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Abstract: The wavelet deconvolution estimation based on independent and identically distributed data has 

made a great progress in nonparametric statistics. However, heteroscedastic measurement errors occur in 

many natural processes. In this current paper, we construct a practical wavelet deconvolution estimator 
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under severely ill-posed noise and show its mean consistency over  𝐿𝑝 risk (1 ≤ 𝑝 < ∞).

The density estimation with an additive noise plays an important role in both statistics and econometrics.

Optimal convergence rate and consistency are two basic asymptotic criteria of the quality for an estimator. 

A lot of perfect achievements have been made for the wavelet estimation over Lp risk by Devroye [1]-[7]. 

However, in many real-life applications, the assumption of homoscedastic error is too restrictive. For 

instance, the data cannot be identically distributed which is called the heteroscedastic error. Let (Ω, ℱ, P) be 

a probability space and Y1, Y2, ⋯ , Yn be independent and un-identically distributed data of  

𝑌𝑙 = 𝑋𝑙 + 𝜀𝑙 ,     𝑙 = 1, 2,⋯ , 𝑛                                   (1.1)

where {𝑋𝑙} stands for independent and identically distributed (i.i.d.) real valued random variables with the 

unknown probability density 𝑓𝑋 , {𝜀𝑙} denotes independent random noise (error) with the probability 

density function  𝑓𝜀𝑙  (𝑙 = 1, 2,⋯ , 𝑛) , and  𝑋𝑙 , 𝜀𝑙 are independent each other. It is well known that the 

probability density 𝑓𝑌𝑙  of 𝑌𝑙  equals to the convolution of 𝑓𝑋 and 𝑓𝜀𝑙 .

To introduce the severely ill-posed noise, we need the Fourier transform of 𝑓 ∈ 𝐿1(ℝ), i.e.,

𝑓ft(𝑡) ≔ ∫ 𝑓(𝑥)𝑒−𝑖𝑡𝑥𝑑𝑥.
ℝ

A standard method extends the definition to 𝐿2(ℝ) functions. A random noise 𝜀𝑙 is said to be severely 

ill-posed if 

|𝑓𝜀𝑙
ft(𝑡)| ≳ exp{−𝑐0|𝜎𝑙𝑡|

𝛼},    𝑡 ∈ ℝ                              (1.2)



  

with 𝑐0, 𝛼 > 0 and 𝑙 = 1, 2,⋯ , 𝑛. For two variables A and B, 𝐴 ≲ 𝐵 denotes 𝐴 ≤ 𝑐𝐵 for some constant 𝑐 >

0 which is independent of A and B; 𝐴 ≳ 𝐵 means 𝐵 ≲ 𝐴; 𝐴 ∼ 𝐵 stands for both 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴. In 

particular, the model (1.1) reduces to the homoscedastic situation (classical deconvolution problem), when 

𝜎1 = 𝜎2 = ⋯ = 𝜎𝑛 in (1.2). 

Example 1.1. For 𝑙 = 1, 2,⋯ , 𝑛, assume that 𝜎𝑙 > 0 are real numbers, 𝜀𝑙 ∽ 𝑁(0, 𝜎𝑙
2) which the density 

function can be represented by 𝑓𝜀𝑙(𝑥) =
1

√2𝜋 𝜎𝑙
exp {−

𝑥2

2𝜎𝑙
2}. Then  

 

𝑓𝜀𝑙
ft(𝑡) = exp {−

1

2
𝜎𝑙
2𝑡2}. 

 

Thus (1.2) is satisfied with 𝛼 = 2 and 𝑐0 =
1

2
.  

In practical problem, normal distribution is the most commonly observed probability distribution, which 

is important and could be used in the natural and social sciences. 

Example 1.2. Let 𝑓𝜀𝑙(𝑥) =
𝜆𝑙

𝜋(𝜆𝑙
2+𝑥2)

 (𝑙 = 1, 2,⋯ , 𝑛) with 𝜆𝑙 > 0 which means the noise 𝜀𝑙 being Cauchy 

distribution. Then 

 

 𝑓𝜀𝑙
ft(𝑡) = exp{−𝜆𝑙|𝑡|}. 

 

Hence, 𝜎𝑙 = 𝜆𝑙 , 𝛼 = 1 and 𝑐0 = 1 in (1.2). 

