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Abstract: This article after introducing fuzzy dual numbers, functions and functionals establishes necessary 

conditions for the optimization of fuzzy dual functionals before considering fuzzy dual optimal control 

problems. In a first step an extension of Euler’s necessary condition for the extremum of a fuzzy dual 

functional is established and then necessary conditions for fuzzy dual optimal control are developed. 
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1. Introduction 

Classical optimal control theory based on calculus of variations [1], has played an important role in the 

design of many modern systems and the understanding of the conditions for their optimal operation.  In 

many situations, real systems are submitted to perturbations which are not completely known, generating 

uncertainty in their future behavior when controls computed from nominal values are applied. Stochastic 

optimal control [2] has been developed with acceptable success only in the case of linear systems with a 

quadratic performance criterion. This approach to be effective needs precise order two statistics for initial 

state variables and for perturbations along the whole optimization horizon, and it is often not possible to 

get accurate values for these parameters.  Fuzzy optimal control has been also investigated and diverse 

approaches have been developed mainly based on Takagi-Sugeno (T-S) fuzzy models leading in general to 

fuzzy control design based on the parallel distributed compensation (PDC) scheme incurring the need for 

large fuzzy control rule sets [3] . More recently, an attempt to extend the calculus of variations to fuzzy 

optimal control has been developed in the context of fuzzy mappings parametrized by the left and right 

functions of their α-level sets [4] . In that case a straightforward extension of calculus of variations leads to 

the establishment of necessary optimality conditions. However, an important limitation of this approach is 

that fuzzy optimization is based on a partial ordering of fuzzy numbers.  

In this paper another approach is developed to cope with fuzzy optimal control. Here a connection is 

established between dual numbers encountered in the design and analysis of kinematics for mechanical 

systems [5] and triangular fuzzy numbers, i.e, real intervals for which total orders can be adopted. Here the 

dual part of dual numbers is associated with the basis of a triangular fuzzy number and different total 

orders can be considered between these fuzzy numbers [6]. Then fuzzy dual functions, fuzzy dual 

functionals and fuzzy dual differential equations are introduced. This open the way to establish necessary 

conditions for the extremum of fuzzy dual functionals and through the introduction of a fuzzy dual 
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Hamiltonian, for the extremum of fuzzy dual optimal control problems.  

2. Fuzzy Dual Numbers 

Here we introduce the basic definitions concerning dual numbers and fuzzy dual numbers while some 

elements of dual number calculus are considered. More details about fuzzy dual calculus can be obtained in 

[7]. Then total, partial, weak and strong orders between fuzzy dual numbers are introduced. 

2.1. Dual Numbers and Fuzzy Dual Numbers 

The set of dual numbers  is the set of R2 with specific addition (+) and multiplication (  ) laws given by: 

 

:),(),,( 2211  yxyx ),(),(),( 21212211 yyxxyxyx   and ),(),(),( 1221212211 yxyxxxyxyx       (1) 

The set   has a structure of an unity commutative ring with respect to these two laws. Its unitary 

element is (1,0). The dual number )1,0(  is nilpotent of order two with respect to multiplication, then   

has divisors of (0,0) and it is not an integral ring. The subset of ,  Rxx )0,(  , is a sub-ring of  and is 

isomorph to R. The adopted notation for a dual number ),( yx of  is in this paper is yx    where 

02  and the zero element (0,0) is written 0
~ . 

To each dual number ba  can be associated a triangular fuzzy number whose membership function is 

given by:  

 

0)( u if bau  ,      bbauu /)()(    if  auba                  (2) 

bubau /)()(    if  baua  ,       0)( u if bau                  (3) 

Then the set of fuzzy dual numbers can be seen as the set 
~  of dual numbers of the form  ba   such 

as  RbRa ,  where a  is the primal part and b  is the dual part of the fuzzy dual number. Here a is its 

mean value, the most probable of the fuzzy number according to its triangular membership function, while 

b2 is the size of its basis or uncertainty interval. A crisp fuzzy dual number is such as b is equal to zero.  

