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Abstract: A kind of non-standard quantum group Xy(A4,) is studied in the paper. Root vectors of X,(4,) and
their commutation relation are described. Then we establish the PBW basis of X;(4x).
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1. Introduction

Throughout the paper, we always assume that the base field is the complex number field Cand

Zy={neZ|nz O}. Let the non-zero parameter qeC and not be a root of unity.

Quantum groups always are the hot research topic in mathematics and physics after they were
introduced by Drinfeld and Jimbo in 1980s. Ge et al. [1] constructed a new quantum group by solving exotic
solution of quantum Yang-Baxter equation, which is also called the non-standard quantum group. Jing et al.

[2] derived a new quantum group Xq (2) and described all finite dimensional irreducible representations
of X,(2). Aghamohammadi et al. [3] obtained a non-standard quantum group X (A, ;) corresponding
totype A, ,.Itisnotedthat X (A) isjustquantumalgebra X (2).In 1994, Aghamohammadi et al. [4]
constructed the non-standard quantum group X q (B,) corresponding to the series B, . Cheng and Yang
[5] construct a weak Hopf algebra WX (A) corresponding to non-standard quantum group X,(A),
and describe the PBW basis of WX (A).

In this paper, we describe the PBW basis of a particular class of Xq(A1). The paper is arranged as
follows. In Section 2, we rewrite definition of the Hopf algebra Xq(A1) referred to the quantum algebra
X,(A,) [3]. In Section 3, we establish the root vectors and investigate commutation relations of X, (A))

in the case of @, =¢ (0<i<n) and g, =-q . In Section 4, we construct the PBW basis of X, (A)

as described in Section 3.

2. Preliminaries

In first, we have quantum group Xq (A,) by replacing some generators in [3].

Definition 2. 1. Xq(A]) is an associative algebra over the field C with 1 generated by
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KJ_rl Kil Kil
K;ll, E....E, F,.., F, withthe following relations:
-1 -1 . -
(R) KK =K K, =1, Kin = KjKi, (R2) KiE. = E.Ki, KiF. = FjKi,I =], ]+1
(RB) Ki Ei :q;lEi Ki’ KF :qFK, (R4) K|+1E q|+lE K

K. K_l K K_1
(R5) Ei Fj - I:j Ei = é‘l 1 Hl (RG) (q| q|+l)E2 = (q| q|+l)|:2

“FK,

i+1 i+1?

K,F=q

i+17 " Ni+l

(R7) qE’E,, —(1+q4.,)EE.E +q,E.,E*=0,

(R8) qF’F.. —(1+q0,.)FF.F +0,,F.F* =0,
whereq, =q or —q*.Ifall g =q (0<i<n+1),then X, (A)) issimilar toU, (sl,,,). If q; =0, for
some 1<i<n, then E? =F?=0. The relations is different from U_(sl,,,).

Proposition 2. 2. Keeping notations as above. Then X, (A,)is a Hopf algebra with comultiplication A,
counit & and antipode S, which are defined as following

ATX (A) = X, (A)® X (A), AK) =K ®K, AK™=K*®K™,

AE)=KK®E +E ®Li=n, A(F)=1®F +F ®(K 'K,

S: X4 (A) = X, (A), S(K)=K™S(K™M) =K, S(E)=-K, ;K E,i=n,

S(F)=-FKK:,i=nS(F)=-FK_,

g: X, (A)— C e(K) =e(K ) =1¢&(E)=¢(F)=0.

Proof. The proof is more or less the same as that in [6, Proposition VII.1.1].

),i =N,

i+1

3. Commutation relations between root vectors

In first, we recall the definition of operator ad. Assume that H is a Hopf algebra and X € H , we can

define the adjoint operator ad, :H — H , associated to X as ad (y)= Zx(l) YS(X,)for all yeH,

where A(X) = ZXa) X2

Epreen & E

Let V =R*"bean N+l dimensional Euclidean space with & n*“n+l as an orthogonal basis of

a=g-¢&=0+0,+...+a;_;,1<i, j<n+l.