The Cauchy distribution arises widely in many application fields, which is also called Lorentzain 

distribution or Breit-Wigner distribution by physicists. 

Under the heteroscedastic measurement error, Delaigle & Meister [8] studied the optimal convergence 

over 𝐿2 risk by kernel method. Chesneau & Fadili [9] constructed a wavelet estimator of the density and 

investigated its MISE ( 𝐿2 risk) performance over Besov balls. The  𝐿𝑝 risk  (1 ≤ 𝑝 < ∞) of wavelet 

deconvolution estimator was extended by Wang, Zhang & Kou [10]. However, we do not know whether the 

density function is smooth or not in some practical applications. Therefore, it is natural to consider the 

mean consistency of the wavelet estimator, which means that 𝐸‖𝑓𝑛 − 𝑓𝑋‖𝑝 
(1 ≤ 𝑝 < ∞) converges to zero 

as the sample size n tends to infinity. As usual, for 1 ≤ 𝑝 < ∞, 

 

‖𝑓‖𝑝 = (∫ |𝑓(𝑥)|𝑝𝑑𝑥
ℝ

)

1
𝑝

. 

 

This paper considers the mean consistency of a practical wavelet estimator with severely ill-posed noise 

for heteroscedastic model (1.1). More precisely, we define wavelet estimator for 𝑓𝑋 ∈ 𝐿
𝑝(ℝ) (1 ≤ 𝑝 < ∞) by 

using Meyer’s wavelet and study its mean 𝐿𝑝 consistency. 

2. Wavelet Estimator 

This section is devoted to giving some useful concepts and lemmas. In order to introduce our estimator, 

we begin with a classical notation in wavelet analysis taken from Reference [11]. A multiresolution analysis 

(MRA) is a sequence of closed subspaces {𝑉𝑗}𝑗∈ℤ of the square integrable function space 𝐿2(ℝ) satisfying 

the following properties:  

1) 𝑉𝑗 ⊆ 𝑉𝑗+1, 𝑗 ∈ ℤ; 
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2) ⋃𝑗∈ℤ𝑉𝑗̅̅ ̅̅ ̅̅ ̅̅ = 𝐿2(ℝ) (The space ⋃𝑗∈ℤ𝑉𝑗 is dense in 𝐿2(ℝ)); 

3) 𝑓(2𝑗 ⋅) ∈ 𝑉𝑗 if and only if 𝑓(⋅) ∈ 𝑉0 for each 𝑗 ∈ ℤ; 

4) There exists 𝜑 ∈ 𝐿2(ℝ) (scaling function) such that {𝜑(⋅ −𝑘), 𝑘 ∈ ℤ} forms an orthonormal basis 

of 𝑉0 = 𝑠𝑝𝑎𝑛{𝜑(⋅ −𝑘), 𝑘 ∈ ℤ}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

With the notation ℎ𝑗𝑘(𝑥) ≔ 2𝑗/2ℎ(2𝑗𝑥 − 𝑘) in wavelet analysis, we can show that {𝜑𝑗𝑘(𝑥), 𝑘 ∈ ℤ} is an 

orthonormal basis of  𝑉𝑗 . One of the important examples is Meyer's MRA (see [11]). The Fourier 

transform 𝜑ft of Meyer's scaling function 𝜑 is infinitely many times differentiable and their supports 

contained in the interval [−𝑎, 𝑎] with 𝑎 = 4π/3. 

As usual, let 𝑃𝑗 be the orthogonal projection operator from 𝐿2(ℝ) to the scaling space 𝑉𝑗 , 

 

𝑃𝑗𝑓(𝑥) =∑𝛼𝑗𝑘𝜑𝑗𝑘(𝑥),

𝑘∈ℤ

 

 

where 𝛼𝑗𝑘: = 〈𝑓,  𝜑𝑗𝑘〉. If 𝜑 is Meyer’s scaling function, then 𝑃𝑗𝑓 is well-defined for any 𝑓 ∈ 𝐿𝑝(ℝ). All these 

claims can be found in [12]. 

