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Abstract: The Least Square Error (LSE) is widely used method in many engineering and computational 

problems solution. The LSE method is simple from the “formulation” point of view, offers a simple solution. 

However, it might lead to wrong or incorrect conclusions, especially if high dimensional or large span data 

are to be processed or if some variables have significantly smaller influence than the other does, e.g. 

inconvenient selection of measuring units. In this paper, we analyze influence of row and column 

“normalization” inspired by the Gershgorin’s theorem. The approach has been experimentally verified on a 

LSE application for high dimensional and large span data. The proposed approach was tested also on 

Hilbert’s matrix inversion for conditional number change analysis. 
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1. Introduction 

The Least Square Error (LSE) is used, Fig. 1, as an approximation method in many areas [1]-[5]. However, 

it is rotationally and translationally invariant, dependent on variables unit etc. In addition, the LSE method 

is mostly used for a low dimensionality data, i.e. for a small number of parameters. The LSE is not a 

convenient method for implicitly defined problems F(x) = 0, used especially in computer graphics and 

geometry fields. In this case the Total Least Square Error (TLSE), Fig. 2, is to be used [6], [7] which is 

computationally more expensive. A simple close solution in E2 is based on a solution of quadratic equation 

[8]-[10]. 

The LSE leads to a solution of a linear system of equations  𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏, which leads to problems with 

numerical stability, which is influenced by eigenvalues of the 𝐴𝑇𝐴 matrix. 
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Fig. 1. Least square error (LSE).                   Fig. 2. Total least square error (TLSE). 
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2. Conditionality and Gershgorin’s Theorem 

In numerical mathematics conditionality measures how much the output of computation depends on 

input changes, resp. on errors in measuring, and it is expressed by condition number 𝜅(𝐴). 

2.1. Condition Number 

The condition number is usually expressed as 𝜅(𝐴) = 10𝑘 and it means that approx. 𝑘 digits in precision 

of computation can be lost. Let  𝐴 is a matrix  𝑛 × 𝑛 with 𝑎𝑖𝑗 elements. Eigenvalues 𝜆𝑖 of the matrix 𝐴 

are determined as 

 

det(𝑨 − 𝜆𝑰) = 0                                      (1) 

 

Solving the determinant a polynomial 𝑃𝑛(𝜆) is obtained and roots are eigenvalues. Eigenvalues 𝜆𝑖 ∈

𝐶1are generally complex numbers. The condition number 𝜅(𝑨) is determined as 

 

 𝜅(𝑨) =
|𝜆𝑚𝑎𝑥|

|𝜆𝑚𝑖𝑛|
  

   

where 𝜆𝑚𝑎𝑥, resp. 𝜆𝑚𝑖𝑛 are maximal, resp. minimal eigenvalues of the matrix 𝑨. It is said that the 𝑨 

matrix with a high condition number is ill-conditioned. 

However, it should be noted that: 

 the condition number 𝜅(𝑨) does not give precise estimation of inaccuracy 

 in the case of linear systems of equations, the condition number depends on the order of rows (they 

can be swapped) and on the order of columns (unknown variables xi can be re-indexed, as it is only a 

matter of decision, which physical phenomena will be 𝑥𝑖 and which will be 𝑥𝑘) 

3. Gershgorin’s Theorem 

The Gershgorin’s Theorem (GT) was published in 1931 and gives an estimation of eigenvalues position in 

the complex plane. It can be described as follows [11]: 

Let  𝑨  is a matrix  𝑛 × 𝑛  with  𝑎𝑖𝑗  elements. Let  𝑟𝑖 = ∑ |𝑎𝑖𝑗|
𝑛
𝑗≠𝑖  for  𝑖 = 1,… , 𝑛 . Let the Gershgorin’s 

disc 𝐷(𝑎𝑖𝑖 , 𝑟𝑖) is a disc with a radius 𝑟𝑖 centered at 𝑎𝑖𝑖 . Then every eigenvalue of the matrix 𝑨 lies within 

one of the Gersgorin’s disk 𝐷(𝑎𝑖𝑖 , 𝑟𝑖). The GT is valid also for the transposed matrix 𝑨, i.e. 𝑨𝑇. 

