by

A(s) = [ (s — £)0(t)dt (2)
where W is a known density function.

2. Notations and Preliminaries
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We consider a sample of size n, (Y4, Z1),*-,(Yn, Zn) of variable (Y,Z) satisfying the equation (1), assumed
o-mixing.

Assume that the sequence of regression errors (ex)x-1 are identically distributed random variables with
zero mean and finite variance 6?. We assume that for al k=1,--;n, Z is given by Xxk=Zx+8x where 5 is a
mistake to contamination.

We denote by ox the characteristic function of the variable X or the Fourier transform of the density
function and v is the density function of -6.

The sequence of random variables (Yix)k=1 is assumed to be mixing. This amounts to assume that the

sequence of random variables (&x)k=1 is mixing.

3. Position of the Problem

Consider the model given by equation (1), where the operator A is the operator of convolution with the
assumed known density function Y. The problem considered is equivalent to

Yk = G(Xk + Sk) and Xk = Zk + 8k

We suppose that the random variables 8y, Zx and €x are independent of each other. The regression error &
satisfies E(ex/Xx)=0. The regression function 6 is such that 8(x)=E(Yx/Xx=x) Related to the observed
regression function g(z)=E(Yx/Zx=z) by g(z)=0+ Y(z). Where  is the density function of -6.

In practice, two essential cases arise. The observations Zi are either fixed points (ex. M. Birke, N. Bissantz
et H. Holzman [2]) or Zg are random variables (ex. L. Desol [4], A. Tadj [5]). In this work, we will consider
the case where Zx_=z are fixed point

The model considered is a classical nonparametric regression model with deconvolution (see [6]).

We propose a kernel type estimator for the functional 6, we assume that the Fourier transform of the
density function y is such that ¢, (®)#0 for all ®E R and the Fourier transform of the kernel k has compact
support. The deconvolution kernel estimator of 6 is given by

he)p,(a)

. (
0,(x) = 5 [ exp(—iax) P e do (3)

where h>0 is a smoothing parameter and ¢)g(.) is the empirical Fourier transform of g given by

n
1
=—)>Y iwZ
0@) = 1 ) Viexp(iwZ))
k=1
We have g=0+ and its estimator

gn(x) =0, * ¥(x)

It's clear that

n
1 X — Zy
%m—ﬁa;nd,l)

In this case, one can easily see that the estimator 0,(x) of 8(x) given (3) is written in the kernel form as
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n
1 X — Zy
9“(X)‘nhankz_1y"K( )

where the kernel K is given by
_ l s ¢k(m)
K(x,h) = [ exp(—iwx) e (%,)doo 4)

From the estimate of the deconvolution density function, it is well known that the optimal rate for what is
estimated 6 depends on 8 smoothing and that of |y or equivalently, on the Fourier transform properties.

Y is said to be moderately smooth and the problem is moderately ill-posed if the Fourier transform
|@y (w)| decreases polynomialally when t tends to infinity. In this case, the optimal rate for estimating 6 is
also polynomial. If, on the contrary, |@,, (w)| decreases exponentially when t tends to infinity,  is said to be
smoothed and the problem is said to be very badly posed. The optimal rate of convergence is logarithmic
order. For more details on the estimation of density functions see Fan [7] and Pensky and Vidakovic [8].

In the following, we will restrict ourselves to an ordinary smoothing of { which means that the model (1)
is a moderately ill-posed problem.

Assumes that

9y (WP > C, whenow - (5)

For some 20 and C, € C\{0}.
Note that this implies that

9y (W)|w|f - C, whenw - o

Under the hypothesis (5) and by the dominated convergence theorem [6], We have an asymptotic form of
the deconvolution kernel (4) quite simple.

) o (@)
hB [+ o, () hf 0 exp(—iwx) do
B = — —i —k - Q
hPK(x,h) znfo xpion (%))d‘“zTJ_w 20 (7)
hé (*e b (0 exp(—ion)p, (w)|w/fdo
hPK(x, h f —i Pdo +5— f P Py =L
(x,h) » 2nC. ), exp(—iox) gy (w)w dm+2nCs o (x)

It's clear that L(x) € R. This result will be used in the calculation of the variance of 6,(x).

Hypothesis

H1: The Fourier transform ¢, of k est symétrique.

H2: [K(z,h)|z|3/2(loglog*|z|)(1/2dz=0(h#) with loglog*|z|=0 if |z|<e and loglog*|z|=loglog|z| somewhere
else.

1
H3: 0 is j-time differentiable and h/ = o( ! 1) equivalentto h = o (n_ZB+21'+1)

N
H4 : (Yi)iz1 is a-mixing.

H5 : 3M >0, suth that |eK(x,h)|<M.

H6 : max{E(|YiY1|/Xx_X1),E(|Yx|/XkXi)}<C a.s.
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H7 : 3(us) EN*{N},0(us)+o(n[a(u,)]P-2/24)—0.

The following lemma gives a simple asymptotic expression for the variance of 6,(x).

The following lemma gives the asymptotic expression of the variance of 8,(x), in the case of strong mixing
variables.

Lemma : Under the assumptions H4 to H7, we have,

n n

Z cov (Y, YK ((x_z") )K(( —2) by = (zVar(YkK(( ) h))

h
k=11=1l#k

Proof

Z Z cov(Yk,Yl)K<( — %) )K<(X_Z’),h>
k=1 4md]=1,1%k h

= Z cov(Yy, YK (( - ") )K((x ;Zl) )
1<|k-l|<un
cov(Y, YK ((x _hz") , h) k& ;Zl) h)
up<lk-ll<n

=A+B

For the term B, use Ibraguimove inequality [9]
If two random variables &; 2 Lpand &; 2 Lq with 1 < p; q < 1; then we can find r satisfying % + % +% =
1, Such as

1
leov(2, &) < carl |12,

where c is a positive constant.