V. Each positive root & can be written as +1

=adg (., ;) 1<i, j<n,

We define
=E.

L corresponding to theroot ' 71’ specially, 1T

root vectors by
Define the order of all positive roots by

o>oto,>...>oto,+...ta, >a, >a,ta > >a . o, > > >a, o, > A,
The algebra X, (A, ) is graded viadeg E; = o;, degF, = —«;,degK; = degK™ =0.

Setg(rESp'n) be root vector corresponding to positive root p (resp.y). We also can say that ¢ (resp.
ne Xq(A‘) is of degree p(resp.y). We denote Ki '+1§ 4 é Then we have the following formula.

adEi (Em) = a'dEi (&n +tiﬁ§adEi (),

Proposition 3. 1 We have where
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1 if oy, 0,0, € B0 oy, 05,04, 2 B
Ci.ys if o, € f,and o, ,, ¢, ¢ f;
t = O 00 =0 i, cpfanda, ¢ p;
R et it f=a;
g if o, € Band o, 2 B,
G if o, € pand o, 2 .
Proof. Note thatti(ﬁ+y) =1, we have adEi (&n) = Ei§77+ti(ﬂ+y) (EmE, adEl (&n= Eign_ti(ﬂ)gEﬂL

gad (1) =SEn—t,,,fade (17), adg (&n) =ad (S)n+t5ad: (77). The proof is finished,

: : . . X . . X .
Next we investigate commutation relations of a(A) We consider a(A) in the case of

g =9(0<i<n), q,,=-q" (R6") EX =F’ =0,

in the sequel. We have

(R7)E’E,, —(q " +Q)EELE +E,E} =0(i =n), (R8)R’F.,—(q" +a)FRF.F +F, R =0(@ =n).

il i+1" i

. . . E g
Now, we describe the commutation relations between ¥ and %7%i
10£i,j£n+l,

—GE j.E =E ;1

Lemma 3. 2. For al
(1) If k=i-1, then EE

i, j+1

(2)If k=j+1#n, then Ei,j+lEj+l _qj+1Ej+1Ei,j+1 = Ei’j+2.

(3) If k<i—2 or k> j+2, then E.E ;.. =E .E

@) k=i, thenEE , =0"F ;.,E,.

(5)If i+1<k < j-1, then EkEi,j+1 = Ei,mEk.

(6)1f k=j,thenEE,  ;, =0q,,E,,,E; (fEf=0), EE, =0, ,E, (fE}=0).

Proof. (1) If k=1i-1, by definition we have adEk (Ei,j+1) =E, Ei,j+l ! Ei,j+1Ek = Eé_if‘€j+1 = EH’H.

(2) ¢ k=j+1=n, thenwehave Ej.Ej.=adcad.,,...ade (Ej)=adcad; ,...ad. (E;,E),
Ei,j+1Ej+l = adEi a‘dEi+l"‘a'dEH(Ej Ej+1)! and adEj (Ej+l) = _qj+1Ej+lEj + Ej Ej+l'
So E ;B —0uEuE ju=Eijo

(3) k<i-2 or k> j+2, itiseasytoseethat EE , =E  E.

(4) k=i, if E*#0, asthe proofin[7], we have
adEi (Ei,j+1) = adEi adEi adEM (Ei+2,j+l) = (qi_l + qi+l)adEi adEMad E qi_lqmadéi (Ei+2,j+1) =0.
If Ei2 =0,0,, = —q;,

adEi (Ei,j+l) = Ei Ei Ei+l, j+l - qi+1Ei Ei+1,j+1Ei + (K| KI:LJiEI Ei+l,j+1S (E| ) - qi+1Ki Ki:’]iEi‘Fl,j‘FlEiS (E| ))
= _qi+lEi Ei+1,j+1Ei - Ki KI:—JiEI Ei+1,j+1Ki+lKi71 = (_qi+1 - q:l) Ei Ei+1,j+1Ei =0.
Also adEi (Ei,j+1) =EE . _q;lEi,j+1Ek S0 BB .= qflEi,j+1Ek'
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(5) If i+1<k<j-1, , it is similar to the proof in [7]. We have
adg (E; ;..))EE ;.. —E ;.E@ade ... ad. ad. ad. ad; (E,,,;,)=0.