As the conditional number 𝜅(𝑨) is not fixed in the case of linear system of equations, as row and columns 

can be swapped depending on re-indexing of variables or on an order of equations. Therefore the 

Gershgorin’s disc 𝐷(𝑎𝑖𝑖, 𝑟𝑖) differs for different permutation of rows and columns [11], [12]. 

4. Least Square Error Method 

The Least Square Error (LSE) method is widely used in many problems solution, mostly for an optimal 

approximation of problems formulated in explicit forms, i.e. as 𝑦 = 𝑓(𝒙), where 𝒙 is a vector of known 

values [13], [14]. Let us consider overdetermined system of equations 

 

 𝑨𝒙 = 𝒃 (1) 

   

where 𝑨 is a matrix 𝑛 × 𝑚 and 𝑛 > 𝑚. An error ‖𝒓‖ of approximation can be expressed as  

 

 ‖𝒓‖ = ‖𝑨𝒙 − 𝒃‖ (2) 



  

The LSE method minimizes the square of the error, i.e. minimizes ‖𝒓‖2. The condition for an extrema are 

given as: 

 

𝜕‖𝒓‖2

𝜕𝒙
=  

𝜕[(𝑨𝒙 − 𝒃)𝑇(𝑨𝒙 − 𝒃)]

𝜕𝒙
= 2(𝑨𝑇𝑨𝒙 − 𝑨𝑇𝒃) = 𝟎 𝑨𝑇𝑨𝒙 = 𝑨𝑇𝒃 

 

(4) 

  

Let us consider a non-singular squared matrix 𝑩 𝑛 × 𝑛. It can be seen, that the condition number 𝜅(𝑩𝑇𝑩) 

is getting significantly higher as 

 

 𝜅(𝑩𝑇𝑩) =
𝜆𝑚𝑎𝑥

2

𝜆𝑚𝑖𝑛
2  

(5) 

 

   

where 𝜆𝑚𝑎𝑥, resp. 𝜆𝑚𝑖𝑛 are maximal, resp. minimal eigenvalues of the matrix 𝑩. It means, that if the 

condition number 𝜅(𝑩) = 103, then the condition number of 𝜅(𝑩𝑇𝑩) = 106. It means that the LSE method 

produces ill-conditioned system of equations in general. 

4.1. Matrix Normalization 

Let us consider linear system of equations 𝑨𝒙 = 𝒃, i.e. the result of the LSE method application. The 

Gershgorin’s Theorem (GT) gives an estimation of eigenvalues position in a complex space. It actually says 

that if a column 𝑎∗,𝑗 is multiplied by 𝑞𝑗 ≠ 0, 𝑗 = 1,… , 𝑛 the position and radius for the eigenvalue 𝜆𝑗 ≠ 0 

is changed accordingly to the GT. This operation reflects actually the scaling of the variable 𝑥𝑗 , i.e. physical 

unit change in physical applications. On the other hand, a similar process can be made for rows a column 

𝑎𝑖,∗ is multiplied by 𝑝𝑖 ≠ 0, 𝑗 = 1,… , 𝑛 and right hand side must be multiplied by 𝑝𝑖 as well.  

As the GT depends on the order of rows and columns of the matrix 𝑨, therefore a small modification is 

needed, i.e. the diagonal items is not excluded. This resulted to a sequence: 

 
for j:=1 to n do 

{ q:=sum(|a[*,j]|); /* sum of absolute values in the column including the diagonal one 

*/ 

 A[*,j]:=A[*,j]/q  /* column normalization and scaling of x[j] */ } 

for i:=1 to n do 

{ p:= sum(|a[i,*]|); /* sum of absolute values in the row including the diagonal one */ 

 A[i,*]:=A[i,*]/p;  /* row normalization */ 

 b[i]:=b[i]/p /* right hand side modification */ } 

 

The first cycle actually “balances” influence of unknown variables 𝑥𝑗 , i.e. scaling their physical units, while 

the second cycle normalizes the numerical ranges in which each row is to be computed. 

