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Abstract: Let p be a prime greater than seven and A be the mod p Steenrod algebra. In this paper, we prove
that the product b_0"2delta_{s+4} is nontrivial where s is greater than or equal to zero and less than p-4.

Key words: Adams spectral sequence cohomology may spectral sequence steenrod algebra.

1. Introduction

Homotopy groups are among the most fundamental algebraic invariants of topological spaces. To

determine the homotopy groups ,S of spheres S at P is one of the central problems in the stable
homotopy theory. Throughout this paper, P will denote an arbitrary odd prime number. Let A denote

the mod P Steenrod algebra and S denote the sphere spectrum localized at an odd prime number .

The Adams spectral sequence E;' = Ext3'(Z 01Z,) = 7S has been an invaluable tool in studying the

stable homotopy groups of spheres, where the EZS’t — term is the cohomology of A. If a family of
homotopy generators X; in E;'*converges nontrivially in the Adams spectral sequence, then we get a

family of homotopy elements fi in 7,5 and we say that fi is represented by X; € E;’*and has

filtration S in the Adams spectral sequence. So far, not so many families of homotopy elements in 7,S
have been detected. For example, R. Cohen [1] constructed a certain infinite family of elements denoted

by é/ke”z(p—l)(pk*l+l)f3s’ k>1 and p>2 . Note that the family {, is represented by

k+1

hyb, € Ext>2(PHP1 (7 0»Z,) inthe Adams spectral sequence.
Throughout this paper, we fix = 2(p—1). For computing the stable homotopy groups of spheres with

the classical Adams spectral sequence, we must compute the E, — term of the Adams spectral sequence

Ext,"(Z 21Z,) . There are two best methods for computing Ext, (Z 01Z,) : the May spectral sequence and
the lambda algebra. The known results on Ext,”(Z 01Z,) are as follows. Ext>"(Z 01 Z,)=Z, by its
definition. From [2], we have Ext; (Z 01Z,)has Z, — basis consisting of a, € Ext;'(Z 01Z,) and

h e Extkpiq (2,,Z,) for all i=0 and EXti'*(Zp,Zp) has Z — basis consisting of
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az,ag,aohi(i>0), 0,(1=20),k;(120),b,(1=0), and hihj(j2i+2,i20)whose internal degrees are

iJrlq + piq, p”lq, and p‘q + qu respectively. In 1980, Aikawa [3]

determined Exti’*(Zp,Zp) by A— algebra.

20+12,p'q+1, p™g+2p'q, 2p

Studying higher-dimensional cohomology of the mod P Steenrod algebra A is an interesting subject

and studied by several authors. For example, Liu and Zhao [4] prove the following theorem.

Theorem 1.1 For p>7 and 4<Ss< p, the product hobogs #0 in the classical Adams spectral
sequence,
where gs is given in [5].

In this paper, our main result can be stated as follows.
Theorem 1.2 Let p>7 and 4<sS<p . Then in the cohomology of the mod P Steenrod

algebra A EXtZ+8‘t(S) (Zz 0 Z . ) the product bg' gs . is nontrivial, where

t(s)=ql(s+1) +(s+4)p+(s+3)p> + (s+4)p’]+s.
The main method of proof is the (modified) May spectral sequence, so we will recall some knowledge on
the May spectral sequence in Section 2. After detecting the generators of some May E, — terms in Section 3,

we will prove the main theorem -Theorem 1.2.

2. The May Spectral Sequence

In this paper, we will make use of the May spectral sequence to prove our main results. For completeness,

in this section we give some knowledge on it. From [6], there is a May spectral sequence {Ers't’*, dr} which

converges to Ext}* (Z,,Z,) with E, — term
E, " =E(h,;|m>0,i>0)®P(b,;/m>0,i>0)®P(a,n>0)

where E( ) is the exterior algebra, P( ) is the polynomial algebra, and

12(p™-1)p',2m-1 2,2(p"-1) p'*t, p(2m-1) 1,2p"-1,2n+1
hmi e E, ,bm’i e E; ,a, € E .

