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Abstract: Let K be a field and KQ be a noetherian path algebra for the quiver Q. Given a left (resp. right) 

finitely generated ideal I of KQ, we propose a new idea for computing left (resp. right) Groebner bases on KQ. 

As application, we propose a method for computing the so called left (resp. right) syzygies, that is, given 

polynomials f1,...,fs ∈KQ \{0} we propose a method for computing the set of all elements (h1,...,hs)∈(KQ)s 

such that h1f1 + ... + hsfs = 0 (resp. f1h1 + ... + fshs = 0). 
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1. Introduction 

The advent of Groebner bases made a lot of computation possible in different areas of mathematics 

especially in algebraic geometry and commutative algebra. The theory of Groebner bases is widely studied 

in the commutative as well as non-commutative case over free associative algebras (see [1]-[7]) with their 

applications in computing syzygies [8]-[10]. The goal of this work is to revisit the non-commutative 

Groebner bases over path algebras. We propose a new approach for computing left and right Groebner 

bases on path algebras. Beside the left and right S-polynomials, we introduce the notion of left and right 

extended S-polynomials which is suitable for path algebras. Our approach is a generalization of the idea 

used in [1] and [9] chapter 2 which enables to compute a left and right Groebner basis using only selected 

S−polynomials in the Buchberger’s criterion. We generalize the Schreyer’s theorem on path algebras and as 

application we propose a method for computing left and right syzygies modules on path algebras i.e given 

polynomails f1, ..., fs ∈ KQ \{0} we propose a method for computing the set of all elements (h1, ..., hs) ∈ 

(KQ)s such that h1f1 + ... + hsfs = 0 (resp. f1h1 + ... + fshs = 0) called left and right syzygies. This result will be 

very useful for instance for those who wish to study the intersection of ideals since syzygies play a central 

role in finding a generating set of the intersection of two ideals. 

2. Preliminaries 

Definition 1.1. By a directed graph or a quiver we mean a quadruple Γ = (Γ0,Γ1,r,s) where Γ0 is the set of 

vertices, Γ1 the set of edges and r,s : Γ1 → Γ0 are maps. If e ∈ Γ1 is an edge, then s(e) the is called source of e 

and r(e) is the range of e. A sequence of edges α = e1 ...en such that r(ei) = s(ei+1) for i = 1,...,n − 1 is called path 

in Γ. In this case we denote s(α) = s(e1) and r(α) = r(en). The number of edges in the path α denoted L(α) is 

called the length of α. A vertex is regarded as a path of length zero. A closed path is a path α such that s(α) = 

r(α). A cycle is a closed path α such that if ei and ej are edges occurring in α then s(ei) ≠ s(ej) ∀ i ≠ j. We 
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denote by path (Γ) the set of all paths in Γ. If α and β are paths, then we define the multiplication as follow: 

αβ is the path adjoining α and β by concatenation if r(α) = s(β); otherwise we get zero. 

Let K be a field and Γ be a quiver. The set of all linear combinations of paths in Γ with coefficients in K 

together with the above multiplication is called path K−algebra. In the other hand, if Γ = (Γ0,Γ1,r,s) is a quiver, 

then the path K−algebra KΓ is the free associative algebra K <Γ0 ∪ Γ1> generated by Γ0 ∪ Γ1 satisfying to: vivj 

= δijvi ∀ vi,vj ∈ Γ0 and s(e)e = er(e) = e ∀ e ∈ Γ1. 

A quiver Γ if row-finite if ∀ e ∈ Γ1, we have s−1(e) < ∞. 

Remark 1.2. If f ∈ KΓ then  where ai ∈ K, pi ∈ path (Γ) and only finitely many ai = 0. Elements 

of KΓ will be called polynomials and paths will be called monomials. Since the path algebra is unital, then in 

this work we will always consider 1KΓ =∑ 𝑣𝑣∈Γ0 . 

Definition 1.3. • A well-ordering in path (Γ) is a total ordering with the condition that every subset of 

path (Γ) has a least element. 

A well-ordering < is called left-admissible in path (Γ) if ∀ p,q,r ∈ path(Γ), we have p < q ⟹ rp < rq 

whenever rp and rq are both non-zeros. 

A well-ordering < is called right-admissible in path (Γ) if ∀ p,q,s ∈ path (Γ), we have p < q ⟹ ps < qs 

whenever ps and qs are both non-zeros. 

Example 1.4. -   left-lexicographic order 

Let p = e1 ···er and q = f1 ···fl  be two paths in Γ. We say that p is less than q with respect to the 

left-lexicographic order and we denote p <llex q if there exists a path m (otherwise we set m = 1) such that 

p = mek ···er, q = mfs ···fl and ek < fs. 

Remark 1.5. The left lexicographic order is not a left-admissible ordering since it is not a well-ordering. 

For example, for the following graph 

 
with a < b we have ab >llex a2b >llex> a3b >llex ··· then the subset {anb/n ∈N\{0}}⊂ path (Γ) doesn’t have a least 

element. 

length left-lexicographic order 

Let p = e1 ···er and q = f1 ···fl be two paths in Γ. We say that p is less than q with respect to the length 

left-lexicographic order and we denote p <Lex q if L(p) < L(q) or L(p) = L(q) and p <llex q. 

Remark 1.6. The length left-lexicographic order is a left-admissible ordering. 

right-lexicographic order 

Let p = e1 ···er and q = f1 ···fl be two paths in Γ. We say that p is less than q with respect to the 

right-lexicographic order and we denote p <rlex q if there exists a path m (otherwise we set m = 1) such 

that p = e1 ···ekm, q = f1 ···fsm and ek < fs. 

Remark 1.7. The right lexicographic order is not a right-admissible ordering since it is not a 

well-ordering. For example, for the following graph 

 
with a < b we have ba >rlex ba2 >rlex> ba3 >rlex ··· then the subset {ban/n ∈N\{0}}⊂ path(Γ) doesn’t have a least 

element. 

length right-lexicographic order 

Let p = e1 ···er and q = f1 ···fl be two paths in Γ. We say that p is less than q with respect to the length 

right-lexicographic order and we denote p <rLex q if L(p) < L(q) or L(p) = L(q) and p <rlex q. 