Lemma 2.1(12). If 𝜑 is the Meyer’s scaling function, then there exist 𝑐2 > 𝑐1 > 0 such that 

 

𝑐12
𝑗(
1
2
−
1
𝑝
)
‖{𝜆𝑘}‖𝑙𝑝 ≤ ‖∑𝜆𝑘𝜑𝑗𝑘(𝑥)

𝑘

‖

𝑝

≤ 𝑐22
𝑗(
1
2
−
1
𝑝
)
‖{𝜆𝑘}‖𝑙𝑝 , 

 

where ‖{𝜆𝑘}‖𝑙𝑝 ≔ (∑ |𝜆𝑘|
𝑝

𝑘 )
1

𝑝.   Moreover, for some 𝑓 ∈ 𝐿𝑝(ℝ) (1 ≤ 𝑝 < ∞), 

 

‖𝑃𝑗𝑓 − 𝑓‖𝑝 ⟶ 0. 

 

Since any density function 𝑓𝜀𝑙 ∈ 𝐿
1(ℝ),  𝑓𝜀𝑙

ft is continuous. Therefore, if 𝑓𝜀𝑙
ft(𝑡) ≠ 0 and 𝜑 is Meyer’s scaling 

function, we have 

 

∫ |
𝜑ft(𝑡)

𝑓𝜀𝑙
ft(−2𝑗𝑡)

| 𝑑𝑡
ℝ

≲ ∫ |
1

𝑓𝜀𝑙
ft(−2𝑗𝑡)

|
𝑎

−𝑎

𝑑𝑡 < +∞. 

 

This together with 𝑤𝑛 ≔ ∑ exp {−𝑐0𝜎𝑙
2𝛼}𝑛

𝑙=1 , we know that 

 

𝛼̂𝑗𝑘 ≔
2
𝑗
2

𝑤𝑛
∑

exp{−𝑐0𝜎𝑙
2𝛼}

2𝜋

𝑛
𝑙=1 ∫ 𝑒𝑖𝑡(2

𝑗𝑌𝑙−𝑘)
𝜑ft(𝑡)

𝑓𝜀𝑙
ft(−2𝑗𝑡)ℝ

𝑑𝑡                        (2.1) 

 

is well-defined.  

The classical linear wavelet estimator is defined by 

 

𝑓𝑛(𝑥) ≔ ∑ 𝛼̂𝑗𝑘𝜑𝑗𝑘(𝑥)𝑘∈ℤ .                                   (2.2) 

 

When 𝜎1 = 𝜎2 = ⋯ = 𝜎𝑛,  𝛼̂𝑗𝑘 and 𝑓𝑛 defined in (2.1)-(2.2) respectively reduce to the homoscedastic case 

automatically (see [2], [4]-[7]). In order to guarantee the estimator practical, we modify the above estimator 
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(see (2.2)) as follows: 

 

𝑓𝑛,𝐹(𝑥) ≔ ∑ 𝛼̂𝑗𝑘𝜑𝑗𝑘(𝑥)|𝑘|≤𝐾𝑛 ,                                   (2.3) 

 

where the positive integer 𝐾𝑛 will be specified later on. 

The next lemma shows 𝛼̂𝑗𝑘 defined by (2.1) is an unbiased estimation of 𝛼𝑗𝑘 ≔ ∫ 𝑓𝑋(𝑥)𝜑𝑗𝑘(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝑥
ℝ

. 

Lemma 2.2. Let 𝛼̂𝑗𝑘 be defined in (2.1), then 𝐸𝛼̂𝑗𝑘 = 𝛼𝑗𝑘.   

Proof. Since the intersection of 𝐿1(ℝ) and 𝐿2(ℝ) is dense in  𝐿1(ℝ), there exists a sequence {𝑓𝑛}𝑛∈ℕ ⊆

 𝐿1(ℝ) ∩ 𝐿2(ℝ) such that 

 

lim
𝑛→∞

‖𝑓𝑛 − 𝑓𝑋‖1 = 0. 

 

Note that Meyer’s scaling function 𝜑 ∈  𝐿∞(ℝ) and ‖𝜑𝑗𝑘‖∞ < +∞ for fixed 𝑗 and 𝑘. Then 

 

|∫ 𝑓𝑛(𝑥)𝜑𝑗𝑘(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅
ℝ

𝑑𝑥 − ∫ 𝑓𝑋(𝑥)𝜑𝑗𝑘(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝑥
ℝ

| ≤ ∫ |𝑓𝑛(𝑥) − 𝑓𝑋(𝑥)|ℝ
|𝜑𝑗𝑘(𝑥)|𝑑𝑥 ≤ ‖𝑓𝑛 − 𝑓𝑋‖1‖𝜑𝑗𝑘‖∞ ⟶ 0,  (2.4) 

