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Abstract: In this work, we obtain the approximate solutions for the telegraph equations by using optimal 

perturbation iteration technique. We consider two examples to illustrate the proposed method. The present 

paper also unveils that optimal perturbation iteration technique converges fast to the accurate solutions of 

the given equations at lower order of iterations. 

 
 

 
 

1. Introduction 

Many scientific and technological problems in natural and engineering sciences are described by linear 

and nonlinear differential equations, mostly by partial differential equations. For instance, the heat flow and 

the wave propagation phenomena are modeled by nonlinear partial differential equations in physics and 

applied mathematics. The dispersion of a chemically reactive material is also defined by linear and 

nonlinear partial differential equations. Additionally, most physical phenomena of fluid dynamics, electricity, 

plasma physics, quantum mechanics, and propagation of shallow water waves with many other models are 

conducted by these types of differential equations. Therefore, a substantial amount of work has been 

scrutinized for solving such models [1]-[12].     

Many realistic partial differential equations are nonlinear and most of them do not have exact analytic 

solutions, so numerical methods are needed to handle with them easily. Latterly, several techniques have 

been used for the solutions of such problems [13]-[15]. If there are exact solutions, these numerical 

methods often give approximate solutions that quickly converge to the correct solutions. The search for 

exact or approximate solutions of these partial differential equations will assist us to better understand the 

phenomena behind these models. 

The telegraph equation is one of the most important partial differential equations that define the wave 

propagation of electrical signals in a cable transmission line. Many researchers have used various numerical 

and analytical methods to solve the telegraph equation [16]-[18]. The standard form of the telegraph 

equation can be given as:                         

 

             xx tt tu au bu cu                      (1) 

                                                                 

where ( , )u x t  may be voltage or current through the wire at position x  and time t . And also a LC ,
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b GL RC   and c GR   where G  is conductance of resistor, R  is resistance of resistor , L  is 

inductance of coil and C  is capacitance of capacitor [18]. 

In this research, we solve two types of the telegraph equation by using optimal perturbation iteration 

method (OPIM). We also give some figures that prove the accuracy of the new technique.  

2. OPIM for the Telegraph Equation 

Recently, perturbation iteration method and optimal perturbation iteration method (OPIM) have been 

effectively used to cope with the strongly nonlinear differential equations [19]-[24].  We now try to design 

OPIM for the Telegraph equations as follows: 

a) Take the given partial differential equation as: 

 

   , , , , 0xx tt tF u u u u            (2) 

 

where ( , )u u x t  and   is  the perturbation parameter can be embedded into the Eq. 2  as: 

 

         xx tt tu au bF u cu           (3) 

 

To make calculations easier, F can be split as: 

 

F S R            (4) 

 

where S  is the simpler part, which can be easily managed and R  is the remaining part which              

is principal for OPIM. For the Eq. (2), R and S can be taken as: 

 

 
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, ,

,

tt

x t
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x t x
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R u u

S u u

 
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 
         (5) 

 

b) The approximate solution with one correction term in the perturbation expansion  

 

 1n n c n
u u u            (6) 

 

is taken where  c n
u  is the nth correction term. To get an algorithm, we substitute (6) into (3) then 

expand it in a series at 0   with first derivative gives: 

 

                    0
tt xx tu c u c u c u cn n n ntt xx t

F F u F u F u F u F             (7) 

or   

                 
tt txxu c u c u c u cn n n ntt x tx

R R u R u R u R u R S             (8) 

 

where  
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                       , , ,
tt xxu u u

xxtt

R R R R
R R R R

u u u




   
   
   

.       (9) 

 

If these calculations are done for the equation (3), one has 

 

        c n n nn xx tt tt nt
a u u a u b u cu         (10) 

 

which is called the optimal perturbation iteration algorithm (OPIA) for the telegraph equation (1) . To 

trigger the iterations, a trial function 0u  is picked sternly according to the initial conditions. After that the 

first correction term 0( )cu  can be figured out from the algorithm (10) via 0u . 

c) To increase the effectiveness of method, we use the following equation: 

 

 1n n n c n
u u P u             (11) 

 

where 0 1 2, , ,P P P  are convergence control parameters which enables us to adjust the convergence. 

Advancing for 0,1,n    , more approximate solutions are reached as: 

 

 

 

 

1 0 0 0 0

2 0 1 1 1 1

0 1 1 1 1

( , ; )

( , ; , )

( , ; , , )

c

c

m m m m c m

u u x t P u P u

u x t P P u P u

u x t P P u P u   

  

 

  

.       (12) 

 

 Substituting mu  into the Eq. (1), the general problem will become: 

 

 0 1( , ; , , ) ( ) , ( ) ( ,, )m m xx m tt m t mRe x t P P F u u u u        (13) 

 

or 

 

                0 1 0 1 0 1( , ; , , ) ( , ; , , ) ( , ; , , ) .m m m m mRe x t P P R u x t P P S u x t P P           (14) 

 

Seemingly, if 0 1( , ; , , ) 0mRe x t P P    then the approximation 0 1( , ; , , )m mu x t P P   will be the 

accurate solution. However, such case will not often arise for nonlinear equations, but one can shrink the 

functional 

 

2

0 1 0 1

0

( , , ) ( , ; , , )

T b

m m

a

J P P Re x t P P dxdt            (15) 

 

where ,a b  and T  are elected from the domain of the problem. 0 1, ,P P   can be optimally obtained 
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from  

 

     
0 1 1

... 0.
m

J J J

P P P 

  
   

  
          (16) 

 

The approximate solution of order m can be defined after substituting 0 1, ,P P   into the last one of the 

Eqs. (12). For more data about OPIM, please see [19]-[24].  