One has

. €, 1.t,u—
d, : EStY s ESteT

andif XeE™" and yeErs”t"*,then
d (x-y)=d. (x)-y+(=1)°x-d.(y)

In particular, the first May differential d, is given by
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dl(hi,j) = zhi—k,k+jhk,j ) dl(ai) = Zhi—k,kak | dl(bi,j) =0

O<k<i 0<k<i

There also exists a graded commutativity in the May spectral sequence: x-y:(—l)ss'*“'y-x for

x,y=h b_. or a,.

m,i? ~¥m,i

For each element X € E”™" we define dimx =s,degx =t,M (X) = u .Then we have

dimh, ; =dima, =1,

dimb, , =2,

degh; ; =q(p +..+ pl),
deghb; ; =q(p"’ +..+ p'*)
dega =q(p" ™" +..+1)+1,

i+j-1

dega, =1,
M(h ;) =M(a_)=2i-1,
M (bi,j) =(2i-1)p,

where 1>1,]>0.

3. Proof of the Main Theorem

By (2.2), we know that to prove the non-triviality of the product b0255+4, we have to show that the

representative of the product cannot be hit by any May differential For doing it, we give the following two

lemmas. The first one is a lemma on the representative of o, inthe May spectral sequence.

Lemma 3.1 For p>7 and 0<s<p—4 . Then the fourth Greek letter element

S, € Exti*u®(z 01Z,) isrepresented by

S S+4,t (s)+s,*
a, h4,o h3,1hz,2 h1,3 S

inthe E, —term of the May spectral sequence, where J,, is actually &3(3

described in [7] and
t(s)=ql(s+1)+(s+2)p+(s+3)p>+(s+4)p°].
Lemma3.2Let p>7 and 0<s< p—4.Then we have the May E, — term

Els*”(s)’* =7 p{Gl ) Gz Y G7}'

where t(S,N)=q[(s+1)+(s+4)p+(s+3)p+(s+4)p°]+Ss,and
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s-1 2 S S Sl 2

Gl =a, a3b3,0h4,0h3,1h1,3' Gz = a4b3,0b1,0h4,0h3,1h1,3’Gs = a4b3,0b1,2h4,0h3,1h1,1'G4 = a4b3,0h4,0h1,3h1,1'
-1

G; = ai azbs,oh4,oh3,1h2,2h1,3h1,1rGe = aibl,oh4,oh3,1h2,2h1,3h1,1rG7 = aiazbl,zh4,oh3,1h2,1h1,3h1,1-

Proof Consider h=XX,...X, € Els”’t(s)’* in the MSS,

where X, is one of h J,buz

 0<k<40<r+j<40<u+z<3r>0j20u>0z20

By(2.5), we can assume that degx; =q(C;, p’ +C, p° +C;,P+Cio)+€, where C; ;=0 or 1 =1

m
if X, =a,,or & =0.Itfollowsthat dimh=Y"dimx, =s+7 and
i=1

degh =Y degx, =al(Y.c,2)p" + ()P +(c)p+ e+ (3e)

=q[(s+4)p°+(s+3)p>+(s+4)p+(s+D]+s

Note that dimh;; =dima, =1dimb,; =2 and 0<s<p-4. From dimh:Zdimxi =S+7, we

i-1
canhave mM<s+7< p+2.