Remark 1.8. The length right-lexicographic order is a right-admissible ordering. 

1  
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Definition 1.9. Let < be a left or right admissible ordering and f ∈ KΓ \{0}. Then we call: 

 the leading monomial of f denoted Lm(f) to be the biggest monomial occurring to f with respect to <;  

 the leading coecient of f denoted Lc(f) to be the coecient of Lm(f) in f; 

the leading term of f denoted Lt(f) = Lc(f)Lm(f). 

In what follow we denote by R = KΓ. 

Definition 1.10. (1) A subset of IL of KΓ is called left ideal if the following conditions hold: 

 
(2) A subset of IR of KΓ is called right ideal if the following conditions hold: 

 

Remark 1.11. If E is a subset of R, then we denote by  the left 

ideal generated by E and <E>R = {∑  𝑔𝑖𝑓𝑖𝑖  / gi ∈ E and fi ∈ R ∀ i} the right ideal generated by E. We denote by 

Lm(E)L = <Lm(f)/ f ∈ E \{0}>L and  Lm(E)R = <Lm(f)/ f ∈ E \{0}>R. 

Definition 1.12. A left (respectively right) ideal of a path K−algebra KΓ is called left (respectively right) 

monomial if it is generated by monomials. 

Remark 1.13. A left (respectively right) monomial ideal is also called left (respectively right) path ideal. 

3. Left Groebner Bases on KQ 

In this section we denote by Q a quiver and R = KQ a path K−algebra. The goal of this section is to propose 

a method for computing a left Groebner basis of a left ideal of R = KQ. By division in this section we will 

always mean on the left i.e a | b if there exists c such that b = c · a. 

Definition 2.1. Let IL be a left ideal of R and G be a subset of IL. We say that G is a left Groebner basis for IL 

with respect to a given left-admissible ordering if for every f ∈ IL, there exists g ∈ G such that Lm(g) divides 

Lm(f) i.e there exists h ∈ R such that Lm(f) = Lm(h)Lm(g). In the other hand, G is a left Groebner basis for IL if 

Lm(IL)L = Lm(G)L. 

Remark 2.2. A left Groebner basis is a generating set of a left ideal, since the path K−algebra R of a given 

graph is not necessarily left noetherian, for example for the graph 

 
The corresponding path K−algebra is not left noetherian since the left ideal hban/n ∈ N\{0}iL is not finitely 

generated. a left Groebner basis may be innite and in this case the computation won’t be interesting. In this 

work we will deal only with noetherian path K−algebras. 

Definition 2.3. Let Q be a quiver. A cycle c in Q has an entry if there exists an edge in Q not occurring in c 

with its range in c. For example the cycle of the graph of the Remark 2.2 has an entry. 

Proposition 2.4. The path K−algebra KQ is left noetherian if and only if no cycle in Q has an entry. 

Proof. Assume that in Q there exists a cycle with an entry, we denote that cycle by c. Let p be a path in Q 

not occurring in c with r(p) a vertex of c. Then the ideal <pc, pc2, pc3,···>L is not finitely generated. Thus KQ is 

not left noetherian. Conversely, if no cycle has an entry then, we have two possibilities: either Q contains no 

cycle or it contains nitely many cycles (since the graph is row-nite) with no entry. 

 If Q contains no cycle then we have a nite number of paths, thus any left ideal is nitely generated. 

 Assume that Q contains nitely many cycles with no entry. Since Q contains only nitely many paths and 
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cycles, if there exists a left ideal which is not finitely generated, it must contains non-zero paths of 

the form qcn where q is a path and c is a cycle with n ∈N. Such paths are defined if r(q) occurs in c, 

that is c must have an entry. Contradicting the hypothesis. 

In the rest of this section, R = KQ will be considered to be a left noetherian path K−algebra. 

Proposition 2.5. Let R be a left noetherian path K−algebra and < be left a admissible ordering. 

1) A path p ∈ T = <qi / qi ∈ path (Q) ∀ 1 ≤ i ≤ r>L i there exists i0 such that 𝑞𝑖0
 divides p. 

2) If IL ⊂ R is a left monomial (path) ideal then IL has a unique finite minimal path generating set. 

Proof. (1) Straightforward. 

Let A be the set of all paths in IL and let M ⊂ A be the set of minimal (by division) paths i.e M = {p ∈ A/if q 

∈ A divides p then q = p}. We want to prove that M is the unique nite minimal path generating set of IL. 

Since M ⊂ A then <M>L ⊆ IL. 

Let p ∈ IL be a path, then p ∈ A. Let B be the set of all paths that generates IL i.e IL = <B>L. If p is not minimal 

(i.e p ∉ M) then p = ab where a ∈ path(Q) and b ∈ B. 

 If b is minimal (i.e b ∈ M) then p ∈<M>L. 

 If b is not minimal (i.e b ∉ M) then by induction b is multiple of an element of M, since < is a 

well-ordering. Thus p ∈<M>L and IL = <M>L. Since R is left noetherian then IL = <M>L is finitely generated. 

Thus M is finite. 

Let 𝑀′ be a minimal finite paths generating set of IL. Let us prove that M = 𝑀′. Since 𝑀′ is minimal then 

𝑀′⊆ M. Let m ∈ M ⊂<M>L = IL = <𝑀′>L then there exists 𝑚′ ∈ 𝑀′ such that 𝑚′ divides m which means by 

definition of M that 𝑚′= m. 

2.1. Left division’s algorithm. Let F = {f1, ... ,fs} be a set of elements of R = KQ and > be a left 

admissible ordering. Given element g ∈ R \{0}, the following algorithm shows how to nd q1,...,qs,h ∈ KQ such 

that g = q1f1 + ··· + qsfs + h satisfying. 

A1 if h ≠ 0, then each term occurring in h is not divisible by any of Lt(fi) ∀ 1 ≤ i ≤ s. 

A2 Lm(g) ≥ Lm(qifi) for each i ∈{1,...,s} since qi are obtained from g. 