 

as 𝑛 → ∞. On the other hand, because ‖𝑓𝑛
ft − 𝑓𝑋

ft‖
∞
≤ ‖𝑓𝑛 − 𝑓𝑋‖1 ⟶ 0 and 𝜑ft ∈  𝐿1(ℝ), 

 

|∫ 𝑓𝑛
ft(𝑡)(𝜑𝑗𝑘)

ft
(𝑡)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
ℝ

𝑑𝑡 − ∫ 𝑓𝑋
ft(𝑡)(𝜑𝑗𝑘)

ft
(𝑡)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
ℝ

𝑑𝑡| ≤ ‖𝑓𝑛
ft − 𝑓𝑋

ft‖
∞
‖(𝜑𝑗𝑘)

ft
‖
1
⟶ 0.            (2.5) 

 

By the Plancherel formula, ∫ 𝑓𝑛(𝑥)𝜑𝑗𝑘(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅
ℝ

𝑑𝑥 = (2𝜋)−1 ∫ 𝑓𝑛
ft(𝑡)(𝜑𝑗𝑘)

ft
(𝑡)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
ℝ

𝑑𝑡. This with (2.4) and (2.5) 

leads to 

 

∫ 𝑓𝑋(𝑥)𝜑𝑗𝑘(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝑥
ℝ

=
1

2𝜋
∫ 𝑓𝑋

ft(𝑡)(𝜑𝑗𝑘)
ft
(𝑡)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
ℝ

𝑑𝑡.                          (2.6) 

 

Obviously, 𝐸𝑒𝑖𝑡2
𝑗𝑌𝑙 = ∫ 𝑒𝑖𝑡2

𝑗𝑦𝑓𝑌𝑙(𝑦)𝑑𝑦ℝ
= 𝑓𝑌𝑙

ft(−2𝑗𝑡) = 𝑓𝑋
ft(−2𝑗𝑡)𝑓𝜀𝑙

ft(−2𝑗𝑡) thanks to  𝑋, 𝜀𝑙 independent 

each other and 𝑓𝑌𝑙
ft = 𝑓𝑋

ft ⋅ 𝑓𝜀𝑙
ft. Hence,  

𝐸𝛼̂𝑗𝑘 =
2
𝑗
2

𝑤𝑛
∑

exp{−𝑐0𝜎𝑙
2𝛼}

2𝜋

𝑛

𝑙=1

∫ 𝑒−𝑖𝑘𝑡𝜑ft(𝑡)𝑓𝑋
ft(−2𝑗𝑡)

ℝ

𝑑𝑡 =
1

2𝜋
∫ 𝑓𝑋

ft(𝑡)(𝜑𝑗𝑘)
ft
(𝑡)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

ℝ

𝑑𝑡. 

It follows from (2.6) that 𝐸𝛼̂𝑗𝑘 = ∫ 𝑓𝑋(𝑥)𝜑𝑗𝑘(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝑥
ℝ

= 𝛼𝑗𝑘. This completes the proof.  □ 

In order to show Lemma 2.4, we state a classical inequality as follows. 

Lemma 2.3 (Rosenthal’s inequality, [12]). Let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 be independent random variables such that 

 𝐸𝑋𝑙 = 0 and 𝐸|𝑋𝑙| < +∞ (𝑙 = 1, 2,⋯ , 𝑛). Then 

 

𝐸 |∑𝑋𝑙

𝑛

𝑙=1

|

𝑝

≲

{
 
 

 
 
∑𝐸|𝑋𝑙|

𝑝

𝑛

𝑙=1

+ (∑𝐸𝑋𝑙
2

𝑛

𝑙=1

)

𝑝/2

,    𝑝 > 2;

(∑𝐸𝑋𝑙
2

𝑛

𝑙=1

)

𝑝/2

,                    0 < 𝑝 ≤ 2.
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Lemma 2.4. Let 1 ≤ 𝑝 < ∞, then 

 

𝐸|𝛼̂𝑗𝑘 − 𝛼𝑗𝑘|
𝑝
≲ (

2𝑗

𝑤𝑛
)

𝑝
2

exp {
𝑐0(2

𝑗𝑎)
2𝛼
𝑝

2
}, 

 

where 𝑎 =
4π

3
  is the support {𝑡, |𝑡| ≤ 𝑎} of the Fourier transform of Meyer’s scaling function. 