It should be noted, that in the real implementation, the division operation should not be used directly, as 

it changes variable’s mantissa. The exponent subtraction operation should be used instead, i.e. 

 

exponent(A[*,j]):= exponent(A[*,j]) - exponent(q) 

 

as we do not lose the mantissa precision. Also for more precise computation of the 𝑨𝑇𝑨 and 𝑨𝑇𝒃 a 

special summation algorithms for summation should be used [15], especially in the case of large data spans. 

It is based on exponent hashing and intended for summation of large data sets with a large span of data 

4.2. Practical Consequences 

Let us consider a data set Ω = {〈𝑥𝑖 , 𝑦𝑖 , 𝑓𝑖〉}𝑖=1
𝑛 , i.e. data set containing for  𝑥𝑖  and 𝑦𝑖  and measured 
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functional value 𝑓𝑖 , and we want to find parameters 𝒂 = [𝑎, 𝑏, 𝑐, 𝑑]𝑇 for optimal fitting function: 

 

 𝑓(𝑥, 𝑦, 𝒂) = 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑥𝑦 
(6) 

 

Minimizing the vertical squared distance 𝐷, i.e.: 

 

𝐷 = min
𝑎,𝑏,𝑐,𝑑

∑(𝑓𝑖 − 𝑓(𝑥𝑖 , 𝑦𝑖 , 𝒂))
2

𝑛

𝑖=1

 𝑚𝑖𝑛
𝑎,𝑏,𝑐,𝑑

∑(𝑓𝑖 − (𝑎 + 𝑏𝑥𝑖 + 𝑐𝑦𝑖 + 𝑑𝑥𝑖𝑦𝑖))
2

𝑛

𝑖=1

 
(7) 

 

   

Conditions for an extreme are given as: 

 

 
𝜕𝑓(𝑥, 𝑦, 𝒂)

𝜕𝒂
[1, 𝑥, 𝑦, 𝑥𝑦]𝑇 = 0 (8) 

   

Applying this on the expression of 𝐷 we obtain 

 

𝜕𝐷

𝜕𝒂
= 2∑(𝑓𝑖 − (𝑎 + 𝑏𝑥𝑖 + 𝑐𝑦𝑖 + 𝑑𝑥𝑖𝑦𝑖))

𝑛

𝑖=1

𝜕𝑓(𝑥, 𝑦, 𝒂)

𝜕𝒂
= 0 

(9) 

 

  

It leads to conditions for 𝒂 = (𝑎, 𝑏, 𝑐, 𝑑) parameteters in the form of a linear system of equations 𝑨𝒙 = 𝒃: 

 

[
 
 
 
 
 
 
 
 𝑛 ∑ 𝑥𝑖

𝑛

𝑖=1
∑ 𝑦𝑖

𝑛

𝑖=1
∑ 𝑥𝑖𝑦𝑖

𝑛

𝑖=1

∑ 𝑥𝑖

𝑛

𝑖=1
∑ 𝑥𝑖

2
𝑛

𝑖=1
∑ 𝑥𝑖𝑦𝑖

𝑛

𝑖=1
∑ 𝑥𝑖

2𝑦𝑖

𝑛

𝑖=1

∑ 𝑦𝑖

𝑛

𝑖=1
∑ 𝑥𝑖𝑦𝑖

𝑛

𝑖=1
∑ 𝑦𝑖

2
𝑛

𝑖=1
∑ 𝑥𝑖𝑦𝑖

2
𝑛

𝑖=1

∑ 𝑥𝑖𝑦𝑖

𝑛

𝑖=1
∑ 𝑥𝑖

2𝑦𝑖

𝑛

𝑖=1
∑ 𝑥𝑖𝑦𝑖

2
𝑛

𝑖=1
∑ 𝑥𝑖

2𝑦𝑖
2

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 

[

𝑎
𝑏
𝑐
𝑑

] =

[
 
 
 