Input: f,f1,...,fs ∈ F and a left admissible ordering >= (>1,>2). 

Output: q1,...,qs,h ∈ F such that f = q1f1 + ··· + qsfs + h. 

 Initialization: q1 := q2 := ··· := qs := h := 0 and v := g;  

 
Proposition 2.6. Let {f1,...,fr}⊂ R be a left Groebner basis for the ideal IL := <f1, ... ,fr>L ⊂ R, > be a left 

admissible ordering and g ∈ R \{0}. g ∈ IL if and only if the remainder h of the division of g by f1,...,fr is zero. 

Proof. If h = 0 then it is clear by the division’s algorithm that g ∈ IL. Conversely, if g ∈ IL then by the 

division’s algorithm we can write g = g1f1 + ... + grfr + h for some g1,...,gr,h ∈ R. Observe that h ∈ IL =⇒ Lm(h) ∈ 

Lm(IL) = <Lm(f1),...,Lm(fr)> which is impossible by A1).  
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Definition 2.7. (Left useful paths) 

Let p,q ∈ path(Q) be paths in Q. Two paths u, v are called left useful for p and q with respect to the left 

admissible ordering <, if up = vq ≠ 0 and for any other paths w1 and w2 satisfying w1p = w2q ≠ 0, we have 

u divides w1 and v divides w2 ( both on the left). 

Definition 2.8. (Left S-polynomial) 

Let f,g be non-zero polynomials and < be a left admissible ordering. Let u,v be left useful paths for Lm(f) 

and Lm(g) ( i.e uLm(f) = vLm(g)), then the left S-polynomial SL(f,g) of f and g is dened as 

 

Remark 2.9. If there exist no left useful paths for Lm(f) and Lm(g), we claim that SL(f, g) = 0. 

Definition 2.10. (Left extended S-Polynomial) 

Let f ∈ R be a non-zero polynomial and > be a left admissible ordering. We define the left extended 

S-polynomial SL(f) of f as SL(f) = p · f  where p is a path in KQ such that p · Lm(f) = 0 and p · f ≠ 0. 

Remark 2.11. Let p and q be two paths satisfying the conditions of the Definition 3.9, if q divides p then 

we choose SL(f) = q·f. 

Definition 2.12. Let IL be a left path ideal and w ∈ path(Q). We define the left quotient ideal of IL and w by 

IL : w = {p ∈ path(Q)/ p · w ∈ IL}. 

Lemma 2.13. Let IL = <w1,...,wr>L be a left path ideal of R, t be a monomial and > be a left admissible 

ordering. Then the quotient ideal IL : t = {p monomial in R/ pt ∈ IL} can be written as 

IL : t = <v1,...,vl>L 

where for each 1 ≤ i ≤ l ≤ r there exists a monomial pi such that vit = piwi and vi,pi are left useful for t and wi. 

Proof. Let x ∈ <v1,...,vr>L then there exist i ≤ r and a path y ∈ R such that x = yvi. Our goal is to show that xt 

∈ IL. By hypothesis there is a path pi such that vit = piwi and vi,pi are left useful for t,wi. Multiplying by y we get 

yvit = ypiwi i.e xt = ypiwi ∈ IL thus x ∈ IL : t. 

Conversely let x ∈ IL : t then x · t ∈ IL, that is, there exist i ≤ r and a path y ∈ R such that xt = ywi, this means 

there exist left useful paths x’,y’ for t,wi such that x’| x and y’| y. Set vi = x’ then x ∈ <v1,...,vr>.  

Definition 2.14. Let R = KQ and T = Rs be a let a left free R−module with basis {e1,...,es}. By a monomial in T 

involving the component ej we mean a monomial in R times ej that is pej where p is a monomial in R. 

Definition 2.15. (Syzygy) 

Let T = Rs be a left free R−module with basis {e1,...,es} and let IL = <f1,...,fs>L be a left ideal of R. By a left 

syzygy we mean an element of the kernel of the R−module homomorphism 

ψ : T = R
s ⟶ R 

     ei ⟼ fi. 

We call ker(ψ) the (first) left syzygy module on f1,...,fs written syz(f1,...,fs)L = ker(ψ). 

Definition 2.16. (Induced ordering) 

Let G = {f1,...,fs} be a set of polynomials and > be a left admissible ordering. Let T = Rs be a left free 

R−module with basis {e1,...,es}. We define the module ordering >1 induced by G and > as follow: if p,q are two 

paths in R then 

pei >1 qej ⟺ pLm(fi) > qLm(fj) (whenever pLm(fi) ≠0 

≠qLm(fj)) or  

                        0 ≠ pLm(fi) = qLm(fj) and i > 

j. 
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Theorem 2.17. (Left Buchberger’s criterion) 

Let f1,...,fs ∈ R be non-zero polynomials and > be a left admissible ordering on R. Then {f1,...,fs} form a 

left-Groebner basis for IL = <f1,...,fs> if and only if the following conditions are satisfied: 

1) For each i > j, the remainder of SL(fi,fj) on division’s algorithm by {f1,...,fs} is zero. 

2) For each i, the remainder of SL(fi) on division’s algorithm by {f1,...,fs} is zero. 

4. Proof of the Left Buchberger’s Criterion 

Proof. If {f1,...,fs} form a left Groebner basis for IL = <f1,...,fs> then by the Proposition 2.6 and using the left 

division’s algorithm we have for k < i, SL(fi,fk) = ∑ 𝑔𝑖𝑓𝑖
𝑠
𝑖=1  + 0 and for each i, SL(fi) = ∑ ℎ𝑖𝑓𝑖

𝑠
𝑖=1  + 0 since SL(fi), 

SL(fi,fk) ∈ IL. and by proposition 2.6. 

Conversely, suppose that for 1 ≤ k < i ≤ s all the remainders of SL(fi,fk) under the left division’s algorithm by 

{f1,...,fs} are zero and for each i, all the remainders of the SL(fi) under the left division’s algorithm by {f1,...,fs} 

are zero. We have for 

 
Applying the definition of the left S-polynomial we have 

 
where v,w are left useful paths for Lm(fi) and Lm(fk). Observe that 

, this means that 

 is a syzygy for f1,...,fs. Set 

. 