2.2. Fuzzy Dual Orders 

When considering optimization problems we will be naturally led to compare numbers, here fuzzy dual 

numbers, and the above definition provides different ways to compare them according to what is pursued 

through the optimization. Different weak total orders can be defined over 
~ , one is relative to the mean 

value of the fuzzy dual number, the mean order is such as:  

 

212211 xxyxyx
mean

                                    (4) 

others are relative to their extreme values. The minimal order is such as: 

 

221122
min

11 yxyxyxyx                                  (5) 

while the maximal order is such as: 

 

221122
max

11 yxyxyxyx                                  (6) 
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These total orders are weak in the sense that they do not allow to compare completely two fuzzy dual 

numbers and another total order may be added with respect to the degree of uncertainty:  

  

212211 yyyxyx   


                                 (7) 

A strong partial order can be defined over 
~   for non-overlapping fuzzy dual numbers: 

 

22112211 yxyxyxyx
str

                          (8) 

2.3. Fuzzy Dual Functions 

Here after introducing classical properties for a function f of a dual variable yx  , the differentiability 

issue is considered, leading to the definition of a fuzzy dual function.  

A function f of a dual variable yx   is such as: 

 

),(),()( yxyxyxf                                (9) 

where  and  are two functions of the real variables x and y. This function has a limit equal to  21 FF   

when yx  goes to 11 yx  if and only if: 

 

1
,

),(lim
11

Fyx
yyxx




       and   
2

,
),(lim

11

Fyx
yyyx




                   (10) 

This function will be continuous at 
21 yy    if and only if: 

 

)()(lim 21
, 11

yyfyxf
yyxx

 


                              (11) 

Such a function will be differentiable at 
11 yx  if there exists a dual number qp  and a function  of a 

dual variable lh   such as: 

 

)())()((),(),( 1111 lhlhqpyxflyhxf     with  0
~

)(lim
0,0




lh
lh

       (12) 

Then qp   is the value of the derivative of f at 
11 yx   and the function of the dual variable defined 

by qpf :'  is the derivative function of f over . We can write also: 

 

    )(),(),( 2

1111 lhOlhlhyxflyhxf yxyx                (13) 

and comparing with (12), it appears that: 

yxp   , 
xq   and  0y                             (14) 

and f will be differentiable over a subset of  if and only if at any of its points 
yx   and 0y . Then 

function f should be of the form [8]: 

 

 )()()()( xyxxyxf x                               (15) 
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where )(x  is a real valued function. When this last function is zero, we will say that f is a fuzzy dual 

function and we will write: 

 

)()()(
~

xfyxfyxf x      for   RyROx  ,                    (16) 

whose fuzzy dual derivative is given by: 

 

 )()()'(
~

xfyxfyxf xxx                               (17) 

Relation (16) can be generalized to a fuzzy dual function  f of n dual variables niyx ii ,,1,    : 

),,();,(),,(
~

1

1

111 nxi

n

i

nnn xxfyxxfyxyxf
i

 


   for   niRyOx ii ,,1,,      (18) 

3. Fuzzy Dual Euler’s Equations 

In this section we introduce a fuzzy dual version of the Euler’s optimization problem considering first the 

unconstrained case and then the constrained one where necessary optimality conditions, the fuzzy dual 

Euler equations are established.  