Using 0<s,5+1,5+3,5+3,S+4< p and the knowledge on the P— adic
theory, we have that

expression in number

M=

e =5

D Co=s+L

=1

DY ci=s+4

=1

D c,=5+3;

=1

Dc,=5+4

i=1

3L

3T

ST

o

m
By Ci;=0 or 1, one has m>s+4 from ZCi’3=S+4.N0te that MSS+7 Thys M may equal
i1

S+4 S+55+6 [ S+7 gince > e, =s,degh, ; =0(modq)(i >0, j > 0),dega, =1(modq)(i >0) and

i=1

deg bi’j =0(modq)(i >0, j >0), then by the graded commutativity of El*’*'*and degree reasons, we can

assume that h= a0a1 aga?f aél1 with h'=Xx_.X

S+17%s+2""

) where
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0<x,v,z,k,I <s,x+y+z+k+l=s

Consequently, we have h'= Xo X pe- Xy € Ef’tZ(S)’*, where

t,(s)=ql(s+4-)p> +(s+3-1-K)p* +(s+4—-l1-k-2)p+(s+1-l1-k-z-y)].

From (3.1) we have

e =0;

(U’MB
H

+

i

Co=S+1-l-k-z-Yy;
1

dcy=s+4-1-k-z

i=s+1

Zmlciyzzs+3—l—k ;

m
=K

i=s+1
m
D c,=s+4-1
i=s+1
s+4 s+4
Case 1.M=S+4_ Form Zcm =S+4—lin (3.2), we have that | =S+4- ZCi,S >S. Note that
i=s+1 i=s+1

3 2 *
0<I<s.Thus I=s and x=y=2=k=0.By (3.2), h’ =X_X.,,X.,sX.,4 € E/ P3P +PD” 1) this

!
case, h is impossible to exist. Then h doesn't exist either.

S+5 S+5

Case 2.M=S+3, Form ZCi13=S+4—| in (3.2), we have that |=S+4—ZCi’SZS—1.Thus I=s

i=s+1 i=s+1
or | =S.There are five possibilities satisfying 0<X,y,z,k,1 <s and x+y+z+k+Il=s.
We list all the possibilities in the following Table 1.

Table 1. Five Possibilities Satisfying 0< X,y,z,k,1<s and x+y+z+k+Il=s

The possibility | X y 7z k Elnz (s).* h’

E 7,q(5p3+4p?+5p+2),* __ 0
1 - Nonexistence

The 1st s-1 1 0 0 0

El7,q(5 pP+4p?+5p+1)* _ 0

The 2nd s—1 0 1 0 0 Nonexistence
7.q(5p°+4 p? +4 p+1),*

Thesrd  s-1 0 0 1 0 i "=
=Z,{0,} uptosign
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7,q(5p3+3p2+4p+1),*
E, =

The 4th s—1 0 0 0 1 Nonexistence
B[P = g,,0,.0,
The 5th S 0 0 0 0 =24{9,9:9.3 uptosign

In the table, b§0h4,0h3,1h1,3’b3,0b1,0h4,0h3,1h1,3’b3,0b1,2h4,0h3,1h1,1’b32,0h4,oh1,3h1,1 denoted by 0,,0,,95,9,

respectively. Consequently, in this case up to sign h=a, l8.2(‘:]1, a;0,,a,0,,8,0, denotedby G,,G,, G,

G, respectively.

5+6 $+6
Case 3. M=S+6_Form Z:Ci'3 =S+4—1lin (3.2), one has | =s+4— ZCL3 >S—2.Thus |=5-2,
i=s+1 i=s+1

S—1 or S.Welistall the possibilities in the following table2.

5+6 s+6
Table 2. Form ZCi,S =S+4—1in(3.2),OneHas | =s+4- ZCiB >5—2.Thus |=s-2, s—1 or S.
i=s+1 i=s+1

We List All the Possibilities

The possibility | X Yy z k El7’tz (s).* h'