Proof. Define 

 

𝜉𝑙,𝑗,𝑘 ≔
2
𝑗
2

𝑤𝑛

exp{−𝑐0𝜎𝑙
2𝛼}

2𝜋
∫ 𝑒𝑖𝑡(2

𝑗𝑌𝑙−𝑘)
𝜑ft(𝑡)

𝑓𝜀𝑙
ft(−2𝑗𝑡)ℝ

𝑑𝑡 

 

for 𝑙 = 1,⋯ , 𝑛. By |𝑓𝜀𝑙
ft(𝑡)| ≳ exp{−𝑐0|𝜎𝑙𝑡|

𝛼} and supp 𝜑ft  ⊆ [−𝑎, 𝑎], one obtains that 

 

|𝜉𝑙,𝑗,𝑘| ≲
2
𝑗
2

𝑤𝑛
exp{−𝑐0𝜎𝑙

2𝛼} exp{𝑐0|𝜎𝑙2
𝑗𝑎|

𝛼
} ≤

2
𝑗
2

𝑤𝑛
exp{−𝑐0𝜎𝑙

2𝛼} exp {
𝑐0 [𝜎𝑙

2𝛼 + (2𝑗𝑎)
2𝛼
]

2
} 

                                 =
2
𝑗
2

𝑤𝑛
exp {−

𝑐0𝜎𝑙
2𝛼

2
} exp {

𝑐0(2
𝑗𝑎)

2𝛼

2
}.                              (2.7) 

 

Denote 𝜂𝑙,𝑗,𝑘 ≔ 𝜉𝑙,𝑗,𝑘 − 𝐸𝜉𝑙,𝑗,𝑘. Then 𝐸𝜂𝑙,𝑗,𝑘 = 0 obviously, and 

 

𝛼̂𝑗𝑘 − 𝛼𝑗𝑘 = 𝛼̂𝑗𝑘 − 𝐸𝛼̂𝑗𝑘 =∑(𝜉𝑙,𝑗,𝑘 − 𝐸𝜉𝑙,𝑗,𝑘) =

𝑛

𝑙=1

∑𝜂𝑙,𝑗,𝑘

𝑛

𝑙=1

 

 

due to Lemma 2.2. This with Rosenthal’s inequality (Lemma 2.3) tells that 

 

𝐸|𝛼̂𝑗𝑘 − 𝛼𝑗𝑘|
𝑝
= 𝐸|∑ 𝜂𝑙,𝑗,𝑘

𝑛
𝑙=1 |

p
≲ {

∑ 𝐸|𝜂𝑙,𝑗,𝑘|
𝑝𝑛

𝑙=1 + (∑ 𝐸𝜂𝑙,𝑗,𝑘
2𝑛

𝑙=1 )
𝑝

2 ,    𝑝 > 2;

(∑ 𝐸𝜂𝑙,𝑗,𝑘
2𝑛

𝑙=1 )
𝑝

2 ,                        1 ≤ 𝑝 ≤ 2.

               (2.8) 

 

On the other hand, (2.7) implies 

 

𝐸|𝜂𝑙,𝑗,𝑘|
𝑝
≲ [

2
𝑗
2

𝑤𝑛
exp {−

𝑐0𝜎𝑙
2𝛼

2
} exp {

𝑐0(2
𝑗𝑎)

2𝛼

2
}]

𝑝

.                           (2.9) 

 

Hence, for 1 ≤ 𝑝 ≤ 2, it follows from (2.8)-(2.9) that 

 

𝐸|𝛼̂𝑗𝑘 − 𝛼𝑗𝑘|
𝑝
≲ [∑

2𝑗

𝑤𝑛
2

𝑛
𝑙=1 exp{−𝑐0𝜎𝑙

2𝛼} exp {𝑐0(2
𝑗𝑎)

2𝛼
}]

𝑝

2
= [

2𝑗

𝑤𝑛
exp {𝑐0(2

𝑗𝑎)
2𝛼
}]

𝑝

2
.     (2.10) 

 

When 𝑝 > 2, ∑ exp𝑛
𝑙=1 {−

𝑐0𝜎𝑙
2𝛼𝑝

2
} ≤ ∑ exp{−𝑐0𝜎𝑙

2𝛼} = 𝑤𝑛
𝑛
𝑙=1 . According to (2.9), one knows that 

 