By (*) and the definition of the left S-polynomial we can notice that Lm(gj
ikfj) ≤ Lm(SL(fi,fk)) < vLm(fi) = 

wLm(fk), with respect to the induced ordering, this means that vei > wek since i > k, this leads us to 

Lm(Gik) = vei (2). 

In the other hand, we have for some i, SL(fi) = pifi where pi is a vertex such that piLm(fi) = 0 and pifi ≠ 0. By 

the division’s algorithm we have SL(fi) =  ∑ ℎ𝑗
𝑖𝑓𝑗

𝑠
𝑗=1 = pifi, this means that 

−h
i
1f1 − ... − (−h

i
i − pi)fi − ... − h

i
sfs = 0,  

that is  is a left syzygy for f1,...,fs. 

Observe that Lm(hi
j)Lm(fj) ≤ Lm(SL(fi)) = Lm(pifi) = piLm(ti) where ti is a polynomial occurring in fi such 

that pifi = piti. By the Schreyer’s ordering induced by > and {f1,...,fi−1,ti,fi+1,...,fs} we have Lm(Hi) = piei. 

Let us now prove that {f1,...,fs} form a left Groebner basis for IL. 

Let g ∈ IL \{0} then g = a1f1 + ... + asfs  for some a1,...,as ∈ R. Let A = (a1,...,as) ∈ Rs, using the ordering 

induced by > and {f1,...,fs}, we can extend the left division’s algorithm in 𝑅𝑠. Let 𝐺 =< 𝑔1, … , 𝑔𝑠 > ∈ 𝑅𝑠 be 

the remainder under the left division’s algorithm of A by the set of all non-zero Gij and Hi (listed in some 

order), then we have the expression. 

A = ∑ 𝑞𝑖𝐺𝑖𝑗𝐺𝐼𝐽≠0
 + ∑ 𝑝𝑖𝐻𝑖𝐻𝑖≠0 + G (C). 

Let F = (f1,...,fr)t, by multiplying (C) by F we get 

AF = g = a1f1 + ... + asfs = g1f1 + ... + gsfs (D). 

We transform (D) as follow: 

𝑔 = ∑ 𝐿𝑡(𝑔𝑖)𝐿𝑡(𝑓𝑖) +𝑠
𝑖=1 ∑ 𝑡𝑎𝑖𝑙(𝑔𝑖)𝐿𝑡(𝑓𝑖) + ∑ 𝑔𝑖𝑡𝑎𝑖𝑙(𝑓𝑖)𝑠

𝑖=1
𝑠
𝑖=1   Where 𝑡𝑎𝑖𝑙(𝑓𝑖) = 𝑓𝑖 − 𝐿𝑡(𝑓𝑖) 
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1) If Lm(g) ≠ Lm(∑ 𝑔𝑖tail(𝑓𝑖)𝑠
𝑖=1 ) then it is clear that 

 

Lm(g) = Lm(∑ 𝐿𝑡(𝑔𝑖)𝐿𝑡(𝑓𝑖)𝑠
𝑖=1  + ∑ 𝑡𝑎𝑖𝑙(𝑔𝑖)𝐿𝑡(𝑓𝑖)

𝑠
𝑖=1  

 

that is Lm(g) ∈ <Lm(f1),...,Lm(fs)>  and by the Lemma 2.13  There exists  k ∈{1,...,s} such that Lm(fk) | 

Lm(g). 

2) If Lm(g) = Lm(∑ 𝑔𝑖𝑡𝑎𝑖𝑙(𝑓𝑖))𝑠
𝑖=1   then there exists K ⊆ {1,...,s} such that 

 

∑ 𝐿𝑡(𝑔𝑖)𝑖 ∈𝐾 𝐿𝑡(𝑓𝑖) = 0     and    ∑ 𝐿𝑡(𝑔𝑖)𝑡𝑎𝑖𝑙(𝑓𝑖)𝑖 ∈𝐾  ≠ 0. 

 

If there exists j ∈ K such that Lm(gj)Lm(fj) ≠0 then without loss of generalities we can assume that K = 

{i1,...,ir} and j = ir, then 

 

Lm(gj)Lm(fj) = −Lm(gi1)Lm(fi1) − ... − Lm(gj−1)Lm(fj−1) 

 

that is Lm(gj)Lm(fj) ∈ <Lm(fi1),...,Lm(fj−1)>  and  Lm(gj) ∈ <Lm(fi1),...,Lm(fj−1)> : Lm(fj), by the Lemma 2.13 

we have Lm(gj) ∈ <vi1,...,vj−1> where for i1 ≤ l ≤ j − 1 we have vlLm(fj) = plLm(fl) and vl,pl are left useful 

monomials for Lm(fj) and Lm(fl). By the Lemma 2.13 there exists k ∈ K such that vk | Lm(gj) that is Lm(Gkj) | 

Lm(gj)ej  which contradict the fact that no monomial occurring in the remainder G is divisible by any of the 

Lm(Gij). 

Assume that Lm(gj)Lm(fj) = 0 ∀ j ∈ K then SL(fj) = pjfj where for each j,pj is a vertex such that pj ≠ s(Lm(fj)). 

Choose pj = r(Lm(gj)) then We have Lm(gj)ej = Lm(gj)pjej = Lm(gj)Lm(Hj), this means that Lm(Hj) divides 

Lm(gj)ej on the left, this is a contradiction since no monomial occurring in the remainder G =(g1,...,gs) is 

divisible by any of Lm(Hj). 

