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Abstract: In a one dimensional random walk of N steps, with a probability p of taking a step to the right, 

and a probability 1-p of taking a step to the left, it is not possible to determine from the ending position of 

the walk what N and p are. However, if the N-step random walk is repeated many times then a statistical 

analysis of the ending positions can be used to estimate both N and p. In this article we present the details 

of this analysis and test the results by Monte Carlo simulations. These simulations show that very accurate 

estimates of N and p are obtained even when the number of experimental trials is relatively small. 
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1. Introduction 

The general question that we will try to answer in this article is the following: Consider an experiment in 

which an unknown number (N) of objects is randomly divided into two parts with probabilities p and 1-p, 

resulting in N1 and N2. This can be, for example, a random walk in one dimension, flipping a given number of 

coins, or randomly throwing a number of balls into two bins. At the end of the experiment, only the 

difference of the two numbers N1-N2 is given to us and nothing else. The question is, can we calculate the 

sum of the two numbers N1+N2=N from this information? Of course the answer is no, because there are 

infinitely many sums N1+N2 with the same difference N1-N2. In other words, there is seemingly no 

information in N1-N2 about N1+N2. But what if the experiment is repeated with the same unknown total 

number of objects? In other words, suppose we ask a question and receive absolutely no information about 

the answer. Does it make sense to keep asking the very same question again and again? Although it seems 

counter-intuitive, the answer is sometimes yes. And, as we shall see in what follows, we will be able to find 

not only the sum of the two numbers but also the probabilities of their occurrences very accurately from 

their difference when the experiment is repeated many times. 

As a specific example, consider two bins and suppose someone randomly throws a number of balls into 

them. At the end of the process, we are given the difference of the number of balls in the bins, N1-N2. The 

question is, from this information can we determine the total number of the balls N thrown into the bins 

and the probability with which they were thrown into each bin? The first part of the question is asking for 

the sum N1+N2 when we know only the difference N1-N2, which is, of course, impossible to answer. And, 

finding the probabilities with which the bins received the balls is equally impossible. However, it turns out 

that if this same process is repeated a number of times, eventually we will find the answer. This is very 

interesting and yet counter-intuitive because although the result of each trial seemingly contains no 

information about what we are looking for, when repeated enough times the trials yield complete 

information. 
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A number of mathematicians and statisticians with whom these results were shared were extremely 

doubtful that any of this could be true until they saw the mathematical proof and the Monte Carlo 

simulations. The reason for such skepticism, of course, is that there are infinitely many sums N1+N2 for 

which the difference N1-N2 is the same. This, however, misses the point. Although the difference of two 

numbers virtually provides no information about their sum, for non-negative numbers N1 and N2 we have 

|N1-N2| ≤ N1+N2. Therefore, although not so obvious, there is a very small amount of latent information 

buried within the difference of the two numbers about their sum. This information accumulates when the 

process is repeated and eventually the full picture emerges. 

Based on the above observations, in principle, one may compute many differences and take the largest in 

absolute value as an estimate of N1+N2. This, however, is very inefficient because to obtain the actual sum in 

this process, at least in one of the trials all the balls should go into one bin. However,  the probability of 

such an event is extremely small if the number of trials is fairly large. For example if 20 balls are randomly 

distributed between two bins, the chance of all the balls going into one bin (assuming a probability of 0.5 

for each bin) is 

p    
2

2
2 1020

6
                                (1) 

Therefore, it is highly unlikely for the event to happen.  

On the other hand, as we show in the following statistical analysis, it turns out that when the mean value 

of the difference of the two numbers is combined with its variance, it provides an extremely efficient 

algorithm for estimating not only N1+N2 but also the probability with which the balls are thrown into the 

bins. Thus, the seeming paradox of solving a problem with no useful information is not really a true paradox 

at all, but only an underestimation of the amount of information we are really being given in each trial. 

2. Theory 

Random walk is a stochastic process that is found in many areas, ranging from science to finance [1], [2]. 

Consider a one-dimensional random walk along the x axis, starting at the origin [3]. All steps are of the same 

length, which is taken to be the unit of length. The position of the walker after N steps is 

x si
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                                       (2) 

where si = ±1. The position of the walker can also be written as 

x N N 1 2                                         (3) 

where N1 and N2 are the total steps in the positive and negative directions, respectively. Let the probability 

of a step in the positive direction be p and that in the negative direction be 1-p. Taking the average of both 

sides of equation (3), we have 
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where <…> indicates ensemble average. 

