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Abstract: In this paper, a 𝐿0  Stable Second Derivative Trigonometrically Fitted Block Backward 

Differentiation Formula of Adams Type (SDTFF) of algebraic order 4 is presented for the solution of 

autonomous oscillatory problems. A Continuous Second Derivative Trigonometrically Fitted (CSDTF) whose 

coefficients depend on the frequency and step size is constructed using trigonometric basis function. The 

CSDTF is used to generate the main method and one additional method which are combined and applied in 

block form as simultaneous numerical integrators. The stability properties of the method are investigated 

using boundary locus plot. It is found that the method is zero stable, consistent and hence converges. The 

method is applied on some numerical examples and the result show that the method is accurate and 

efficient.  
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1. Introduction 

An important and interesting class of initial value problems which arise in practice include the 

differential equations whose solutions are known to oscillate with a fitting frequency. Such problems arise 

frequently in area such as Biological Science, Economics, Chemical Kinetics, Theoretical Chemistry, Medical 

Science to mention but a few. 

The form and structure of the oscillating problems is highly application dependent [1]. They also noted 

that the best numerical method to use is strongly dependent on the application. Numerical methods used to 

treat oscillatory problems differ depending on the formulation of the problem, the knowledge of certain 

characteristic of the solution and the objective of the computation [1]. 

A number of numerical methods based on the use of polynomial function have been developed for solving 

this class of problems by various researchers such as [2]-[5]. Other methods based on exponential fitting 

techniques which takes advantage of the special properties of the solution that may be known in advance 

have also been proposed to solve this class of IVP (see [6], [7]). 

In order to solve differential equations whose solutions are known to oscillate, methods based on 

trigonometric polynomials have been proposed (see [8]-[13]). However, little attentions have been paid to 

the Block Differentiation Formula using the trigonometric polynomial as the basis function for solving IVP 

whose solution oscillate. Hence the motivation for this paper. 
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2. Derivation of the Method 

Let us consider the system of first order  

 

𝑦′= 𝑓 𝑥, 𝑦 , 𝑦 𝑥0 = 𝑦0 , 𝑥 ∈  𝑥0, 𝑏                              (1) 
 

where 𝑓 satisfies the Lipschitz theorem 

The proposed 𝑘 −step Second Derivative Trigonometrically Fitted Block Backward Differentiation 

Formula of Adams Type (SDTFF) is of the form  

 

𝑦𝑛+𝑘 = 𝑦𝑛+𝑘+1 + 𝑕  𝛽𝑗  𝑢 𝑘
𝑗 =0 𝑓𝑛+𝑗 + 𝑕2𝛾𝑘𝑔𝑛+𝑘                          (2) 

 

where 𝑢 = 𝜔𝑕,    𝜔 is the frequency, 𝑦𝑛+𝑘 = 𝑦 𝑥𝑛 + 𝑘𝑕 ,   𝑦′
𝑛+𝑘

= 𝑓𝑛+𝑗 , 𝑔𝑛+𝑘 =
𝑑𝑓

𝑑𝑥
 
𝑥𝑛+𝑗

𝑦𝑛+𝑗
    

𝛽𝑗 , 𝑗 = 0 1 𝑘 and 𝛾𝑘  are parameters to be obtained from multistep collocation techniques [2], [4], [10], 

[14]. 

In order to obtain “(2)” for 𝑘 = 2, we proceed by seeking to approximate the exact solution 𝑦(𝑥) in the 

interval of integration by the interpolating function  

 

𝐼 𝑥 =  𝑎𝑗 𝑥
𝑗2

𝑗 =0 + 𝑎3 sin 𝜔𝑥 + 𝑎4 cos 𝜔𝑥                         (3) 

 

where 𝑎𝑗 , 𝑗 = 0 1 4 are coefficients to be determined uniquely. The following conditions are imposed. 