Consider p = q = 2; This implies that r = prz, It comes

p— (x —z) (x—2z)
pr=elallal, ), et 017K (TR R kG
p=2 1 —
<clal e, e 017 IS ferp (o (*5%) )| 245
¥‘h
(0))
«|f exp(—iw - )‘ Pr
&) w(—)
2
) ol .
hz[g k — s k
pi=dlal el ), a0l oS ot
Using hypothesis (5) and positing C, = C”§1”p”§2”q
We have
2
n -2 1 teo
IBlscoz oy Jate o5 z_f <0k( ) 1 fl ¢k(a))w o
" 0 _ y/(h y/(h)
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p—2
p

- COKZ(O) [a(k — D] n—u, —D(n—uy)

Let us now return to the term A

n
ey
1<|k-l|<u,
n
< CZ
1<|k—-l|<u,

< nu,c max (
1<|k-l|<u,

B ) (S22 ) k G2 )|

K<(x_th),h)K((x;lZl),h)‘

K((X _th)’h) K((x ;Zl)’h)D

2

1 [ ¢k(w)

<nu,c max
1<|k—l|<u, | 27

,,(h)

By hypothesis (5),

0 2\

h?B|A| < nuyc e l|<n\2nlf )w N “o (|h|) /

S nuncKZ(O)

When h tends to 0, we have

(x —7y) ) K((X — 7))

hzﬁz: zn: cov(Yk,Yl)K( -

k=11=1l#k

,h)

p=2
P

< nu,cK?(0) + CoK*(0)[atk — D] P (n—u, — D(n —uy,)
2

< nCK?(0)(uty + m)alke = D] P

On the other hand

ZVar(Yk (( _hz") )) ZVar(Yk)KZ((x_hzk),h>
S e (E5200) - 255 o €550

For h -0, ¥F_,Var (YkK ((x_h—z"), h)) is asymptotically equal to no2K?(0)

And

)

Yk=1Xi=1,12k COV(Yie, YK ((x_th)'h) K((x;Zl)’h) <& Yalk — D]
<= W, +n)alk —

Zlear<Yk ((x Zi) h)) o

This shows that the variance of 0, (x) is asymptotically proportional to

p-2
P — 0,whenn —
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2-2
nA? 2P a2

Then

1 < ~
Var(@n(x)) = mz Var <YkK ((x—th), h)>
" k=1

1 or (x —zp) (x—2z) B 1 1
+ sz Z cov (YkK <T,h>,YlK <T,h)> = (n/}an)z S1+ (n/}an)z S2

=1 1%k

With S51 is asymptotically proportional to nc?2
And'S2 = o (S}, Var (YkK((’“‘TZ"),h)))

Thus, we obtain an asymptotic expression of the variance of the estimator 6, (x)
Var(6,(0) = —2 —K2(0) + —— o ("% K20
() = g Ot g O

4. Exponential Inequality

We will establish an exponential inequality of the probability of deviation of the estimator 8,(x) given by
(3) of 8(x) to its mathematical expectation.
We put

'\/ﬁh1+Ban
o

Zn(X) = [en(x) - E(en(x))]

Theorem : Under some assumptions, for all >0, V(n>4) VKE {1,---,[(n/2)-1]} VE]O, --,(4kMe) [, we have

2e
P(|1Z,(x)| > €) < 2exp <—n n [(ﬁ) — 6ne(V + 8MZEx) — <%> ai_nD

Proof

1+
3an

Zn(x) = \/’ﬁh

o

n n
1 X — Zy 1 X — Zy
nha,, Z Y"K( h 'h) " nha, Z E(Yk)K( h 'h)
k=1 k=1
n

Z(Yk —E(Y))K (x _hz" , h)

k=1

BB [ _
19 = o |3 e (50)

From the exponential type inequality for the mixed random variables, the Carbon inequality [9] applied

hP
Zn(x) = E

to centred a —mixing variables for §k = &K (—x_hzk;h)

We have E(&x)=0
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Pl > ) = 20w (< (752) - me(v + awese) - (35 o

hP e\ 2
P <|Zn(x)| > Ee) < 2exp (—n n [(ﬁ) -6 ne(V + 8M22a1) — <k_7:> ainD

hf .
We put, & = Tag & We obtain

P(1Z,(x)| > &) < 2exp <—nn [(ﬁ) -6 ne(V + 8M22az) - <%§> ai_’e‘D

Corollary : Under assumptions of the theorem, and if in addition, the mixing coefficients ay satisfy ax<ak
for a>0 and 0<p<1, then, for all y €]0,1][, there exists 1y such that for all n2n, we have

1-Y/,

hPsde

P(%|Zn(x)| >¢g) < 2exp(— o¢g)

See the corollary of the inequality of large deviation given by Carbone [10]

5. Conclusion

Under the assumptions of theorem, the sequence (0,) converges almost completely (a.co.) to the exact
solution 6 of the equation (1).
Under the assumptions of Theorem, we have

log(n)

6,—0=o0 ”

Under the assumptions of Theorem, for a given significance threshold v, it exists an integer n, for which
P(6,—-6|<e)>1-y

ie, the exact solution 6 of equation (1) belongs to the closed ball with center 6, and radius € with probability
greater than or equal to 1-y.

Exponential inequality helps build confidence bands of the deconvolution kernel estimator 6,(x).
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