Squaring both sides of equation (2), we get 
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Each term in the first sum of the right hand side is just 1. Therefore, the first sum is N. The second sum 

written in expanded form is 

s s s s s s s s s s no s termsi
i j

N

j N N i
 

         
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2( )( ) ( )             (6) 

On the average there are pN positive and (1-p)N negative terms in each of the sums in this equation. Each 

term in the left sum, however, multiplies only N-1 term of the second sum. Therefore, the total number of 

terms of the forms (+1)(+1), (-1)(-1), and (+1)(-1) or (-1)(+1) are 
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Therefore, the mean value of equation (6) is 

s s pN p N p N p N pN p N

p N N

i j
i j

N

 

         

  

1

2

1 1 1 1 2 1 1

2 1 1

( )[ ( )] [( ) ][( )( )] ( )[( )( )]

( ) ( )

 

Then taking the average of both sides of equation (5) gives 

      x N N N p N2
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Equations (4) and (7) are well known and can be found in essentially any discussion of random walks. For 

the special case p = 0.5, these equations reduce to much simpler forms, namely <x> = 0 and <x2> = N, 

respectively.  

Let us now solve equations (4) and (7) simultaneously for N and p. The result is 
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where σ2 is the variance of the trials, given by 

 2 2 2    x x                                 (10) 

According to equations (8) and (9), therefore, the total number of steps N and the probability of the walk 

p can be determined from the mean and the variance of N1-N2.  

Now consider an experiment in which a total number of balls N are randomly thrown into two bins. There 

is a one-to-one correspondence between this problem and the problem of random walk described above. 

Consequently, the results obtained for random walk can be mapped to randomly throwing balls into two 

bins. Thus, a step in the positive direction in the random walk corresponds to throwing a ball in bin number 

1 and a step in the negative direction corresponds to throwing a ball in bin number 2. After each trial the 

difference of the number of balls in the bins, N1-N2, is given to us. The trial is repeated a large number of 

times, n, each time throwing the same total number of balls N and with the same probabilities p and 1-p, 

which we don't know yet. At the end of the experiment, we can calculate the average values of N1-N2 and 

(N1-N2)2 from 
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and the variance σ2 from equation (10). Then from equations (8) and (9), N and p can be determined. In 

other words, knowing N1-N2 for the individual trials enables us to find not only N1+N2, but also the 

probabilities with which the balls were thrown into the bins, a simple yet rather counter-intuitive result.   

Another interesting aspect of these results is the precision with which N and p can be estimated with 

even a fairly small number of trials, such as n = 1000. However, in our computer simulation, described in the 

following section, we used 105 trials in each experiment. 

3. Computer Simulations 

We tested the theoretical results obtained in the previous section by performing computer experiments 

on randomly throwing balls into two bins. These experiments were carried out using simple Monte Carlo 

simulations [4], [5]. 

 
Table 1. Monte Carlo Simulation Results of Throwing N Balls into Two Bins with Probabilities p for Bin 

Number 1 and 1-p for Bin Number 2. N * and p* Are the Estimated Values Obtained from the Simulation Data 
of Columns 3 and 4 

N p   <N1-N2>  <(N1-N2)
2>          N *      p* 

10 .2   -5.9939    42.3308        10.0    200 

20 .2   -11.9916   156.5482        20.0   .200 

30 .2 -17.9799   342.3673        29.9   .199 

40 .2 -23.9858   600.8974        40.0   .200 

50 .2 -29.9970   931.8307        50.0   .200 

60 .2 -35.9977  1334.2660        60.0   .200 

70 .2 -42.0009  1808.8239        70.0   .200 

80 .2 -48.0071  2355.7242        79.9   .200 

90 .2 -54.0017  2973.7854        90.0   .200 

100 .2 -59.9856  3662.3679       100.1   .200 

10 .5   .0025     10.0772        10.1   .500 

20 .5  -.0020     20.2251        20.2   .500 

30 .5  -.0006     30.3178        30.3   .500 

40 .5  .0018     40.2820        40.3   .500 

50 .5  -.0090     50.3777        50.4   .500 

60 .5  -.0141     60.2753        60.3   .500 

70 .5  -.0292     70.2711        70.3   .500 

80 .5  -.0416     80.1803        80.2   .500 

90 .5  -.0477     90.0617        90.1   .500 

100 .5  -.0265    100.0306       100.0   .500 
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The details of our Monte Carlo simulations are as follows: At the beginning of the experiment, the number 

of balls in each bin is set equal to zero, i.e., N1 = N2 = 0. An arbitrary probability p is chosen for bin number 1 

(such as p = 0.2). We now want to throw a ball into the bins with probability p of going into bin number 1 

and probability 1-p of going into bin number 2. To do so, we generate a random number r such that 0≤ r <1 

and compare it to p. If r ≤ p, the number of balls in bin 1 is increased by 1, i.e., we set N1 = N1+1, otherwise 

we set N2 = N2+1. We repeat this process N times, so that a total of N balls are thrown into the bins, each 

with probability p of going into bin number 1 and probability 1-p of going into bin number 2. At the end, the 

number of balls in each bin is counted and the quantities N1-N2 and (N1-N2)2 are calculated and saved. This 

constitutes one trial. The trial is repeated 105 times and average quantities <N1-N2> and <(N1-N2)2> are 

calculated. 