Remark 2.18. To compute a left Groebner basis for 𝐼𝐿 =< 𝑓1, … , 𝑓𝑠 >𝐿 like in the Theorem 3.16, there is 

no need to consider all the left S-polynomials 𝑆𝐿(𝑓𝑖 , 𝑓𝑗) =
𝑣𝑗𝑖

𝐿𝑐(𝑓𝑖)
𝑓𝑖 −

𝑣𝑗𝑖

𝐿𝑐(𝑓𝑗)
𝑓𝑗  for some paths 𝑣𝑗𝑖 , 𝑣𝑖𝑗  left 

useful to Lm(fi) and Lm(fj). It is straightforward to see that 

 

SL(fi,fj) = −SL(fj,fi) ∀ i,j 

 

so instead of considering all the left S-polynomials, we can just consider left the S-polynomials SL(fi,fj) with j 

< i. We can even do better by using the following technique. 

For i = 2,3,...,s, consider the left path ideal 

Mi = <Lm(f1),...,Lm(fi−1)> : Lm(fi) = <v1i,...,vi−1i > where vji  ∀ 1 ≤ j ≤ i−1, are like in the Proposition 2.13 i.e 

for each vji ≠ 0, there exists a path vij such that vji and vij are left  useful for Lm(fi),Lm(fj). In the other words, 

each vji ≠ 0 corresponds to a left S-polynomial 𝑆𝐿(𝑓𝑖 , 𝑓𝑗) =
𝑣𝑗𝑖

𝐿𝑐(𝑓𝑖)
𝑓𝑖 −

𝑣𝑗𝑖

𝐿𝑐(𝑓𝑗)
𝑓𝑗 . 

As it turn out, there is no need to consider all the generators vji   of  Mi  (i.e there is no need to consider 

all the corresponding S-polynomials of each vji) in the Buchberger’s criterion. For each i, and for each 

minimal path generator vji of Mi, consider only the corresponding left S-polynomial SL(fi,fj), and compute the 

compute the remainder hij of the division of SL(fi,fj) by f1,...,fs. 

Input: an ideal IL = <f1,...,fs> ⊂ R and a left admissible order > on R.  

Output: a left Groebner basis for IL. 
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Example 2.19. For the graph Γ 

 
Let us compute the left Groebner bases for F = {f1 = ztp + yp, f2 = x2zt + yp, f3 = yp + zt} in R = ℚΓ with x >llex 

y >llex z >llex t >llex p >llex v1 >llex v2 >llex v3 >llex v4 where by >llex   we mean the left length lexicographic 

ordering.  

It is easy to see that Lm(f1) = ztp, Lm(f2) = x2zt, Lm(f3) = yp. 

• For i = 2, it is easy to see that <ztp>L : x2zt = 0 i.e there are no useful monomials between Lm(f1) and 

Lm(f2), we claim that S(f2,f1) = 0. 

• For i = 3, it is easy to see that <ztp, x2zt>L : yp = 0 i.e there are no useful monomials between Lm(f1) 

and Lm(f3), and between Lm(f2) and Lm(f3). We claim that SL(f3,f1) = S(f3,f2)L = 0. Observe that SL(f1) = 

SL(f2) = SL(f3) = 0. 

Thus the set F = {f1 = ztp + yp, f2 = x2zt + yp, f3 = yp + zt} is a left Groebner basis for IL = <F>L. 

With notations as in the left Buchberger’s criterions above, we have the following theorem. 

Theorem 2.20. (Schreyer’s theorem) 

If {f1,...,fs} is a left Groebner basis for IL = <f1,...,fs>L  w.r.t the an admissible ordering >, then the set T = {Gij, 

Hi ∈ syzL(f1,...,fs)/ Gij ≠ 0 ≠ Hi} considered in the proof of the left Buchberger’s criterion form a left 

Groebner basis for syzL(f1,...,fs) w.r.t the ordering >1 induced by > and {f1,...,fs}. 

Proof. Let A ∈ SyzL(f1,...,fs), we wish to prove that ∃ h ∈ T such that Lt(h) | Lt(A). 

By the left division’s algorithm in Rs  for A by T we have 

 

A = ∑ 𝑄𝑖𝑗𝐺𝑖𝑗𝑖𝑗  + ∑ 𝑝𝑖𝐻𝑖 + 𝑖 G    (∗) 

 

where Qij, Hi ∈ R and G = (g1,...,gs) ∈ Rs. Let F = (f1,...,fs)t  ∈ Rs, by multiplying  (∗)  by F we get 

 

g1f1 + ... + gsfs = 0 (2∗). 

 

Assume that G = (g1,...,gs) is a non-trivial syzygy, then there exists K = {i1,...,ir} ⊂ {1,...,s} such that 

 

gi1fi1 + ... + girfir = 0 (3∗). 

 

We can transform (3∗) as follow 

 (4) : 0 = ∑ 𝐿𝑡(𝑔𝑖)𝐿𝑡(𝑓𝑖)
𝑖𝑟
𝑖=𝑖1

  +  ∑ 𝑡𝑎𝑖𝑙(𝑔𝑖)𝐿𝑡(𝑓𝑖)
𝑖𝑟
𝑖=𝑖1

 +  ∑ 𝐿𝑡(𝑔𝑖)𝑡𝑎𝑖𝑙(𝑓𝑖)
𝑖𝑟
𝑖=𝑖1
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It is clear that ∑ 𝐿𝑡(𝑔𝑖)𝐿𝑡(𝑓𝑖)
𝑖𝑟
𝑖=𝑖1

= 0 

1) Assume that ∃ k ∈ K such that Lm(gk)Lm(fk) ≠ 0. Without loss of generalities we can assume that k = 

ir, in this case 

 

Lt(𝑔𝑖𝑟
)Lt(𝑓𝑖𝑟

) = − Lt(𝑔𝑖1
)Lt(𝑓𝑖1

)  − ··· − Lt(𝑔𝑖𝑟−1
)Lt(𝑓𝑖𝑟−1

), 

 

that is 

 

Lt(𝑔𝑖𝑟
) ∈ <Lt(𝑓𝑖1

),...,Lt(𝑓𝑖𝑟−1
)> : Lt(𝑓𝑖𝑟

) = <𝑣𝑖𝑟𝑖1
,..., 𝑣𝑖𝑟𝑖𝑟−1

> 

 

where for each 𝑣𝑘𝑗 , there exists pkj such that 𝑣𝑘𝑗  and pkj are left useful for Lm(fk) and Lm(fj). We have seen 

in the proof of the left Buchberger’s criterion that for each j, Lm(Gkj) = 𝑣𝑘𝑖𝑒𝑘 , according to the Lemma 2.13, 

there exists j ∈ K \{ir} such that Lt(𝐺𝑖𝑟𝑗) | Lt(𝑔𝑖𝑟
)𝑒𝑖𝑟

 which contradict the fact that no term occurring in G is 

divisible by any of the Lt(Gkj). 