International Journal of Applied Physics and Mathematics

204 Volume 7, Number 3, July 2017



  

∑𝐸|𝜂𝑙,𝑗,𝑘|
𝑝

𝑛

𝑙=1

≲∑2
𝑗𝑝
2 𝑤𝑛

−𝑝

𝑛

𝑙=1

exp {−
𝑐0𝜎𝑙

2𝛼𝑝

2
} exp {

𝑐0(2
𝑗𝑎)

2𝛼
𝑝

2
} 

                                                                       = 2
𝑗𝑝
2 𝑤𝑛

−𝑝
∑exp {−

𝑐0𝜎𝑙
2𝛼𝑝

2
}

𝑛

𝑙=1

exp {
𝑐0(2

𝑗𝑎)
2𝛼
𝑝

2
} 

                                                                       ≤ 2
𝑗𝑝
2 𝑤𝑛

1−𝑝
exp {

𝑐0(2
𝑗𝑎)

2𝛼
𝑝

2
} . 

 

Combining the above inequality with (2.8) and (2.10), one concludes that 

 

𝐸|𝛼̂𝑗𝑘 − 𝛼𝑗𝑘|
𝑝
≲ 2

𝑗𝑝
2 𝑤𝑛

1−𝑝
exp {

𝑐0(2
𝑗𝑎)

2𝛼
𝑝

2
} 𝐼{𝑝>2} + 2

𝑗𝑝
2 𝑤𝑛

−
𝑝
2 exp {

𝑐0(2
𝑗𝑎)

2𝛼
𝑝

2
} 

                                                         ≲ 2
𝑗𝑝
2 𝑤𝑛

−
𝑝
2 exp {

𝑐0(2
𝑗𝑎)

2𝛼
𝑝

2
}. 

 

The proof is done.  

3. Main Result 

In this section, we state the main result as Theorem 3.1 and devote to give its proof.  

Theorem 3.1. Let 𝑓𝑋 ∈ 𝐿
𝑝(ℝ) (1 ≤ 𝑝 < ∞) satisfy ‖𝑥𝑓𝑋(𝑥)‖∞ ≲ 1 for 𝑝 > 1 and ‖𝑥2𝑓𝑋(𝑥)‖∞ ≲ 1 for 𝑝 =

1. Then for the estimator 𝑓𝑛,𝐹 defined in (2.3) with 𝑗 = ⌊
1

2α
log2(𝑣ln 𝑤𝑛)⌋ (⌊𝑥⌋ standing for the largest integer 

no more than 𝑥) and 𝐾𝑛 ∼ exp{ln
𝜃𝑤𝑛} (𝑐0𝑎

2𝛼𝑣 < 1, 𝜃 ∈ (0,1)), one has 

 

lim
𝑛→∞

𝐸 ‖𝑓𝑛,𝐹 − 𝑓𝑋‖𝑝 = 0. 

 

Proof. One need to estimate  𝐸‖𝑓𝑛,𝐹 − 𝑓𝑋‖𝑝 ≤ 𝐼1(𝑛) + 𝐼2(𝑛) + 𝐼3(𝑛) with  𝐼1(𝑛) ≔ 𝐸‖𝑓𝑛,𝐹 − 𝐸𝑓𝑛,𝐹‖𝑝, 

𝐼2(𝑛) ≔ ‖𝐸𝑓𝑛,𝐹 − 𝑃𝑗𝑓𝑋‖𝑝 and 𝐼3(𝑛) ≔ ‖𝑃𝑗𝑓𝑋 − 𝑓𝑋‖𝑝. Obviously, 𝐼3(𝑛) ⟶ 0 due to 𝑓𝑋 ∈ 𝐿
𝑝(ℝ) and Lemma 2.1. 

For  𝐼2(𝑛) , one considers the case  𝑝 > 1 firstly, for which  ∑ |𝑘|−𝑝|𝑘|>𝐾𝑛 ~∫ 𝑥−𝑝𝑑𝑥
+∞

𝐾𝑛
=

1

𝑝−1
𝐾𝑛
1−𝑝

. 