E17,q(6 pP+5p2+6p+3)* _ 0

The 1st sS—2 2 0 0 0 Nonexistence
7,q(6p°+5p?+6p+l),* _
The 2nd s—2 0 2 0 0 El =0 Nonexistence
E7a(6 pP+5p2+4p+l)* _ 0
The 3rd s—2 0 0 2 0 1 Nonexistence
7,q(6 p®+3p2+4p+1),*
The 4th s—2 0 0 0 2 E1 aGpraspTapT — Nonexistence
E7,q(6p3+5p2+6p+2),* -0
The 5th s—2 1 1 0 0 1 Nonexistence
7,q(6p°+5p?+5p+2),* _
The 6th s—2 1 0 1 0 E1 =0 Nonexistence
7,9(6p3+4p?+5p+2),*
The 7th s—2 1 0 0 1 E1 APPSR — 0 Nonexistence
7,q(6 p3+5p2+5p+1),*
The 8th s—2 0 1 1 0 E1 GOPTSPTSPIT — Nonexistence
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El7,q(6 pi+4p?+5p+l)* _ 0

The 9th s—2 0 1 0 1 Nonexistence
7.q(6p°+4p2+4p+l),*
The 10th s—2 0 0 1 1 E, =0 Nonexistence
7,0(5p3+4p?+5p+2),* __
The 11th s—1 1 0 0 0 El =0 Nonexistence
3 2 *
The 12th s—1 0 1 0 0 Ef'q(Sp HPTESPIT — Nonexistence
E17,q(5p3+4p2+4p+1),* h =g
The 13th s=1 0 0 1 0 ~7 {9} °
p1Ys uptosign
E7,q(5p3+3p2+4p+l),* -0
The 14th s—1 0 0 0 1 1 - Nonexistence
El7,q(4p3+3p2+4p+1),* "
=060
The 15th S 0 0 0 0 =7 {9.,9-} .
pLI6: I7 uptosign

In the table, b3,0h4,oh3,1h2,2h1,3h1,11b1,0h4,0h3,1h2,2h1,3h1,11b1,2h4,0h3,1h2,1hl,3h1,1 denoted by Us,0¢,0;

respectively.
Consequently, in this case up to sign hzaj’lazgS,ajgﬁ,ajg7 denoted by G;,G;,G, respectively.

S+7 S+7
Case 4. M=S+7  Form Zci'3:s+4—l in (3.2), one has |=S+4—ZCL328—3. Thus

i=s+1 i=s+1

l=s-3,5-2,5-1 o S and h=y,..y, eE/*®" where Y;(1<i<7) is in the form of

h .

r’

. . 3 '
0<r+j<4,r>0, j>0.When |<s-1, the coefficient of P in t,(s) is 25 In these case N

is impossible to exist. Then h doesn't exist either.In the last possibility, t,(s)=4p>+3p° +4p+1 so Nyo.hy o

h,, and h1,3 belong to h'. Obviously, h" s impossible to exist in this case by the reason of dimension.
Then h doesn't exist either.

Combining Cases 1-4, we obtain that E>*"'®" =Z o{G;.-., G, }. This completes the proof of Lemma 3.2.

111
Lemma 3.3 (1) bZ5,,, € Ext®® (Z,.Z,) is represented by b’jazh, h;;h,,h ;e ES®'®" in the MSS,
where t(s)=q[(s+4)p° +(s+3)p* +(s+4)p+(s+1)]+s.

S+7,t(s),*
El

(2) For the seven generators of , we have that

M(G,) =M(G,) =10p+9s+9, M(G,) = M(G,) =6p +9s+13,
M(Gs) =5p+95+13 M(G;) =M (G;) = p+9s +17.
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Moreover, we have that (bZash, ohy,h, ,h, ;) =2p +9s +16.
Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2 From Lemma 3.3 (1), bggS+4 e Ext;"*'¥(z 01Z,) isrepresented by

2 45 s+8,t(s),2p+9s+16
b1,0a4h4,0h3,1h2,2h1,3 S

in the MSS. Now we will show that nothing hits the permanent cycle b12,oazh4,oh3,1hz,zh1,3 under the May
differential d, for r>1.From Lemma 3.2, we have Ef”’t(s)’* = Zp{Gl,G2 . Go 3