3. Examples 

In this section, we give some illustrations to show the efficiency of the presented method. The accuracy of 

OPIM is assessed by comparison with the known exact solutions. 

Example 1) Consider the Telegraph equation [18],  

 

                        tt t xxu u u u                                     (17) 

under the initial conditions 

  

       (18) 

 

which has an exact solution ( , ) x tx tu e  .  

Trial function 0u  can be selected as 

 

0

xu e .           (19) 

 

Using the algorithm (10) and the Eq. (19) with initial conditions, first correction term is obtained:  

 

                                   
0( ) x

c eu t             (20) 

 

Therefore, the OPIM solution of first order is: 

 

          
1 0

x xu e P et             (21) 

 

Performing the same calculations, one can get 

 

 2 0 0 1

1
e e e 2

2

x x xu tP t tP P               (22) 

 

              2

3 0 0 1 0 1 0 1 0 1 2

1 1
e e e 2 e 6 3 3 3

2 6

x x x xu tP t tP P t tP tP tP P t P P P             (23) 

 

To determine 20 1,,P P P , we form the following residual: 
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t P P P P tP P P tP tP

P

tP P t P P P

    

         

        





   (24) 

 

for the third order approximation. For 0, 1a b   and 1T   the Eq. (15) changes to 

 
1 1

2

0 1 0 1 2

0

2

0

( , ,, ) ( , ; ),J P P Re x t P P xP P d dt          (25) 

 

By solving  

0 1 2

0
J J J

P P P

  
  

  
          (26) 

 

one can have 

 

0 1 20.9023456, 0.0120563, 0.1031044P P P          (27) 

 

Substituting these constants into the Eq. (23), approximate OPIM solution of third order arises as:   

 

 

 
3

2

e 0.902345e 0.006028e 2 0.902345

0.01718399999e 6 2.703503013 0.010878671

x x x

x

u t t t

t t t

     

 
.    (28) 

    

If the iteration continues, approximate results can be found in higher order. Fig. 1 gives absolute errors for 

approximate results in the 6th order. 

 

 
Fig. 1. Absolute errors for sixth order OPIM solution for Example 1. 

 

Example 2) Consider the Telegraph equation [18] 

 

                                6 9tt t xxu u u                                  (29) 
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under the initial conditions 

 

                       ( ,0) sinu x x  ,  ( ,0) 0tu x  .        (30) 

 
An initial function can be taken as 

 

0 n .siu x            (31) 

 

Using the Eqs. (10),(12),(29) with initial conditions and proceeding as in previous example, we can 

procure the following approximate solutions: 

 

     
20

1

9
sin sin

2

P
u x t x            (32) 

 

                   2 2 20
2 0 0 0 1

9 9
sin sin sin 4 4 8 3

2 8

P
u x t x t x P tP t P P            (33) 

 

              

 2 2 20
3 0 0 0 1

2 2

0 0 0 1 1 1 0 12

22 3 4

0 1 0 1 0 1 0 1

9 9
sin sin sin 4 4 8 3

2 8

40 40 80 30 40 80 30 409
sin

80 160 180 72 9

P
u x t x t x P tP t P P

P tP t P P tP t P P P
t x P

tP P t P P t P P t P P

      

      


 

 
  
  

  (34) 

 

and so on. Corresponding residual will be in the form: 

 

 

  
 

 
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7
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    
         
      

  

    
   
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


 

2 3

24 5 6

80 1440 5400 7200
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t t t
P
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 
 
 
 
 

                         

  (35) 

 

for the third order OPIM approximate solution. With the help of equations (15) and (35), one can reach the 

following values  

 

0 1 20.9022357, 1.0536142, 0.5056331P P P          (36) 

Furnishing (36) into (34), third order OPIM solution arises as: 

 

 

2 2 2

3

2 2 3 4

sin 4.06006065 sin 1.185315975 0.3910572 7.2178856 2.7067071 sin

0.0568837 sin 8.03080618 139.98705 166.56814714 68.443800 8.555475

u x t x t t t x

t x t t t t

     

    
 (37) 
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If the iteration continues, more approximate solutions can be reached. Fig. 2 shows absolute errors for 

approximate results in the 6th order. 

 

 
Fig. 2. Absolute errors for sixth order OPIM solution for Example 2. 

 

4. Conclusion 

In this research, we apply the newly found technique, OPIM, for solving the telegraph type partial 

differential equations. Two applications are provided to show the effectiveness of the method. Figures prove 

the accuracy in higher order approximate solutions. All complex computations are handled by Mathematica 

9.0. due to huge amount of calculations. We can finally say that in the light of data in this paper, this method 

can be extended to solve all types of ordinary and partial differential equations. 
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