Since 𝛼𝑗𝑘 ≔ ∫ 𝑓𝑋(𝑥)𝜑𝑗𝑘(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅
ℝ

𝑑𝑥 and 𝜑 is the Meyer’s scaling function, 𝑥𝜑(𝑥) ∈ 𝐿∞(ℝ) and  

 

|𝑘𝛼𝑗𝑘| ≤ ∫ |𝑘||𝜑𝑗𝑘(𝑥)|𝑓𝑋(𝑥)𝑑𝑥
ℝ

≤ ∫ |2𝑗𝑥 − 𝑘||𝜑𝑗𝑘(𝑥)|𝑓𝑋(𝑥)𝑑𝑥
ℝ

+∫ |2𝑗𝑥||𝜑𝑗𝑘(𝑥)|𝑓𝑋(𝑥)𝑑𝑥.
ℝ

 

 

This with 𝜑𝑗𝑘(𝑥) ≔ 2𝑗/2𝜑(2𝑗𝑥 − 𝑘) and the assumption ‖𝑥𝑓𝑋(𝑥)‖∞ ≲ 1 shows that 

 

|𝑘𝛼𝑗𝑘| ≲ 2
𝑗
2‖𝑥𝜑(𝑥)‖∞ + 2

𝑗‖𝑥𝑓𝑋(𝑥)‖∞2
−
𝑗
2‖𝜑‖1 ≲ 2

𝑗
2. 

 

On the other hand, Lemma 2.2 tells 𝐸𝛼̂𝑗𝑘 = 𝛼𝑗𝑘  and 𝐸𝑓𝑛,𝐹 = ∑ 𝛼𝑗𝑘𝜑𝑗𝑘 .|𝑘|≤𝐾𝑛  Therefore, it follows from 

𝑃𝑗𝑓𝑋 = ∑ 𝛼𝑗𝑘𝜑𝑗𝑘 𝑘∈ℤ and Lemma 2.1, one concludes that 
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𝐼2(𝑛) = ‖ ∑ 𝛼𝑗𝑘𝜑𝑗𝑘
|𝑘|≤𝐾𝑛

−∑𝛼𝑗𝑘𝜑𝑗𝑘 

𝑘∈ℤ

‖

𝑝

= ‖ ∑ 𝛼𝑗𝑘𝜑𝑗𝑘
|𝑘|>𝐾𝑛

‖

𝑝

≲ 2
𝑗
2
−
𝑗
𝑝 ( ∑ |𝛼𝑗𝑘|

𝑝

|𝑘|>𝐾𝑛

)

1/𝑝

 

                                   ≲ 2
𝑗
2
−
𝑗
𝑝 ( ∑ |𝑘|−𝑝2

𝑗𝑝
2

|𝑘|>𝐾𝑛

)

1/𝑝

≲ 2
𝑗−
𝑗
𝑝𝐾𝑛

1
𝑝
−1
= (2𝑗𝐾𝑛

−1)
1−
1
𝑝. 

 

Moreover, 2𝑗𝐾𝑛
−1 ⟶ 0 due to the choices of 𝑗 and 𝐾𝑛. Then 𝐼2(𝑛) ⟶ 0 for 𝑝 > 1. 

When 𝑝 = 1, it is assumed that ‖𝑥2𝑓𝑋(𝑥)‖∞ ≲ 1. Since |𝛼𝑗𝑘| ≤ ∫ |𝜑𝑗𝑘(𝑥)|𝑓𝑋(𝑥)ℝ
𝑑𝑥, one finds that 

 

|𝑘2𝛼𝑗𝑘| ≤ ∫ |2𝑗𝑥 − 𝑘|
2
|𝜑𝑗𝑘(𝑥)|𝑓𝑋(𝑥)𝑑𝑥

ℝ

+∫ |2𝑗𝑥|
2
|𝜑𝑗𝑘(𝑥)|𝑓𝑋(𝑥)𝑑𝑥

ℝ

 

                                                    ≤ 2
𝑗
2‖𝑥2𝜑(𝑥)‖∞ + 2

2𝑗‖𝑥2𝑓𝑋(𝑥)‖∞2
−
𝑗
2‖𝜑‖1 ≲ 2

3𝑗
2 . 

 

Thus, |𝛼𝑗𝑘| ≲ 2
3𝑗

2 |𝑘|−2. According to Lemma 2.1, one has 

𝐼2(𝑛) = ‖ ∑ 𝛼𝑗𝑘𝜑𝑗𝑘
|𝑘|>𝐾𝑛

‖

1

≲ 2
𝑗
2
−𝑗 ∑ |𝛼𝑗𝑘|

|𝑘|>𝐾𝑛

≲ 2−
𝑗
2 ∑ |𝑘|−22

3𝑗
2

|𝑘|>𝐾𝑛

≲ 2𝑗𝐾𝑛
−1. 