i, j+1 i, j+1

(6)If k=], thenEE ;; =ad.ade ... ad. (EjE;,;,),

i, j+l

E ;.E;=adcad; ... adEH (Ej1;aE)) Ejyjn=2ad; ,(E;)=—0q,EE,, +E_E|,
Ej Ej—l,j+l =—q; Eszj_l + EjEj_lEj, Ej_l’HEj = —quj Ej_lEj + Ej_lEjz.So we have
BB jn—0EjaE = O(Ej2 #0), 0B B ;1 —EjijuE = O(Ej2 =0).

The proofis finished.

Remark 3. 3. It is noted that Lemma 3.2 (1)(2)(3)(4)(6) also hold when X (A,)is in the case of

q # g, (i=n).

Let# =% tota, f=a;+...ta.

Next we consider the relations between E_and Eﬂ'

Lemma3.4.(1)If j>p+2, then E E;=E,E,.

(2)If j=p+1 thenE E,—q ,E;E, =E_ .

3)If j<p, thenE,E,—E,E, =(a;'-q,)E,,,_E,.

Proof. (1) j=p+2, itiseasytosee E E; =E,E,.

(2)If j=p+1 wehaveE, =ad ad; ...ad. (-q,E;E ,+E E)=E E —-qEFE,.
E.E,=E BB, —0,EE B, =E BB, —QEEE
E,E,=E,E ,E,—d,E,EE  =E EE, —q,EEE

Bip P AP ip i,p—p B —pip?

EpEﬁ _qp+lEﬂEp =E EaEﬁ _qp+lEﬂEa = Ea+ﬁ'

Also P+A* Then
(3)If J=p weassumethaty =a; +a;, +...t o, a=a;+...+ o, +y, =y +a,, +...+ .
So we have EaEﬂ :adEi "'adEj,z(Eaj,1+yEﬂ), EﬁEa = adEi "'adEj,z(EﬂEaj,ﬁy)
_ _ ~1
Eajfl*'J/Eﬂ _adEjf1(E7Eﬁ)_qiE}’EaH*'ﬁ' EﬂEaHﬂ/ _qj (adEj—l(EﬁEy)_Eaj—1+ﬂE7)'
We also k that B BBy tati ith E then E E =EE And set
e also know tha are commutative wi o opo thenE, E =EE, ;. Andse

r=apty , also we have EﬂEy' B EyrEﬂ' Then EyEﬁ - adEj (E;/Eﬂ)’

EE, = EﬂadE]_ (E,) =qjadEj (E,E,). EE, =qj’1EﬁEy.

Eaj—1+7 Eﬁ - Eﬂ Eaj—1+7 =—q; E;f Ea,>1+7 + qJTlEaHW E;f - (q;l —q; ) Ea,>1+7 Ey'

Then we get

j— -1 _ -1
Hence, E.B, By, = adEi N 'adEi—z <(qj _qJ)EaHﬂ Ey) =(d;" —9;)E,.,,E,.
The proofis finished.
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j-1
Lemma3.5. A(E m®E +E L ®14 > (1-02 )E KK ® By e

j+l i, j+1
k=i

)=K,K

i, j+1

Proof. We use induction on E; ., to prove the formula. Assume that

i, j+1
j-1
-1 2 -1
A(Ei+l,j+l) = Ki+lKj+l ® Ei+l,j+l + Ei+l,j+l ®1+ Z (1_ qk+l)Ei+l,k+lKk+lKj+l ® Ek+1,j+l
k=i+1
holds, then
A(Ei,jﬂ) = A(Ei Ei+l,j+1 - qi+1Ei+1,j+1Ei) = (Ki Ki_+11 ® Ei + Ei ®1)A(Ei+1,j+1) - qi+1A(Ei+1,j+1)(Ki Kijr]i ® Ei + Ei ®1)