 

𝐼 𝑥𝑛+𝑗  = 𝑦𝑛+𝑗    ,        𝐽 = 1                                     (4) 

 

𝐼′ 𝑥𝑛+𝑗  = 𝑓𝑛+𝑗    ,        𝐽 = 0(1) 2                               (5) 

 

𝐼′′ 𝑥𝑛+𝑗  = 𝑔𝑛+𝑗    ,        𝐽 = 2                                  (6) 

 

Equations  4) − (6  lead to system of 5 equations which are solved simultaneously with the aid of Maple 

2015.1 package to obtain the coefficients 𝑎𝑗 . The continuous form (CSDTF) is obtained by substituting the 

values of 𝑎𝑗  into “(3)”. After some correct manipulations, the CSDTF is expressed in the form  

 

𝐼 𝑥 = 𝑦𝑛+𝑘−1 + 𝑕  𝛽𝑗  𝑢 2
𝑗 =0 𝑓𝑛+𝑗 + 𝑕2𝛾2𝑔𝑛+2                         (7) 

 
On evaluating “(7)” at the points 𝑥 =  𝑥𝑛+2, 𝑥𝑛 , we obtain the main method and additional method as 

follows 

 

𝑦𝑛+2 − 𝑦𝑛+1 = 𝑕  
𝑢2 cos 𝑢 − 4𝑢 sin 𝑢 − 4𝑢 cos 𝑢 + 𝑢2 + 4

4𝑢2 cos 𝑢 − 2𝑢2 cos 2𝑢 − 4𝑢 sin 𝑢 + 2𝑢 sin 2𝑢 − 2𝑢2
 𝑓𝑛

+ 𝑕  
−𝑢2 cos 2𝑢 + 4𝑢 sin 𝑢 + 2𝑢 sin 2𝑢 + 2 cos 𝑢 − 3𝑢2 − 2

4𝑢2 cos 𝑢 − 2𝑢2 cos 2𝑢 − 4𝑢 sin 𝑢 + 2𝑢 sin 2𝑢 − 2𝑢2
 𝑓𝑛+1 + 

𝑕  
3𝑢2 cos 𝑢 − 𝑢2 cos 2𝑢 − 4𝑢 sin 𝑢 + 4 cos 𝑢 − 2 cos 2𝑢 − 2

4𝑢2 cos 𝑢 − 2𝑢2 cos 2𝑢 − 4𝑢 sin 𝑢 + 2𝑢 sin 2𝑢 − 2𝑢2
 𝑓𝑛+2 + 

𝑕2  
−2𝑢 sin 𝑢+𝑢 sin 2𝑢−8 cos 𝑢+2 cos 2𝑢+6

4𝑢2 cos 𝑢−2𝑢2 cos 2𝑢−4𝑢 sin 𝑢+2𝑢 sin 2𝑢−2𝑢2 𝑔𝑛+2                            (8) 
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𝑦𝑛 − 𝑦𝑛+1 = 𝑕  
−3𝑢2 cos 𝑢+2𝑢 sin 2𝑢−4 cos 𝑢+2 cos 2𝑢+𝑢2+2

4𝑢2 cos 𝑢−2𝑢2 cos 2𝑢−4𝑢 sin 𝑢+2𝑢 sin 2𝑢−2𝑢2 𝑓𝑛 + 𝑕  
3𝑢2 cos 𝑢−6𝑢 sin 2𝑢+4𝑢 sin 𝑢+2 cos 2𝑢+𝑢2+2

4𝑢2 cos 𝑢−2𝑢2 cos 2𝑢−4𝑢 sin 𝑢+2𝑢 sin 2𝑢−2𝑢2 𝑓𝑛+1 +

𝑕  
−𝑢2 cos 𝑢−𝑢2 cos 2𝑢+2𝑢 sin 2𝑢+4 cos 𝑢−4

4𝑢2 cos 𝑢−2𝑢2 cos 2𝑢−4𝑢 sin 𝑢+2𝑢 sin 2𝑢−2𝑢2 𝑓𝑛+2 + 𝑕2  
2𝑢 sin 𝑢+𝑢 sin 2𝑢−8 cos 𝑢+2 cos 2𝑢+6

4𝑢2 cos 𝑢−2𝑢2 cos 2𝑢−4𝑢 sin 𝑢+2𝑢 sin 2𝑢−2𝑢2 𝑔𝑛+2    (9) 

 

2.1. Local Truncation Error 

Following [5], the local truncation errors of “(8)” and “(9)” are better obtained using their series 

expansion. Thus Local Truncation Error (LTE) of “(8)” and “(9)” are respectively as obtained. 