2) Assume that Lm(gi)Lm(fi) = 0 ∀ i ∈ K, then from (4) we have 

 

 (5) : ∑ 𝑔𝑖
1𝐿𝑡(𝑓𝑖)

𝑖𝑟
𝑖=𝑖1

 + ∑ 𝐿𝑡(𝑔𝑖)𝑓𝑖
𝑖𝑟
𝑖=𝑖1

 = 0 

 

where 𝑔𝑖
1= tail(𝑔𝑖) and ∑ 𝐿𝑡(𝑔𝑖)𝑡𝑎𝑖𝑙(𝑓𝑖)

𝑖𝑟
𝑖=𝑖1

 =  ∑ 𝐿𝑡(𝑔𝑖)𝑓𝑖
𝑖𝑟
𝑖=𝑖1

= ∑ 𝐿𝑐(𝑔𝑖)𝑝𝑖𝑆𝐿(𝑓𝑖)
𝑖𝑟
𝑖=𝑖1

 where pi is a path exactly 

like in the proof of the left Buchberger’s criterion. Since {f1,...,fs} form a Groebner basis, by the left Buchberger’s 

criterion we have   and 𝐿𝑚(𝑆𝐿(𝑓𝑖)) = 𝐿𝑚(ℎ𝑘
𝑖 )𝐿𝑚(𝑓𝑘)  for some k. 

We transform (5) as follow 𝑔𝑖𝑟

1 𝐿𝑡(𝑓𝑟)  =  ∑ 𝑔𝑖
1𝐿𝑡(𝑓𝑖) − ∑ ∑ 𝐿𝑐(𝑔𝑖)

𝑠
𝑗=1

𝑖𝑟
𝑖=𝑖1

𝑖𝑟−1
𝑖=𝑖1

𝑝𝑖ℎ𝑗
𝑖𝑓𝑗  therefore 

 

Lt(𝑔𝑖𝑟

1 )Lt(fr) ∈ <Lt(f1) ,..., Lt(fs)>. 

 

Using the Lemma 2.13 and the Proposition 2.5 we get a contradiction since no monomial occurring in the 

remainder is divisible by any of Lm(Gij). 

We give in the following example, an algorithm for computing a left Groebner basis for syz(f1,...,fs). 

Input: left Groebner basis G = {f1 ,..., fs} for I = <G> and an admissible ordering >.  

Output: left Groebner basis T for syz(f1,...,fs) w.r.t >1 induced by > and G. 

 

 

5. Right Groebner Bases on KQ 
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In this section we denote IR as a right ideal of R = KQ and > a right admissible ordering. We will omit some 

proofs and details in this section since they follow from the previous section. 

Definition 3.1. Let IR be a right ideal of R and G be a subset of IR. We say that G is a right Groebner basis 

for IR with respect to a given right-admissible ordering if for every f ∈ IR, there exists g ∈ G such that Lm(g) 

divides Lm(f) i.e there exists h ∈ R such that Lm(f) = Lm(g)Lm(h). In the other hand, G is a right Groebner 

basis for IR if Lm(IR)L = Lm(G)R. 

Definition 3.2. Let Q be a quiver. A cycle c in Q has an exit if there exists an edge in Q not occurring in c 

with its source in c. For example in the graph 

  

the cycle has an exit. 

Proposition 3.3. The path K−algebra KQ is right noetherian if and only if no cycle in Q has an exit. 

Proof. Similar with the left side.  

In this section R = KQ will be considered as right noetherian path K−algebra. 

Proposition 3.4. Let R be a right noetherian path K−algebra and < be a right admissible order. 

1) A path p ∈ T = < qi  /qi ∈ path(Q) ∀ 1 ≤ i ≤ r>R if and only if there exists i0 such that 𝑞𝑖0
  divides p on 

the right. 

2) If IR ⊂ R is a right path ideal then IR has a unique finite minimal path generating set. 

Proof. The proof is similar to the one of Proposition 2.5.  

3.1. Right division’s algorithm. Let F = {f1,...,fs} be a set of elements of R = KQ and > be a right admissible 

ordering.  

Given element g ∈ R \{0}, the following algorithm shows how to nd q1 ,..., qs, h ∈ KQ such that g = f1q1 + ··· + 

fsqs + h satisfying. 

A1 if h ≠ 0, then each term occurring in h is not divisible by any of Lt(fi) ∀ 1 ≤ i ≤ s. 

A2 Lm(g) ≥ Lm(fiqi) for each i ∈{1,...,s} since qi are obtained from g. 

Input: f,f1,...,fs ∈ F and a right admissible ordering >= (>1,>2). 

Output: q1,...,qs, h ∈ F such that f = f1q1 + ··· + fsqs + h.  

Initialization: q1 := q2 := ··· := qs := h := 0 and v := f;  

 
Proposition 3.5. Let {f1,...,fr}⊂ R be a right Groebner basis for the ideal IR := <f1, ... ,fr>L ⊂ R, > be a right 

admissible ordering and g ∈ R \{0}. g ∈ IL if and only if the remainder h of the division of g by f1,...,fr is zero. 

Definition 3.6. (Right useful paths) 

Let p,q ∈ path(Q) be paths in Q. Two paths u,v are called right useful for p and q with respect to the right 

admissible ordering <, if up = vq ≠ 0 and for any other paths w1 and w2 satisfying pw1 = qw2 ≠ 0, we have u 

divides w1 and v divides w2 ( both on the right). 
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Definition 3.7. (Right S-polynomial) 

Let f,g be non-zero polynomials and < be a right admissible ordering. Let u,v be right useful paths for Lm(f) 

and Lm(g) (i.e Lm(f) · u = Lm(g) · v), then the right S-polynomial SR(f,g) of f and g is dened as 

. 