j-1
= KK i ®EE + KK} Eijn®E+ Z A—af,)K; KilllEi+1,k+1Kk+1Kj7+11 ®EE ;a1

i+1 i i+ L i+1i
k=i+1

j-1
+Ei Ki K'_l ® E, + Ei Ei+1,j+l ®1+ Z (1_ qlerl)Ei Ei+1,k+lKk+lKj_jl ® Ek+l,j+1

i+10 Y j+1 i+1, j+1
k=i+1

E, ®E,, ., +E

i+1, j+1

E + K .Kj}

i+17 Y j+1

KK L®E +E

j+1 i+1, j+1 i+1, j+1 j+1 i+l,j+1Ei ®1

_qufl(KiK'_1 QE,
j-1 j-1

+ Z (1_ qlf+1)Ei+l,k+lKk+lK;ilKi Kljr]i ® Ek+1,j+1Ei + Z (1_ qlf+1)Ei+1,k+1Kk+1ijlEi ® Ek+l,j+1
k=i+1 k=i+1

j-1
= Ki K'_l ® E + E ®1+ E K K'_l ® Ei+1,j+1 - qi2+1Ei Ki+1Kj_iLl ® Ei+1,j+1 + z (1_ qk2+1)Ei,k+1Kk+lKj_jl ® Ek+l,j+1

j+l i, j+1 i, j+1 (I B R
k=i+1

j-1
=K, Ky ® B 1tE ;. ®1+ 2(1_ ql<2+l)Ei,k+1Kk+1K;+11 QB -

j+1 i
k=i

The proof is finished.
4. PBW Basis of Nonstandard Quantum Group X (A)

X
To describe the PBW basis of =~ ¢ (A) , we need to prove the following equality
2 2 .
Lemma 4.1. E'Eiina —A+00G.)EE 1B +0.,E B =0 (0<i<n-1).
2

2
Proof. GEE ynn — A+ A0,)EE B + 0B 00
=0 Ei2 (Ei+lEi+2,n+l =02 Ei+2,n+1 Ei+1) - (1+ G; qi+1) Ei (Ei+lEi+2,n+l =02 Ei+2,n+1 Ei+1) Ei + qi+1(Ei+1Ei+2,n+1 —0isz Ei+2,n+lEi+l) Ei2
=~0,,2E1,20.1 (0 Ei2 E.,—(+0,4)EE,E + qi+1Ei+lEi2) +(q, Ei2 E.,—(1+0,0)EE,E+ qi+lEi+lEi2)Ei+2,n+l
=0.
The proof is finished.

Lemma 4.2. Keeping notations as above, we have E’,; =0 (1<i<n), whereE,, ,is a root vector

which contain .
Proof. We verify the equality by induction on the root.
2 2 2 2 2
E =E = (En—lEn -0, En En—l) =0, (En En—l) + (En—lEn) -0, E.E En

g+ 0ty n-1,n+1 N n-1?
=q:(EE, )’ +(E,,E,)* -q,E.((9,}, +9,)E,,E,E, , —9,,0,E,EZ )
=07 (E,E, )’ +(E . E)* —a,(a.}, +9,)(E.E,,)* = (E,,E))* —0,0.5 (E,E, ).
Also(q, ,EZ,E, -(1+q,,9,)E, ,E.E, , +q,E EZ )E, =—-(+0, ,q,)(E,,E,)* +q,E,E; E, =0
and E,(q,,E;,E, ~(1+q,,4,)E,,E.E,, +q,E.E",) =q,,E,E; ,E, —~(1+q,,0,)(E,E, )" =0.