 
 
 
 
 ∑ 𝑓𝑖

𝑛

𝑖=1

∑ 𝑓𝑖𝑥𝑖

𝑛

𝑖=1

∑ 𝑓𝑖𝑦𝑖

𝑛

𝑖=1

∑ 𝑓𝑖𝑥𝑖𝑦𝑖

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 

 (10) 

 

The bilinear form was used to show the LSE method application to a non-linear case; in the case of a 

linear function, i.e. 𝑓(𝑥, 𝑦, 𝒂) = 𝑎 + 𝑏𝑥 + 𝑐𝑦, the 4th row and column are to be removed. The matrix 𝑨 is 

symmetric and the function 𝑓(𝒙) might be more complex, in general. 

Several methods for LSE have been derived [1]-[4], however those methods are sensitive to the vector 𝒂 

orientation and not robust in general as a value of ∑ 𝑥𝑖
2𝑦𝑖

2𝑛
𝑖=1  might be too high in comparison with the 

value 𝑛, which has an influence to robustness of a numerical solution. The LSE methods are sensitive to a 

rotation as they measure vertical distances. Rotational and translation invariance are fundamental 

requirements especially in geometrically oriented applications [8], [9]. 

The LSE method is usually used for a small size of data, low dimensionality and also a span of a domain is 

relatively small. However, in some applications the domain span can easily be over several decades, e.g. in 

the case of Radial Basis Functions (RBF) approximation for GIS applications etc. In this case, the 

overdetermined system can be difficult to solve [16] 

Let us consider a recent simple example again, when points are generated from (𝑥𝑖 , 𝑦𝑖) ∈ 〈10, 105〉 ×

〈10, 105〉. It can be found using MATLAB that conditional number 𝑐𝑜𝑛𝑑(𝑨𝑇𝑨) ≅ 6. 1010, see Fig. 3. 

Using the approach presented above, the conditional number was decreased significantly 
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to 𝑐𝑜𝑛𝑑(𝑨𝑇𝑨̅̅ ̅̅ ̅̅ ) ≅ 2. 106.  

 

 
Fig. 3. Conditionality of the original matrix depending on data set size, i.e. number of points. 

 

 
Fig. 4. Conditionality of the modified matrix depending on data set size, i.e. number of points. 

 

Comparing the condition numbers of the original matrix 𝑨 and modified matrix 𝑨′, we can see significant 

improvement of matrix conditionality as 

 

𝜐 = 𝑐𝑜𝑛𝑑(𝑨𝑇𝑨)
𝑐𝑜𝑛𝑑(𝑨𝑇𝑨̅̅ ̅̅ ̅̅ )

⁄ ≅
6.1010

2.106 = 3.104                     (12) 

 

 
Fig. 5. Conditionality of the original matrix depending on data set size, i.e. number of points. 

 

In the case of a little bit more complex function defined by Eq.(6), i.e. 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑥𝑦 higher 

condition number and higher improvements are obtained, Fig. 5 and Fig. 6.  

In this case of the LSE defined by Eq.(6) the conditionality improvement is even higher, as 

 

𝜐 = 𝑐𝑜𝑛𝑑(𝑨𝑇𝑨)
𝑐𝑜𝑛𝑑(𝑨𝑇𝑨̅̅ ̅̅ ̅̅ )

⁄ ≅
6.1020

6.1011 = 109                          (13) 
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It means that better numerical stability is significantly improved by a simple operation. All graphs clearly 

shows also dependency on a number of points used in the experiments (horizontal axis). As a testing 

example, the Hilbert’s matrix can be used, as it is extremely ill-conditioned matrix. 

 

 
Fig. 6. Conditionality of the modified matrix depending on data set size, i.e. number of points. 