3.1. Fuzzy Dual Euler Equation: The Unconstrained Case 

Consider a fuzzy dual functional given by: 

 

dttyxyxfyxJ

ft

t

),,(),(

0

                                   (19) 

where x and y are real vector functions of Rn and x and y are their derivatives and  f is a fuzzy dual 

function. The problem considered here is to find extremums of ),( yxJ which can be rewritten as: 

 

 dtyfyfdttxxfyxJ

f ft

t

t

t

xx  

0 0

''),,(),(                              (20) 

 

The fuzzy dual variation of J is now given by: 

 

  

f ft

t

t

t

xxxxxx dtxfyxfydtxfxfJ

0 0

)''()''(                          (21) 

 

Considering that )(tx  can be written:   

 



t

t

dxtxtx

0

)()()( 0                                      (22) 

the fuzzy dual variation can be rewritten as: 

 

   













 

f

f

f

f

t

t

xx

t

txx

t

t

xx

t

tx dttxfy
dt

d
txfydttxf

dt

d
ftxfJ

0

0

0

0
)()'(()(')()'()('        (23) 
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Considering that the deviations at times t0 and tf are equal to zero, the non-integral terms vanish from the 

above expression: 

 

 

ff t

t

xxxx

t

t

xx dttxfy
dt

d
tyf

dt

d
fdttxf

dt

d
fJ

00

)()'()()'(()()'(            (24) 

 

A necessary condition to have an extremum for a real valued functional is that its variation must be zero 

[9]. This can be easily transposed to the present case by considering the mean, the minimal and the 

maximal extremums of a functional.   

3.2. Constrained Optimization Problems 

Going a step further, we consider the case in which the previous optimization problem is subject to m 

constraints according to the fuzzy dual expression:  

 
)()()),()(( tztottytxg                                   (25) 

 
where o(t), ],[ 0 fttt  is the zero real vector function of Rm and z(t) , ],[ 0 fttt , is a bounded real function 

of Rm, eventually the zero real function. Expression (29) can be rewritten as: 

 
                                        (26) 

 
where Gx is the Jacobian of g. Here we introduce a fuzzy dual Lagrange multiplier written     where  

mm RR   ,  , to build the augmented fuzzy dual functional: 

 

 

ft

t

dttyxgtyxyxfyxJ

0

)),()'(),,((),,,(                    (27) 

or                                                 

dtyyxxddttxxryxJ

ff t

t

t

t

),,,,,(),,,(),,,(

00

                         (28) 

with:  

),('),,(),,,( txgtxxftxxr                                (29) 

and 

),('')''(),,,,,,( txgyfyGftyyxxd xxx                         (30) 

The fuzzy dual variation of the augmented functional which is associated to deviations  ,,,, yyxx 

and   is now given by: 

   dtgGyxdxddtgxrxrJ

ff t

t

xxxx

t

t

x    ''''''''

00

 
               (31) 

or   

   
  

    ff

ff

t

tx

t

tx

t

t

xxxx

t

t

x

txdtxr

dtgGyxd
dt

d
ddtgxr

dt

d
rJ

00

00

)(')('

''''))(('))'(







 








              (32) 
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Considering again that the deviations at times t0 and tf are taken equal to zero and that the considered 

solutions are feasible, the variation of the augmented functional can be written: 

 

      dttxd
dt

d
ddttxr

dt

d
rJ

ff t

t

xxx

t

t

x  





00

)(')()('  
                       (33) 

The necessary condition to have a mean extremum for J is given by the classical Euler equation applied to 

function r: 

 

  0 xx r
dt

d
r 

                                        (34) 

 
The necessary conditions to have a minimal extremum for J are given by the augmented Euler equations: 

 

  0)(  xxxx dr
dt

d
dr 

                                   (35) 

 
The necessary conditions to have a maximal extremum for J are given by the augmented Euler equations: 

 

  0)(  xxxx dr
dt

d
dr 

                                   (36) 

 

while conditions (26) must be satisfied. 

4. Fuzzy Dual Optimal Control Problems 

 

In this section we consider a class of optimal control problems where the system to be controlled is 

subject to perturbations whose uncertainty is imbedded in a fuzzy dual function representing the dynamics 

of the considered process to be controlled. Let the formulation be given by: 

 

)(min uJ
mRu

    with      dttuzfuJ

ft

t


0

),,()(   with 2Cf             (41) 

 

where the state dynamics of the process are such as: 

 

 ),,,( twvuzaz                                   (42) 

 

where 2Ca  with pmn RvRuyxz  ,, and pRw is a fuzzy dual function. 