Since @, =(,_,, then we have (E, ,E )* = (E,E, ,)?. SoE} =0.

an1tay,
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Next we assume thatif i= j+1, E? = E2 =0 set up. By Lemma 4.1, then

j+HLn+l

Jn+1 (adE (E jattay )) _( j a
:(EanM#—...#—an) +qj+1(EaJ+1+...+anEj) _qj+1EaJ+l+...+anEjZEaJ+1+...+an

= (Ej Eaj+1+...+an )2 + qJ?+l(Eaj+1+...+an Ej )2 - (qurlqj_1 + qJ?+l)(Eaj+l+..4+an Ej )2'

QAjataj+2+. +a,

2
jatta qj+l Ajat. oy j)

Also
Eaj+l+...+an (q] EjZEj+l,n+l - (1+ qjqj+1)Ej Ej+l,n+lEj + qj+lEj+l,n+lEj2)
= (qJ Eszj+1,n+1 - (1+ qjqj+1)Ej Ej+l,n+lEi + qj+lEj+l,n+lEj2)Eaj+1+...+an = O
E E) =(EE 2,
Then we get ( FiatFhn )" = (E, “i+1+“'+“") Since q; =(q;,, =q(j <n-1), weget

Jn+1 ((1+qj+l) (qj+lqj +qj+l))(EJ Ajit.. +an) =0.

By induction, we have E”, =0(1<i<n). The proofis finished.

X, (A) X, (A)

Now we prove that has a triangular decomposition. Let be an algebra generated by

+1 +1 +1 +1 R1)-(R
KoK K K B B R Ry which satisfies( ) ( 5) . The left hand side of quantum Serre

relation (R7)(resp. (R8)) is denoted by u; (resp. u;).LetL:(’Bl’ﬁz"""b)r)(’gi =apl<] Sn)bea

=E,E,

E ...E,.
finite sequence of simple roots and - > #" Similar to the proof of [8, 4.12-4.19], the elements

Il |2 In+1 {
FKIKg . KB (€ Z) form a basis ofXq (A) , where l,J are finite sequences of simple roots.

Lemma 4. 3. Let M be the multiplication map of X (A, then the image of m(l ®m) of
X (A1)®X (A)®1", where | " is the two-sided ideal of X 4 (A)) generated by U and E’, is just a
two-sided ideal of Xq (A)-

Proof. Let V =m(l ®m)()zq_(A]) ® Xg(m 1 +),then it is spanned by uu! E’E, , with all sequences
L, where UE€ )Zq(ﬁh) It is obvious that V is a left ideal in )Zq(:%) We have to show thatV is a right
ideal in )Zq (A,)- Let @ be the root system corresponding to the same type Lie algebra and 77 be a basis of
®. Since E’F =FE? E’F =FE?, itimplies that forall y € 7, we have EnZF}, = F},E2 [E2,F]=0.

n'  y

-1 -1 -1 -1
U F E FI E|+1 (q_l+q)Ei Ei+1(Fi Ei KHlK K KHl) E|+1 (F| Ei KHlK K KHl)
Similarly, we haveu;F,, = F ul,u;F_; = F_u;. Itimplies thatu/F, =F u.,[u/,F ]=0.
+2 2 _ +r=2 _ +
Therefore, we have[ E” ! F7] u [E” ! 7] +[u Fy]En =0. u[us En EL’ F;/] = Ul En [EL’ F;/]'

Note that[E ,F ]can be written as the linear combinations of the terms FK:KE .. .KME (L €Z),

n+l

we have UUJE’E, F =uFu; E’E, +Uu’E’ +[E.,F,1€V. The proofis completed.
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In a similar way, we get
Lemma 4. 4. The image of |1~ ® )Zg(ﬁh) ® )Z;(Ah) under the map m(m® 1) s just the ideal of )Zq (A)

generated by U  and Fnz.

Proposition 4, 5. There exist an isomorphism of C  -linear spaces

X (A) =X (A)OX (A)®X(A).
Proof. The proof is similar to [8, Theorem 4.21].