 

𝐿𝑇𝐸  𝑀𝑎𝑖𝑛 =
7𝑕5

1440
 𝑦 5  𝑥𝑛 + 𝜔2𝑦 3  𝑥𝑛 + 𝑂 𝑕6   

 

𝐿𝑇𝐸  𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 =
23𝑕5

1440
 𝑦 5  𝑥𝑛 + 𝜔2𝑦 3  𝑥𝑛 + 𝑂 𝑕4   

 
In spirit of [4] and [5], we remark that our method is of order 4 and hence it is consistent. 

2.2. Stability 

Following [2], [3] and [14], the block method can be rearranged and rewritten as a matrix difference 

equation of the form 

 

𝐴(1)𝑌𝑤+1 = 𝐴(0)𝑌𝑤 + 𝑕𝐵(1)𝐹𝑤 + 𝑕𝐵(0)𝐹𝑤−1 + 𝐷(1)𝐺𝑤+1                        (10) 
 

where 

 

𝑌𝑤+1 =  𝑦𝑛+1, 𝑦𝑛+2, … , 𝑦𝑛+𝑘 𝑇   𝑌𝑤 =  𝑦𝑛−𝑘+1, … , 𝑦𝑛−1, 𝑦𝑛 𝑇  

 

𝐹𝑤 =  𝑓𝑛+1, 𝑓𝑛+2, … , 𝑓𝑛+𝑘 𝑇  , 𝐹𝑤−1 =  𝑓𝑛−𝑘+1, … , 𝑓𝑛−1, 𝑓𝑛+𝑘 𝑇  
 

𝐺𝑤+1 =  𝑔𝑛+1, 𝑔𝑛+2, … , 𝑔𝑛+𝑘 𝑇  
 

From our method, setting 𝑢 = 10, we have 

 

𝐴(1) =  
−1 0
−1 1

    ,                  𝐴(0) =  
0 1
0 0

    ,                𝐷(1) =  0 5.81 × 10−2

0 5.81 × 10−2  

 
 

𝐵(1) =  2.55 × 10−1 9.35 × 10−2

−5.98 × 10−1 −4.80 × 10−2    ,   𝐵(0) =  0 6.52 × 10−1

0 7.83 × 10−2  

 

2.2.1. Zero stability 

In the spirit of [3], the block method “(10)” is zero stable if the roots of the first characteristic polynomial 

have modulus less than or equal to one and those of modulus one are simple. i.e.  

𝜌 𝑅 = det 𝑅𝐴(1) − 𝐴(0) = 0  and          𝑅𝑖 ≤ 1 

 

Our method is zero stable since −𝑅 𝑅 + 1 = 0 

⟹  𝑅 =  0,1  

Since our method is of order 4 and also zero stable, then it converges in the spirit of [4] and [5]. 
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2.2.2. Linear stability 

The block method “(10)” applied to the test equations 𝑦′= 𝜆𝑦 and 𝑦′′= 𝜆2𝑦 yields 

 

𝑌𝑤+1 = 𝑀(𝑧)𝑌𝑤  
 

where  

 

𝑀 𝑧 =
𝐴(1)−𝑍𝐵 1 −𝑍2𝐷(1)

𝐴(0)+𝑍𝐵(0)                                 (11) 

 

𝑍 = 𝜆𝑕 
 

 
Fig. 1. Region of absolute stability. 

 
The matrix “(11)” has eigenvalues  𝜇1, 𝜇2 =  0, 𝜇2 , where 

 

𝜇2 =
−2.10×103𝑍−3.41×104𝑍2×8.33×104

6.90×104𝑍+5.52×103𝑍2×8.33×104−4.13×103𝑍3                             (12) 

 
Equation (12) is referred to as the stability function. By employing boundary locus technique, the region 

of absolute stability of our method is as shown in figure 1 

It is obvious from the RAS that our method is 𝐴0 stable. Also since   lim𝑧→∞ 𝜇2 = 0 

This shows that our method is 𝐿0 stable. 