Hence, 𝐼2(𝑛) ⟶ 0 follows from 2𝑗𝐾𝑛
−1 ⟶ 0.   

It remains to estimate 𝐼1(𝑛). By the definition of 𝑓𝑛,𝐹  , 𝐸𝑓𝑛,𝐹 = ∑ 𝛼𝑗𝑘𝜑𝑗𝑘|𝑘|≤𝐾𝑛  and Lemma 2.1, 

𝐼1(𝑛) ≲ 2
𝑗

2
−
𝑗

𝑝𝐸(∑ |𝛼̂𝑗𝑘 − 𝛼𝑗𝑘|
𝑝

|𝑘|≤𝐾𝑛 )
1

𝑝 ≤ 2
𝑗

2
−
𝑗

𝑝(∑ 𝐸|𝛼̂𝑗𝑘 − 𝛼𝑗𝑘|
𝑝

|𝑘|≤𝐾𝑛 )
1

𝑝,                  (3.1) 

where Jensen’s inequality is used in the second inequality of (3.1). Furthermore, combining (3.1) with 

Lemma 2.4, one obtains  

𝐼1(𝑛) ≲ 2
𝑗

2
−
𝑗

𝑝𝑤𝑛
−
1

22
𝑗

2 exp {
𝑐0(2

𝑗𝑎)
2𝛼

2
}𝐾𝑛

1

𝑝 ≤ 𝑤𝑛
−
1

22𝑗𝐾𝑛 exp {
𝑐0(2

𝑗𝑎)
2𝛼

2
}.                (3.2) 

Choosing 𝑗 = ⌊
1

2α
log2(𝑣ln 𝑤𝑛)⌋ and 𝐾𝑛 ∼ exp{ln

𝜃𝑤𝑛}, (3.2) reduces to 

𝐼1(𝑛) ≲ 𝑤𝑛
−
1
2 ⋅ (ln𝑤𝑛)

1
2𝛼 ⋅ exp{ln𝜃𝑤𝑛} ⋅ exp {

𝑐0𝑎
2𝛼𝑣ln 𝑛

2
} = 𝑤𝑛

−
1
2 ⋅ (ln𝑤𝑛)

1
2𝛼 ⋅ exp{ln𝜃𝑤𝑛} ⋅ 𝑤𝑛

𝑐0𝑎
2𝛼𝑣
2 ⟶ 0 

as 𝑛 ⟶ ∞, where 𝑐0𝑎
2𝛼𝑣 < 1 and 𝜃 ∈ (0,1). 

Therefore, the desired conclusion can be concluded by 𝐼𝑘(𝑛) ⟶ 0 (𝑘 = 1,2,3). The proof is completed.  □ 

Remark 3.1. Note that the condition 𝑥2𝑓𝑋(𝑥) ∈ 𝐿
∞(ℝ) is stronger than 𝑥𝑓𝑋(𝑥) ∈ 𝐿

∞(ℝ), when 𝑓𝑋 ∈

𝐿∞(ℝ). Then Theorem 3.1 requires more for 𝑝 = 1 than 𝑝 > 1. This seems natural, because 𝑓𝑋 ∈ 𝐿
1 ∩

𝐿∞ implies 

 𝑓𝑋 ∈ 𝐿
𝑝 (1 < 𝑝 < ∞). 

Remark 3.2. When 𝑝 = 1 and 𝜎1 = 𝜎2 = ⋯ = 𝜎𝑛, the 𝐿1 consistency under the Normal noise and Cauchy 

noise had been studied in [1] and [3] respectively. 

4. Conclusion 
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We construct a practical wavelet density estimator 𝑓𝑛,𝐹 with severely ill-posed noise firstly. Then the 

mean 𝐿𝑝 consistency of 𝑓𝑛,𝐹 is investigated under some mild condition on 𝑓𝑋, i.e., for 1 ≤ 𝑝 < ∞,    

lim
𝑛→∞

𝐸 ‖𝑓𝑛,𝐹 − 𝑓𝑋‖𝑝 = 0. 

Our result can be seen as an extension of Devroye or Meister’s work in some sense (see Reference [1] and 

[3] respectively). 
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