For the generators G, and G, whose May filtration are M(G,)=M(G,)=10p+9s+9 (see
Lemma3.3), by the reason of May filtration, from (2.2) we see that

2 45 s+8,t(s),2 p+9s+16
b1,0a4h4,0h3,1h2,2h1,3 S

which represents bggs+4 e Ext;*'®)(Z,Z,) inthe MSSisnotin d (E;*7" 0Py

Now we will show ES7'M0P95%9 — for r>2 . By an easy calculation, from (2.3) and (2.4) one can

have the first May differentials of G, and G, as follows:

d,(G,) = (_1)S+6 az_lazbsz.oh3,1h2,2h2,oh1,3 +..#0
di(G,) = (_1)S+6 aibsz,ohz,zhz,ohl,shl,l +..#0.

It is easy to see that the first May differentials of G, and G, are linearly independent. Consequently, the

Es+7,t(s),10 p+9s+9 Es+7,t(s),10p+95+9
1 r

cocycle of must be zero. This means that =0 for r>2, from which we

have that

bfoai h, ohs N, 05 d, (ErS”'t(s)’lOmgHg) for r>2.
In all, blzyoazh4'0h3'1h212h1'3 zd, (Ef”’t(s)‘lo P¥9549) for r>1.

For the generators G, and G, whose May filtration are M(G,)=M(G,)=6p+9s+13 (see

Lemma3.3), by the reason of May filtration, from (2.2) we see that

2 45 s+8,t(s),2p+9s+16
b1,0a4h4,0h3,1h2,2h1,3 S

which represents bggS+4 e Ext;*'®)(Z,Z,) inthe MSSisnotin d (E;*""®°P***"%) Now we will show
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Ers+7,t(s),6p+95+13 — O fOF r> 2

By an easy calculation, from (2.3) and (2.4) one can have the first May differentials of G, and G, as

follows.

d,(G,) = (<1)**®ash, b, s, h, 1y oy 5 +... %0,

d, (G,) = (~1)*®ash, b, ,h, 10, 1y ohy, +... £ 0.

It is easy to see that the first May differentials of G, and G, are linearly independent. Consequently, the

Es+7,t(s),6 p+9s+13 Es+7,t(s),6 p+9s+13
1 r

cocycle of must be zero. This means that =0 for =2, from which we

have that

bfoaj h,ohs;h; o0, 2 d, (Ers”'t(s)ﬁmgsm) for r>2.

Inall, bioa;h, ohyshy Ny & d, (EFF7O8P%) for 121,
For the generator G with May filtration M (Gy) =5p+9s+13, by an easy calculation, from (2.3) and

(2.4) we have the first May differentials of G; as follows:
dl(GS) = (_1)S+6 aiilaobs,ohzt,oh3,1h2,2h2,0h1,3h1,1 +..#0,

Thus E;715P953 — 0 for I>2. Atthe same time, we also have that up to nonzero scalar

dl (Gs ) # b12,0 ai h4,0 h3,1h2,2 h1,3 .

In summary, b’azh, hy.h,,h , ed, (ES7 P9 for r>1.

For the generators G; and G; whose Mayfiltrationare M (G,)=M(G,) = p+9s+17 (see Lemma3.3),
by the reason of May filration, from (2.2) we see that bZja;h, h,;h,,h , € E181(12p#95H8 - yhich
represents b§55+4 e Ext;*'®)(Z ,Z,) inthe MSSisnotin d, (ES7()6pr9sH13y for 1 >1,

From the above discussion, we see that the permanent cycle bfoajh4’0h3vlh2’2hl’3 cannot be hit by any
May differential in the MSS. Thus, b ajh, hyh,,h , € EF*1@2P%78  converges  to
b2s,,, e Exts®® (Z,,Z,) inthe MSS nontrivially. Consequently, bozgs+4 #0.

This finishes the proof of Theorem1.2.
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