Remark 3.8. If there exist no right useful paths for Lm(f) and Lm(g), we claim that SR(f, g) = 0. 

Definition 3.9. (Right extended S-Polynomial) 

Let f ∈ R be a non-zero polynomial and > be a right admissible ordering. We define the right extended 

S-polynomial SR(f) of f as SR(f) = f · p where p is a path in KQ such that Lm(f) · p = 0 and f · p ≠ 0. 

Remark 3.10. Let p and q be two paths satisfying the conditions of the Definition 3.9, if q divides p then 

we choose SR(f) = f·. 

Definition 3.11. Let IR be a right path ideal and w ∈ path (Q). We define the left quotient ideal of IR and w 

by IR : w = {p ∈ path(Q)/ w · p ∈ IR}. 

Lemma 3.12. Let IR = <w1,...,wr>L be a right path ideal of R, t be a monomial and > be a right admissible 

ordering. Then the quotient ideal IR : t can be written as 

 

IR : t = <v1, ... ,vl>L 

 

where for each 1 ≤ i ≤ l ≤ r there exists a monomial pi such that tvi = wipi and vi,pi are right useful for t and wi. 

Definition 3.13. Let R = KQ and T = Rs  be a right free R−module with basis {e1,...,es}. By a monomial in T 

involving the component ej we mean a component ej times a path in R. 

Definition 3.14. (Right Syzygy) 

Let T = Rs be a right free R−module with basis {e1,...,es} and let IR = <f1, ... ,fs>R be a right ideal of R. By a right 

syzygy we mean an element of the kernel of the R−module homomorphism 

ψ : T = R
s ⟶ R 

ei ⟼ fi. 

We call ker(ψ) the (first) right syzygy module on f1,...,fs written syz(f1, ... ,fs)R = ker(ψ). 

Definition 3.15. (Induced ordering) 

Let G = {f1,...,fs} be a set of polynomials and > be a right admissible ordering. Let T = Rs  be a right free 

R−module with basis {e1,...,es}. We define the module ordering >1 induced by G and > as follow: if p,q are two 

paths in R then 

eip >1 ejq ⟺ Lm(fi)p > pLm(fj)p (whenever Lm(fi)p ≠ 0 ≠ Lm(fj))q or 

0 ≠Lm(fi)p = Lm(fj)q and i > j. 

Theorem 3.16. (Right Buchberger’s criterion) 

Let f1,...,fs ∈ R be non-zero polynomials and > be a right admissible ordering on R. Then {f1,...,fs} form a 

right-Groebner basis for IR = <f1,...,fs > if and only if the following conditions are satisfied: 

1) For each i > j, the remainder of SR(fi, fj) on right division’s algorithm by {f1, ... ,fs} is zero. 

2) For each i, the remainder of SR(fi) on right division’s algorithm by {f1, ... ,fs} is zero. 

Input: give an ideal  IR = <f1, ..., fs>R ⊂ R and a right admissible ordering >= (>1, >2) on R.  

Output: a right Groebner basis for IR. 

Set k = s; 

Set P := {SR(fi, fj)/ 1 ≤ j < i ≤ k} and Q := {SR(fi)/ 1 ≤ i ≤ k} 
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As in the previous section, we describe the right Schreyer’s theorem 

Theorem 3.17. (Schreyer’s theorem) 

If {f1,...,fs} is a right Groebner basis for IR = <f1, ... ,fs>R  w.r.t a right admissible ordering >, then the set T = 

{Gij,Hi ∈ syzL(f1, ... ,fs)/ Gij ≠ 0 ≠ Hi} of right syzygies form a right Groebner basis for syzR(f1,...,fs) w.r.t the 

ordering >1 induced by > and {f1, ... ,fs}. 

6. Computing Left and Right Syzygies 

In this section we propose a method for computing left and right syzygies of given polynomials f1, ... ,fs ∈ R 

\{0}. 

4.1. Left syzygies. In this subsection, we denote by > a left admissible ordering and f1,...,fs ∈ R \{0} 

polynomials. The goal of this subsection is to propose a method for computing left syzygies on f1,...,fs. 

Remark 4.1. Let f1,...,fs ∈ R \{0} be polynomials and G = {f1, ... ,fs, .. .,𝑓𝑠′} be a left Groebner basis for 

<f1, ... ,fs>L w.r.t >. Let T = {Gij,Hi/ Gij,Hi ∈ syz(G)L \{0}} be the set of left syzygies on the left Groebner bases G. 

Assume that we have t such Gij, Hi arranged as follow:  

By computing the left Groebner basis G = {f1, ... ,fs, ... ,𝑓𝑠′}, we store each non-zero left syzygy Gij and Hi such 

that those obtained from a left division leading to a new polynomial fk are fist and those obtained from a left 

division with remainder zero are second. The Gij fits as rows of the t × 𝑠′ matrix 

 
Let 

 

 
Then  can be regarded as the t × 𝑠′ block matrix 
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where  and . 

Theorem 4.2. With notations as above. Assume that the matrix 𝐵′ is non-zero. The rows of the (t − 𝑠′ + 

s) × s matrix 𝐵′− 𝐷′𝐶′−1
𝐴′ 

form non-zero left syzygies on f1,...,fs. 

Proof. Set 

 and   . 

We know by hypothesis that each row of the matrix 

 

 

 

form a left syzygy on f1,...,fs0. We can write 

 

 

 

then 

 

 

 

Observe that 𝐶′ is invertible, by multiplying each side of (1) by 𝐶′−1
  on the left, we get  𝐶′−1

𝐴𝐹 + 𝐹′ =

0 ⟹  𝐹′ = −𝐶′−1
𝐴𝐹 (3). Replacing (3) in (2) we get (𝐵′− 𝐷′𝐶′−1

𝐴′)F = 0 (4). finalement 

Example 4.3. For the quiver Γ 
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Let us compute a left Groebner basis for F = {f1 = zt + yz, f2 = tx + z, f3 = x2y + t} in R = ℚΓ with respect to 

the left length lexicographic ordering t >llex z >llex z >llex y >llex x >llex v1 >llex v2 >llex v3.