Let 7, <y, <...<yy, where N the number of positive roots and y; runs over all positive roots.
Lemma 4. 6. B* ={E"E" ...E™ |n €Z, IfE, =E, (k=n+1),n €Z, ifE, =E,, (k <n)}form

a basis of XJ(A])

+ hEM N
Proof. We show that any element of q(A‘) is a linear combinations of 7 72 "N and
EME™...EM EME™...EM™ 0.
nor ™ are linearly independent with all 7 = 72 N

(1) It is noted thatE,..., E generate X;(A) It is suffices to show that Enl Eyi2 "'EV'k is a linear

combination of E;ll E:: E:: with n +n,+...+ny, <K. Using induction onk, given an integeri, if
k =1, then the case is clear. Suppose the assertion holds for K. Ifi, =1, by the induction onK to the element

E, ...E, , then we get the result. Ifi, >1, by the induction it is easy to see that E.E ..E isa
L 2

Yy ike1 " ia
linear combination of E,. E™ .. .E™ with n. +n, +...+n, <k.
7|1 7] }/N J 2 N
a) If I, < J, then it is straightforward to see.

b) If i, > j, E, E:jj B = E.E, E;jj_l...E;:‘,by lemma 3.4, for some non-zero coefficients A, 1,

0,
Enl Ey,- _ﬂ“Ey,- Enl = 'uEij '
HE, ., E. where y, =a'+y",y; =7r"+
Then
ni-l=n, n
ﬂ,Eyj EY& Ey; Eyj‘+1 ...E7: ,

Nj=1=nj, N _ Nj—1=nj., Ny Nj—1=nj. ny
E,E, EVEl EN =14, E, EVE . EM +4E, ,, AE, E, EVCEMED,

Yy t7j

nj—l Nja Ny nj—l N Ny
/lEijthyj Em'”Em + uE ,Ey,/iEijthyj E™...E

Yo Vi~V Vi TN

Similar to the proof in [9, Proposition 5.3] and [7], we get that EV& Ey_ ...Ey_ is a linear combination of
2 k

EXEY...E) withn +n,+...+ny <k.
(2) We now show that all Ezl E;: E;: #0 and Ezl Eyn; E;’:‘ are linearly independent by

comultiplication A . Firstly, one can prove that
— j-i K.*].K. _ KK71
I:Ei,j"‘l":i,jﬂ_]: ( q) ( 1 Jt]i i ]+1)
ag-q
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=0(i<n) and E

,,j+1¢0(1£i£j<n) forall |.

by induction on | — i, we get that E

i,n+1

The root lattice Q -gradation of Xq+ (A,) implies that E},j "are independent. Note that

A X (A)— Xio(&)® X4 (A,)is a graded algebra homomorphism and A(E,) has a component of
bidegree (¢,,f—¢;) if and only if f=c, +(f—¢;) . It follows that for the positive root
B=¢ — & (i< j<n+1) the component of bidegree (lo;,1(f—¢;)) of A(Eﬁ)I is proportional to
EiI Klﬂﬂi ® Elﬁﬂi for anyl,and for the positive root f=¢& —&_, (i <n+1)the component of bidegree
(a4, B—0c) of A(E,) is proportional to E; K; o ®E, . . The rest is similar to the proof in [7] and [9,
Proposition 5.3] . By Lemma 3.5, we get that E;l E:: eee E;: are linearly independent. The proof is finished.

Similarly, we have

B ={F"F™..F™|meZ,ifF, =F, (k=n+l)m eZ, ifF =F (k<n)}

Lemma 4. 7.

Xq (A).

form a basis of ¢

S _EMEM Ny t_EME™ my
B =EME™..EM,F =FME™ L E™,

Let where s=(n,n,,...,ny),t=(m,m,,....my). If

B, =EBina (resp. P = Fina ), then N €Z, (resp. M e€Z, ); if E, =Ejlk=n) (resp.
=F. <

Py = Fik=m), then N €Z., (resp. M €Z.,). The elements in B® ={K}!K}...K"* |l e Z} is

denoted by K', we have
Theorem 4.8. B={F'K'E*|E®* €B*,F' €B",K' €B°} form a basis of X, (A)-
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