3. Numerical Examples 

In this section, we provide numerical examples both linear and nonlinear autonomous systems to 

illustrate the accuracy of our method. All computations are carried out by written codes with the aid of 

MAPLE 2015.1 software package. An error of the form 𝑃 × 10−𝑠  is written as 𝑃(−𝑠). 

Example 1 

We consider the following linear homogeneous Autonomous systems by Sanugi and Evans [8] 

 

𝑦′=  
0 −1
1 0

 𝑦  ,   𝑦  0 =  
1
0
  

 
whose exact solution is 

 

𝑦 =  
cos 𝑥
sin 𝑥

  

The problem is solve for 𝑕 = 0.1, 𝜔 = 1 in the interval 0 ≤ 𝑥 ≤ 1. 
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Table 1, show that comparison of error and it is found that our method SDTFF is better than that of 

Sanugi and Evans. 

 
Table 1. Comparison of Error 

𝒙 Sanugi and Evans [8] SDTFF 

Err 𝑦1 Err 𝑦2 Err 𝑦1 Err 𝑦2 
𝟏. 𝟎 9.29(−10) 4.40(−09) 8.19(−24) 5.27(−24) 
𝟐. 𝟎 2.14(−10) 5.02(−09) 1.77(−23) 8.09(−24) 
𝟑. 𝟎 2.69(−09) 3.61(−09) 4.14(−24) 2.89(−23) 
𝟒. 𝟎 2.48(−09) 1.12(−09) 2.95(−23) 2.55(−23) 
𝟓. 𝟎 8.27(−10) 5.23(−10) 4.67(−23) 1.38(−23) 
𝟔. 𝟎 2.86(−09) 2.09(−09) 1.64(−23) 5.61(−23) 
𝟕. 𝟎 2.44(−09) 4.97(−09) 4.47(−23) 5.14(−23) 
𝟖. 𝟎 1.65(−10) 2.77(−09) 7.71(−23) 1.1.3(−23) 
𝟗. 𝟎 2.33(−09) 3.09(−09) 3.62(−23) 7.98(−23) 
𝟏𝟎. 𝟎 1.71(−09) 1.95(−09) 5.29(−23) 8.17(−23) 

 
Example 2 

We consider the following nonlinear Autonomous system by Neta [9] 

 

𝑌′ 𝑡 = 𝐹 𝑡, 𝑌 ,     𝑌 0 =  0, 1, 1, 0 𝑇  
 

where 𝑌 =  𝑦1, 𝑦2, 𝑦3, 𝑦4 𝑇   ,   𝐹 =  𝑦2, −
𝑦1

𝑟3 , 𝑦4, −
𝑦3

𝑟3        ,  𝑟2 = 𝑦1
2 + 𝑦2

2 

whose exact solution is  

 

𝑌𝑒 =  sin 𝑡 , cos 𝑡 , cos 𝑡 , − sin 𝑡  
 

Table 2 shows the comparison of 𝐿2  Norm of the error at 𝑡 = 12𝜋  using 𝑕 =
𝜋

60
 with 

𝜔 = 0.90, 0.95, 1.00, 1.05 and 1.10. It can be seen that the SDTFF performs better than that of Neta. 

 
Table 2: Comparison of the 𝐿2 norm of error 

𝝎 Neta SDTFF 
𝟎. 𝟗 3.23(−02) 8.75(−07) 
𝟎. 𝟗𝟓 1.66(−02) 4.49(−07) 
𝟏. 𝟎𝟎 2.02(−08) 5.00(−19) 
𝟏. 𝟎𝟓 1.74(−02) 4.27(−07) 
𝟏. 𝟏𝟎 3.56(−02) 9.67(−07) 

 

4. Conclusion 

In this paper, a Second Derivative Block Backward Differentiation Formula of Adams Type using 

trigonometric basis for solving autonomous oscillating problems is proposed. The method is zero stable, 

consistent and produced good results on autonomous oscillating IVPs. The method has advantage of being 

self-starting and efficient. 
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