Observe that SL(f2) = v1f2 = z = f4, SL(f3) = v2f3 = f5 and SL(f1) = v3f1 = yz = yf4. Observe that SL(f2, f1) =

SL(f3, f1) = SL(f3, f2) = SL(f4, f1) = SL(f4, f2) = SL(f4, f3) = SL(f5, f2) = SL(f5, f3) = SL(f5, f4) = 0 by the lack of useful 

paths. We have S(f5, f1) = zf5 − v1f1 = zt − zt = 0. The set {f1, ... ,f5} is then a left Groebner basis for the ideal IL = 

<f1, f2, f3>. From Schreyer’s theorem, the set {v1e2 −e4, v2e3 −e5, v3e1 −ye4,−v1e1 +ze5} form a left Groebner basis

for syz(f1, ... ,f5) w.r.t the ordering induced by > and f1, ... ,f5.

Let us compute the set of syzygies for f1,f2,f3. We store each left syzygy of f1, ... ,f5 as rows of the matrix



  

Set 

 

and . 

 

Observe that 

 

, 

 

then syz(f1, f2, f3)L = <(v3, −y, 0), (−v1, 0, z)>. 

4.2. Right syzygies. Let R be a right noetherian path algebra and f1, ... ,fs ∈ R\{0} be non-zero polynomials. 

The goal of this subsection is to propose a method for computing right syzygies on f1, ... ,fs ∈ R. 

Remark 4.4. Let f1,...,fs ∈ R \{0} be non-zero polynomials and G = {f1, ..., fs, ...,𝑓𝑠′} be a right Groebner basis 

for <f1, ... ,𝑓𝑠>R w.r.t the right admissible ordering <. Let Gij be right syzygies on f1, ..., fs ,..., 𝑓𝑠′  for each pair (i, j) 

i > j. We have seen in the right Schreyer’s theorem that syz(f1, ... , 𝑓𝑠′) = <Gij ≠ 0 ≠ Hi/ ∀ i > j >R. Assume 

that we have t such Gij,Hi arranged as follow: 

By computing the right Groebner basis G = {f1, ..., fs,...,𝑓𝑠′}, we store each non-zero right syzygy Gij and Hi 

such that those obtained from a right division leading to a new polynomial fk are fist and those obtained 

from a right division with remainder zero are second. The Gij fits as columns of the 𝑠′× t matrix 

 

 

Let 

 

  , 

                                   

                                                         
  

 

and 
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Then Ms’×t  can be regarded as the 𝑠′× t block matrix 

 

. 

 

Notation 4.5. For simplicity, we denote A = 𝐴𝑠×(𝑠′−𝑠), B = 𝐵𝑠×(𝑡−(𝑠′−𝑠)), C =𝐶𝑠′−𝑠  and D =𝐷(𝑠′−𝑠)×(𝑡−(𝑠′−𝑠)). 

Theorem 4.6. With notations as above. The columns of the s × (t − 𝑠′ + s) matrix B − A𝐶−1D are right 

syzygies on f1, ... ,fs. 

Proof. Set   

                    𝐹 = (𝑓1, . . . , 𝑓𝑠), 𝐹′ = (𝑓𝑠+1, … , 𝑓𝑠′    𝑎𝑛𝑑   (𝐹   𝐹′) =
(𝑓1  … 𝑓𝑠 … 𝑓𝑠′)  . 

 

We know by hypothesis that each column of the matrix 

 

 

 

form a right syzygy on f1, ..., 𝑓𝑠′ . We can write 

 

 
 

then 

 

 

 

Note that C is invertible, by multiplying each side of (1) by 𝐶−1  on the right, we get FA𝐶−1 + 𝐹′ = 01×(s’−s)  

(3) . By multiplying each side of (3) on the right by D, we get FA𝐶−1D +𝐹′D = 01×(t−s’+s) (4). Subtracting (2) 

and (4) side by side we get FB − FA𝐶−1D = F(B − A𝐶−1D) = 01×(t−s0+s)  (6). Thus, each column of the matrix B 

− A𝐶−1D is a right syzygy on f1, ... ,fs.  

Example 4.7. For the quiver Γ 

 

 
 

Let us compute a right Groebner basis for F = {f1 = zt + yz, f2 = tx + z, f3 = x2y + t} in R = ℚΓ with respect to 

 

> 
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the right length lexicographic ordering t >rlex z >rlex z >rlex y >rlex x >rlex 𝑣1 >rlex 𝑣2 >rlex 𝑣3. 

Observe that SR(f1) = f2v2 = yz = f4, SR(f2) = f2v2 = z = f5  and SR(f3) = f3v3 = t = f6. 

By the lack of right useful paths, only the following right S-polynomials are computable: 

SR(f5, f1) = f5t − f1v3 = 0 and SR(f6, f2) = f6𝑥 − f2v3 = 0, for the others, we claim them to be zero. The set 

{f1,...,f6} is then a right Groebner basis for <f1, f2, f3>R. 

Let us compute the set of syzygies for f1, f2, f3. We store each right syzygy of f1, ..., f6 as column of the matrix 

 

 
 

Set   

 

Observe that 

 

 

 

then syz(f1, f2, f3)R = <(−v3, t, 0), (0, −v3, x)>. 

7. Conlusion 

This paper propose an algorithm for computing the left (resp. right) syzygies modules in a path K−algebra 

KQ, this gives necessary tools for working on an algorithm for computing a generating set of the intersection 

of left (resp. right) ideals in KQ. This paper also provides ideas that can be used to think of an algorithm for 

computing the two-sided syzygies modules. Since for any quiver Q we can define the associated Leavitt path 

K−algebra LK(Q) which is nothing but a path K−algebra on the extending quiver of Q, and satisfy the 

Cunz-Krieger relations, this paper can be the first step for studying the theory of Groebner bases and 

applications in LK(Q). 
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