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Abstract: The generation process of medical images is inevitably accompanied by a certain noise which 

degrades the quality of the image and assigns the final clinical diagnosis. Therefore, the denoising step plays 

an important role in the treatment of medical images in order to prepare the steps of diagnosis and therapy. 

In this paper, we propose a nonlinear diffusion model for denoising of large size images. The numerical 

approach to this problem is based on an algorithm combining the methods of finite element and of domain 

decomposition. Numerical simulations show that the proposed algorithm is a useful alternative for the 

treatment of degraded images large size. 
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1. Introduction 

The Perona–Malik equation [1], [2], proposed in 1990, has stimulated a great deal of attention in image 

processing among the denoising techniques based on anisotropic diffusion equations. It is commonly 

believed that Perona–Malik equation provides a potential algorithm for noise removing, image 

segmentation, edge detection and image enhancement [3]. The basic idea of Perona–Malik algorithm is to 

evolve an initial image, 
0 ( )u x , defined in a domain ( 2,3)nR n  , under a diffusion operator with the 

edge controlling property [2] 

 

.( (| |) ) 0 ,tu u u     

 

where ( , )u t x  is an unknown function defined in I  . The equation is accompanied by zero Neumann 

boundary condition and an initial condition 
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where n  is the unit outward normal to the boundary of  , and  0,I T . 

2. Image Denoising via Nonlinear Diffusion 

2.1. Mathematical Model 

Let us consider the following model [4], [5]: 

                             (1) 

In this model, 
2R  denotes the domain image, n the unit outer normal of the boundary  , and the 

nonlinear diffusion coefficient  ():]0+1[!]0+1[ is a decreasing function satisfying:  

1) ( ) ( ) , 0, 0.s s s        

2) (0) 1 .    

3) lim ( )
s

s 


 , *R  . 

4) 2 | ( ) | ( ), .s s s s R       

This model is obtained from the one initially proposed by Perona and Malik [4] on which some 

modifications have been done on conditions 1, 2 and 3. 

Notice that the existence and uniqueness of a solution for PDE problem (2.1) are established in [6]. 

2.2. Domain Decomposition 

In the first place, we apply the non-overlapping domain decomposition approach [7] to (2.1) and propose 

an algorithm to solve the corresponding problems. 

Notice that in the discussion which follows we consider a splitting into two subdomains only but this 

method works for more than two subdomains. 

We decompose the spatial domain into two disjoint subdomains 1  and 2  such that 1 2    

and 1 2\   . Let 
1

ku  and 
2

ku  denote the approximate solution on 1  and 2  respectively at the 

time step k. 

Iteratively for each k, we solve the boundary value problems 1( )P  and 2( )P : 

                                               (2) 

                                                    (3) 
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The proposed method is summarized in the following algorithm. 

2.3. Algorithm 

In this section we will use the finite element method to discretize the model (2.1), and the result of this 

discretization is: 

 
1 1( ( * ) )n nu A A t B u     

 

where: 

,i j i jA dx  , mass matrix. 

, (| |)n

i j i jB u dx      , stiffness matrix. 

This method has a higher computing time, essentially for images of large size [8]. To remediate to that, we 

combine the finite element method with the domain decomposition technic and we propose the following 

algorithm. 

Algorithm 1: 

1) For k (time step) = 1; …………; T do: 

a) For i = 1; ………...; NH (number of field) do: 

 Compute stiffness matrix 
k

iB  

 Compute mass matrix 
k

iA  

 Solve system: 
1 1( ( * ) )k k k k k

i i i i iu A A t B u    

 Put 
1k

iu 
 in 

ku . 

b) If SNR (
1ku 

) <SNR (
ku ) break. Else go to (1) with k + +. 

2) Do u  = 
ku . 

Remark: To raise the effectiveness of this algorithm, we use a filter in algorithm 2 (see 2.11 in algorithm 2) 

to give us the control at each subdomain i . 

Algorithm2: 

Canst=1, 4.   

1) For k (time step) = 1; …………; T .do: 

a) For i = 1; ………...; NH (number of field) do: 

 Compute stiffness matrix 
k

iB  

 Compute mass matrix 
k

iA  

 Solve system: 
1 1( ( * ) )k k k k k

i i i i iu A A t B u    

b) Put 
1k

iu 
 in ku . 

2) If  SNR (
1ku 

) <SNR (
ku ) 

 If (Canst< ) do 
1ku 

=
ku and 1*10t t    , Canst++, and go to (1) with k --. 
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 Else break. Do 
ku u . 

2.4. Experimental Results 

In order to prove effectiveness of the proposed method, the Signal-to-noise ratio SNR is used to estimate 

the quality of restored images, see Fig. 1-Fig. 3. 

A comparison between conventional methods of image treatment and the proposed algorithm for 

nonlinear diffusion model (2.1) discretized by finite element method is provided in the following tables for 

three large size images. 

In all the cases considered, we have used 
2

1
( )

1 ( / )
s

s k
  


where 0k  , In the following,

designates t . The stopping criterion for the domain decomposition iterations (Algorithm 1 and 2) isSNR 

(
1ku 

) <SNR (
ku ) and Canst> .Here we use

*

10 *

|| ||
10log

|| ||k

u
SNR

u u



, where 

*u is the uncorrupted 

image. 