It is supposed here that times t0 and tf  are given and the initial and final conditions are such as: 

 , , ,  free. It is supposed that v and w are given over the interval [t0, tf]. 

Introducing the Jacobians ][][
jixijx aA    and ][][

kivikv aA   , the state equation can be rewritten as: 

                                    

         and   wtvuxAytvuxAy vx ),,,(),,,(                 (43) 

 

while the optimization criterion is such as:                     

00 )( xtx 
ff xtx )( 00 )( yty  )( fty

),,,( tvuxax 
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4.1. Problem Formulation 



  

ydtyfdttuxfuJ

ff t

t

x

t

t

'),,()(

00

                                 (44) 

 

4.2. Mean Optimal Control Problem 

mber In that case, the optimal control problem reduces to a classical optimization problem: 

 

dttuxf

ft

t
u 

0

),,(min  with  ),,( vuxax   ,  
00 )( xtx   and 

ff xtx )(             (45) 

 

Then introducing the classical Hamiltonian function [10], given by: 

 

),,,('),,( tvuxatuxfH                                 (46) 

 

we get the necessary conditions for a mean optimal control solution: 

 

),,,( tuxHx     ),,,( tuxH x      and   0
~

),,,( tuxHu               (47) 

 

with no transversality condition.  Let  meanmean ux ,  be the solution of the above optimal control problem to 

which is attached a performance written 
meanJ . 

4.3. Extremal Optimal Control Problems 

sep Here for sake of brevity we treat simultaneously the minimal and maximal extremum problems by 

introducing the  symbol. In these cases, the optimal control problem can be written as: 

 

 dtyftuxf

ft

t

x
u  

0

'),,(min                                (48) 

 

with  

 

          ),,( vuxax           and         wAyAy vx                     (49) 

 

00 )( xtx   , 
ff xtx )( , 

00 )( yty                               (50) 

 

Then introducing the two different Hamiltonian functions given by: 

 

 wAyAtvuxayftuxfH vxx  '),,,(''),,(                     (51) 

 

where  and µ are dual variables with values in Rn, we get the necessary conditions for an extremal optimal 

control solution: 

),,,,( tuxHx   , ),,,,( tuxHy  , ),,,,( tuxH x   ,   ),,,,( tuxH y           (52) 

with the transversality condition 0)( ft . 
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Let  minmin ,ux  and  maxmax ,ux be the solutions of the above optimal control problems to which are 

attached performance levels written minJ  and maxJ , a fuzzy dual solution of the optimal control problem 

will be given by: 

 

],[2/)()()2/)()(()(~
0

minmaxmaxmin

fttttututututu                      (53) 

 

with an expected fuzzy dual performance given by: 

 

2/)2/(
~ minmaxmaxmin JJJJJ                            (54) 

 

Finally, J
~

can be compared with 
meanJ  to assess the influence of uncertainty in the expected 

performance. 

5. Conclusion 

In this paper a new approach has been developed to cope with uncertain optimal control problems. First 

a connection has been established between dual numbers encountered in the design and analysis of 

kinematics for mechanical systems and triangular fuzzy numbers for which different total orders have been 

considered. Fuzzy dual functions, fuzzy dual functionals and fuzzy dual differential equations have been 

introduced, leading to the formulation of fuzzy dual optimal control problems. Adopting a variational 

approach, fuzzy dual Euler’s necessary conditions have been established, then the introduction of a fuzzy 

dual Hamiltonian allows to establish necessary conditions to be satisfied by the solution of a fuzzy dual 

optimal control problem. Finally, the fuzzy dual performance of the solution is characterized. The developed 

approach by handling fuzzy dual numbers presenting only two parameters limits the computational burden 

associated with fuzzy optimal control problems and should allow to treat large uncertain optimal control 

problems. 
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