We repeated the above experiment with different number of balls N. We also repeated the experiment 

with p = 0.5 and different number of balls. The results of these experiments are compiled in Table 1. The 

first and the second columns of the table show the values of N and p used in our Monte Carlo simulations. 

The fifth and the sixth columns show the vales of N and p that are calculated using the simulation data 

<N1-N2> and <(N1-N2)2> and equations (8) and (9). We have denoted these by N * and p*. 

 
Table 2. Monte Carlo Simulation Results of Throwing N Balls into Two Bins with Variable Probabilities. N * 

and p* Are the Estimated Values Obtained from the Simulation Data of Columns 2 and 3, Respectively 
N  <N1-N2> <(N1-N2)2>     N *           p* 

1   .0007     1.0000    1.0       .500 
2   .0010     2.6605    2.0       .500 
3   .0008    4.9860    3.0       .500 
4  -.0039    7.9724    4.0       .500 
5  -.0067   11.6229    5.0       .500 
6  -.0064   15.9376    6.0       .500 
7  -.0041   20.9157    7.0       .500 
8   .0035   26.5491    8.0       .500 
9   .0003   32.8286    9.0       .500 
10  -.0039   39.7886   10.0       .500 
11  -.0035   47.3748   11.0       .500 
12  -.0041   55.7011   12.0        .500 
13   .0004   64.7038   13.0       .500 
14   .0005   74.3227   14.0       .500 
15   .0035   84.5828   15.0       .500 
16   .0008   95.6012   16.0       .500 
17   .0017  107.2562   17.0       .500 
18   .0013  119.4703   18.0       .500 
19  -.0011  132.4702   19.0       .500 
20   .0000  146.0736   20.0       .500 

 
Finally, we performed Monte Carlo simulations in which we changed the probability p randomly from 

trial to trial. The probability p, however, was uniformly distributed between 0 and 1. In this case, therefore, 

the mean probability is 0.5 and the value of <N1-N2> according to equation (4) becomes zero. However, the 

value of <(N1-N2)2> from equation (7) does not reduce to N because in general <f(p)> ≠ f(<p>). Instead, the 

average value of the function (2p-1)2 in equation (7) should be calculated according to the correct method 

of finding the average of a function over an interval [6], 

f x
b a

f x dx
a

b

( ) ( )
 
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Substituting this in equation (7) gives 
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                               (13) 

which is a quadratic equation and can be solved for N, 

N N N      1 1 3 1 2

2( )  

Therefore, again N can be calculated from <(N1-N2)2>. Table 2 shows the results of the simulations and 

the values of N that are estimated from this equation. Again we reiterate that in this case <p> = 0.5 and 

<N1-N2> = 0. 

4. Conclusion 

Despite the fact that the sum and the difference of two numbers are independent from each other and one 

cannot be obtained from the other, when a number is randomly divided into two parts, such as randomly 

throwing balls into two bins, their difference N1-N2 provides a very small amount of latent information 

about their sum N1+N2. The information here is that for non-negative numbers N1 and N2 we have |N1-N2| ≤ 

N1+N2, in which the equality sign holds only if all the balls go into one bin. Therefore, for a sufficiently large 

number of trials, max(|N1-N2|) provides an estimate of N1+N2, which statistically becomes more and more 

accurate as the number of trials increases. 

In principle the above algorithm produces an estimate of the sum of two numbers from their difference. 

However, unless the numbers are small, the process is very inefficient as it requires an extremely large 

number of trials. On the other hand the method suggested in this article, which utilizes the mean value of 

N1-N2 and its variance, provides a very efficient algorithm which yields a highly accurate estimate of the 

sum of two numbers from their difference as well as the probabilities of the process even with a fairly small 

number of trials. 

In summary, using a statistical analysis and Monte Carlo simulations, we have shown how a very small 

amount of information imbedded in a single random or stochastic event can accumulated over a large 

number of trials to produce a significant amount of information on some of the parameters of the system. 

The information thus accumulated becomes more and more accurate as the number of trials increases. 

Although in this work we have limited our attention to finding the sum of two numbers from their 

difference, the analysis presented here provides motivation for further investigation and accumulating and 

extracting information in other random processes.  
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