2.4.1. Test problem 1 

As a first numerical experiment we consider a 437*417 pixels’ image corrupted by large Gaussian noise 

(variance of 
210

). We present the results of the scheme (2.4) after 10, 30 and 50 iterations in Fig. 1. We 

used parameters t = 0.0002. 

Also the SNR results through the iterations are shown in Table 1 for k =1/ 4 and k =1/ 8. It is seen from 

this table that the scheme (FEM) gives better results in the case of k =1/ 4 

Rather than in the case of k =1/ 8 for the mesh free methods, RBF (Radial Basis Function) or the finite 

pointset method (FPM), by comparing their related SNR values. We remark that, for the same parameter 

values, the best results of FEM method are appeared after 30 iterations. The related SNR values are 

represented in Table1. The results of denoising for this image using the finite difference method are 

presente in [7]. 

 

 
Fig. 1. Left to right and top to bottom: original image, added noise, denoised image after 20 and 30 

iterations. 

 

Table 1. SNR Values Comparison for Image (437*417) Pixels 

Iteration 10 20 30 40 50 

Method FPM: 1/ 4k   25.843 26.360 26.668 26.594 26.537 

Method FPM: 1/ 8k   25.801 26.218 25.961 25.874 25.792 

Method RBF: 1/ 8k   25.627 26.940 26.191 26.306 26.317 

Method FE: 1/ 4k  , DD=1*1 26.117 26.880 25.221 24.006 24.006 

Method FE: 1/ 8k  , DD=1*1 25.000 25.200 26.801 26.006 25.050 
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2.4.2. Test problem 2 

In this case we have considered an image of size 800*800 pixels. Results of Algorithm 1 and Algorithm 2 

with the parameter values 0.0001   and 1k  are shown in Fig. 2. In this case the stopping criterion 

was 3Canst  . Also as can be seen from Tab. 2, the proposed model gives also better results in the case of 

N_D=4*4 (N_D: the number of subdomains) rather than N_D=1*1. The last image in Fig. 2 shows denoised 

image by FEM collocation method [8].  

 

 
Fig. 2. Left to right: Original image, added noise. 

 
Table 2: SNR Values Comparison for Image (800*800) Pixels 

Iteration 10 20 30 40 50 
Method FE: DD=1*1 - - - - - 
Method FE: DD=4*4 22.11 23.20 27.001 24.786 23.586 

 

2.4.3. Test problem 3  

In this example we tested an image of size 800*800 pixels. This image has been extracted from [8]. The 

obtained result after 15 iterations is shown in Fig. 3. In this case we have chosen 0.0005  an 1k  . As 

it can be seen from this figure, the proposed method acts very good in denoising especially when we raise 

the number of subdomains. It can be seen from table 3 and 4 that the scheme (FEM) gives better results in 

the case of Algorithm 2 rather than in the case of Algorithm 1. 

 

 
Fig. 3. Original image, added noise, denoised image after 15 iterations. 

 
Table 3. SNR Values Comparison for Image (800*800) Pixels with Algorithm 1 

Iteration 0 5 10 15 20 
FEM with Algorithm 1: DD=1*1 - - - - - 

FEM with Algorithm 1: DD=4*4 22.11 23.20 25.001 27.786 24.586 

FEM with Algorithm 1: DD=6*6 22.11 25.58 28.544 25.587 20.825 

FEM with Algorithm 1: DD=7*7 22.11 26.557 27.257 22.748 22.77 

FEM with Algorithm 1: DD=8*8 22.11 27.554 27.214 
 

19.525 19.002 

FEM with Algorithm 1: DD=10*10 - - - - - 
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Table 4. SNR Values Comparison for Image (800*800) Pixels with Algorithm 2 
Iteration 0 5 10 15 20 

Method FEM Algorithm 2: DD=1*1 - - - - - 

Method FEM Algorithm 2: DD=4*4 22.11 25.20 26.366 28.568 25.023 

Method FEM Algorithm 2: DD=6*6 22.11 26.58 30.223 28.586 22.278 

Method FEM Algorithm 2: DD=7*7 22.11 25.201 29.588 24.125 23.021 

Method FEM Algorithm 2: DD=8*8 22.11 29.255 28.147 24.588 20.458 

Method FEM Algorithm 2:DD=10*10 - - - - - 

 

2.5. Result Analysis 

First the finite element method (FEM) is obviously efficient compared to other methods like that of Radial 

Basis Function (RBF) or that of finite pointset method (FPM). However, this method (FEM) takes more time 

for image's denoising than the other usual ones (Test problem 1) or does not work for images of big size 

(Test problem 2).  

Secondly, we can see that using domain decomposition technique with finite element method gives better 

results especially in term of computing time and works for images of big size. This technique works when 

the size of subdomains is not very small (Test problem 3). 

3. Conclusion 

In this paper, we proposed the finite element method combined with the domain decomposition in image 

denoising. For this kind of problems, the domain decomposition technique which can be implemented 

sequential decreases the size of the system of equations and consequently reduces the computational cost 

significantly. The two proposed algorithms are evaluated in terms of performance and computing time 

through numerical results. Our experimental results demonstrate that the quality of denoised images by 

this method is quite well especially when they are compared with the results of other methods such as finite 

difference or RBF mesh free method. 
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