 

5. Hilbert’s Matrix Conditionality 

We should answer a question, how the conditional number of the Hilbert’s matrix can be improved if 

orthogonal basis is used instead of orthonormal one as an experimental test. 

 

 
Fig. 7. Conditionality of the original  𝑯5(0, 𝑏) (numerical problems occur for 𝑏 > 650). 

 

 
Fig. 8. Conditionality of the modified  𝑯5(0, 𝑏). 

 

A simple experiment can prove that the proposed method does not practically change the conditionality 

of the Hilbert’s matrix  𝑯𝑛(0,1).  However, as the LSE approximation is to be used for large span of data, it 

is reasonable to consider a general case and explore conditionality of the 𝑯𝑛(𝑎, 𝑏) matrix, e.g.  𝑯5(0, 𝑏). 

It can be seen, that 𝑐𝑜𝑛𝑑(𝑯5(0,800)) = 6. 1023. If the proposed approach is applied 𝑐𝑜𝑛𝑑(𝑯5(0,800)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) =

2,5. 1014 for the modified matrix, Fig. 7, Fig. 8. 
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Fig. 9. Conditionality of the original  𝑯5(0, 𝑏) (log scale on vertical axis is used). 

 

 
Fig. 10. Conditionality of the modified  𝑯5(0, 𝑏) (log scale on the vertical axis is used). 

 

It means that the conditionality improvement  

 

𝜐 =
𝑐𝑜𝑛𝑑(𝑯5(0,800))

𝑐𝑜𝑛𝑑(𝑯5(0,800)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
≅

6.1023

2,5.1014
≈ 109                             (14) 

 

This is a similar ratio as for the simple recent examples. 

 

 

   
a)                                        b) 

Fig. 11. Histogram of bivector sizes ‖𝜷𝑖 ∧ 𝜷𝑗‖ of the for original matrix and modified one. a) Original matrix 

(horizontal axis multiplied by 1010); b) Modified matrix (horizontal axis is not multiplied). 

 

Let 𝜷𝑖 is a row the the matrix 𝑨𝑇𝑨. It is actually a vector in d-dimensional space. Then the value of the 

bivector ‖𝜷𝑖 ∧ 𝜷𝑗‖ is the size of an oriented area on the plane 𝒆𝑖𝒆𝑗 in that space. It means that if 𝜷𝑖 vectors 

are “normalized” a better conditional number is obtained. The proposed approach has been used for 

St. Helen’s volcano RBF approximation by 10 000 points instead of 6 743 176 original points, Fig. 12., i.e. 
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10 000 parameters (weights of the RBFs needed to be determined). This leads to a compression 1: (67)2. In 

this example of the (RBF) approximation, the polynomial reproduction leads to significant numerical 

problems analyzed in [16]. A change of the size of the bivectors  ‖𝜷𝑖 ∧ 𝜷𝑗‖ is a practical result of the 

application to the RBF approximation, which changes from the interval 〈𝑒𝑝𝑠, 1010〉 to 〈𝑒𝑝𝑠, 8. 102〉 only, 

which significantly increases robustness of the RBF approximation, Fig. 11. 

 

 
Fig. 12. Approximation error of the RBF approximation of the St. Helen’s volcano. 

 

6. Conclusion 

In this paper, we pointed out to the weak points of the Least Square Error (LSE) method application and 

some relationships with the geometric algebra approach. If the LSE method is used for big data with a large 

span or units of unknown 𝑥𝑖 variables are selected insensitively, the LSE method can produce incorrect 

results due to very bad conditionality as the LSE matrix is ill-conditioned.  

The problem can be partially solved by the row and column “normalization” described in the paper. The 

proposed method decreases the condition number of a matrix used in the LSE method and increases 

robustness of a numerical solution especially when domain data range is high. However a special algorithm 

for precise summation is recommended for high range data sets It can be used also for solving systems of 

linear equations in general, e.g. if radial basis function interpolation or approximation is used. 
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