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Abstract: Let p is a prime, we studied the the generalized Lebesgue-Ramanujan-Nagell equation. By using
the elementary method and algebraic number theory, we obtain one necessary condition which the
equation has integer solutions and some sufficient conditions which the equation has no integer solution. 1).
Let X be an odd number, one necessary condition which the equation has integer solutions is that 2n(p'1)-1/p
contains some square factors. 2). Let X be an even number, when n=pk(k=1), all integer solutions for the
equation are (xy)=(0,4“); when n=pk+(p-1)/2(k=0), all integer solutions are (x2P*F1/2 %!
n=1,2,3,...,(p-3)/2, (p+1)/2,...,p-1(modp), the equation has no integer solution.
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1. Introduction
Let N, Z be the set of all positive integers and all integers respectively. In this paper, we deal with the

solutions (X, y) of diophantine equation

A +B=y", m=1(mod2), m>1, x,y,meN (1)

where A4 ,B are positive integers and A is nonsquare. Some special cases of (1) have been settled. When A=1,
B=1 lebsgue [1] has proved that (1) has no integer solution, when A=2,B =1n=5, Nagell [2] has

proved that (1) has only integer solutions (X, y) = (ill, 3) ; When A=1B=4""m=7,and n=1, 2, 3, 4 (see
[3]-[6]), it has been proved that (1) has no integer solution.
However, when B = c¥, it is more difficult to solve it. In particular, when B = pk , It is a hot research field

recently. And, at present these research results were achieved as follow:
1) When p=2, Cohn[1,2], Arif and Abu Muriefah[3], Le[4] have gotten all solutions of the equation

x?+2" =y",gcd(x,y)=1n>2:
e When m is odd, the equation has only two solutions (X, y,m, n) = (5, 3,1 3) and (7, 3,5, 4) .
e When m is even, the equation has only one solution (X, y,m, n) = (11, 5,2, 3) :

2) When p=3, Cohn[1,2], Arif and Abu Muriefah[5,6],luca[7],Tao[8] have gotten all solutions of the
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equation X +3" =y"(X,y)=1n>2.

3) When p=5, Arif and Abu Muriefah [9], [10] and Tao [11] have gotten all solutions of the equation
X2 +5" = y",(X,y) =1,n > 2,and 2| m. Unfortunately, it failed to give the solutions of 2|M.

4) When p=7, Silksek and Cremona [12], Bugeaud, Mignotte and Silksek [13], Luca [14], Huilin-Zhu and
Maohua-Le [15] have gotten all solutions of the equation X’ +5 =y", (X,y)=1n>2, and2|m.
And, when 2|m, they only got the solutions of p=11,19,43,67,163.

Here, we study the solution of X2 +4" = y*, where p is a prime, and give the following conclusions:

Theorem When A=1, B =4",m = p, the following conclusions will be established:

1) Let X be an odd number, one necessary condition which the equation (1) has integer solutions is

2ﬂ(p*1) _ .
that D contains some square factors.

2) Let X be an even number, if nEO(mod p), that is n=pk(k>1), all integer solutions for the
-1 -1
equation are (X, y):(0,4k); if nspT(mod p), that is nN= pk+T(k20), all integer

solutions are (inhpz_l,szj ; if N 51,2,3,...,p7_3,p7+1,... p—l(mod p) , the equation has no
integer solution.
2. Preliminaries
Lemma 1 [7] Let M is a unique factorization domain, k is a positive integer, K >2,and a,f M,
(a,8)=1, and if aff =y 7€M, then azgl,uk,ﬁzgzvk,,u,ve M, and &, =& where
&1, &5, &€ are units in M.

Lemma 2 For the diophantine equation x> +1=2" y"? , there are following conclusions:

1) Ifk =0, then the equation only has integer solution (X, y) = (0,1) ;

2) If k=1, thenthe equation only has integer solutions (X, y) = (iL 1) ;

3) If k=2,3,---, p—1, then all equations have no integer solutions.
proof: 1), 2) By lemma 1, it is easy to prove;
Obviously, X is an odd number, then x* sl(mod 4) and X* +1= 2(mod 4), But if k=2,3,--,p-1,

then X +1=2"y" = O(mod 4) , This is a contradiction. So X°+1=2y", (k =2,3, p—l) has no
integer solutions.

Lemma 3 When p zl(mod 4), if k= O,l(mod 4) , then Cg(k >0,k € Z) is odd numbers, and if
k= 2,3(m0d 4) , then Cg(k >0,keZ) is even numbers; when pz3(mod 4) , if K 51,3(m0d8) , then
CE (k>0,k €Z) is odd numbers, and if k =5, 7(m0d 8) ,then C';) (k>0,k €Z) is even numbers.

Lemma 4 If p is a prime, and (a, p)=1, thena® " =1(mod p).

3. Proof of Theorem
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1) First, suppose xEl(mod 2),inZ[i], X% +4" = y® can be decomposed into as follows
(x+2")(x=2")=y",x,yeZ,

Let 5=(X+2ni,x—2ni), because of 5|(2X,2”+1i)=2, O can only be 1,1+i,2. But
X sl(mod 2), so X+2" El(mod 2) , then o0#2 . If o=1+1 then
2=N (1+i)| N (X+ 2" i) =x%+2°". However X sl(mod 2), So the integer X does not exist. As a result,
0 =1.Thus by lemma 1, x+2"i:(a+bi)p,x,a,bez,

If p=1(mod4),then

x=a" —C,ﬁa"‘zb2 +C;‘a'°“‘b4 —Cﬁa"‘sb6 +---—C§‘7a7bp‘7 +C§‘5a5b"‘5 —C;"Saﬁb"‘3 +C§‘1ab"‘1;
2" =b(Cia"*~Cia" b’ + Cra b’ —~Cla" b +---+CP“a'h?° ~CP?a®h? +b"*).

If p= 3(mod 4), then

x=a’ —Céa"’zb2 + C;‘a”"‘b4 —Cﬁap"sb6 Foet Cl‘j’7a7bp’7 —C{j’saf’b"’5 +C‘§”"’a3b"’3 —C;”lab P
2" =b(Cla"*~Cla”*b? +C%a® *b* ~Cla® b +---~CP a'b®* +CP2ah? ~b*?).

So b=+1,+2'(1<t<n-1),£2".

If b=+1, When p=1(mod4),
then Cja*'—Cla’*+Cla’*—ClaP”" +..--+Cl)“a* —Cl?a’ =+2" 1,50 a mustbe odd.

Let p=4k+1, by lemmas3, Cl,CFS),C:;,---CF')H;,C’?*4 , these k integer numbers are odd, and
Cg,C;,C;l,---C'?*G,Cg*z , these k integer numbers are even. Thus, if k is even, the equation
C,ljap*l—Czélp*3 +C2a"’5 —C;a‘” +---+CF‘:74&14 —C";izaz =42"-1 doesn't set up; and if k is odd,
x=a"-Cla"*’+C a""b*-Cla"*h°+---—C)"a’h?’ +C/"a’h"° ~CP*a®h? +C "ab?™ is even,
this contradict with X zl(mod 2), in fact, Cg,C;,Cg,---Cg_S,C;’_l, these k+1 integer numbers are odd,
Cﬁ , Cg , C;O,'--CFE’_7 , Cg_s , these k integer numbers are even, so x is even.

When p=3(mod4), then CiaP*-Cla’?+C’a’®—-ClaP”" +...—CP™a* +Cl?a’ =+2" -1, so
a mustbe odd.

Let p=8k+3, by lemma3, Ct,Cﬁ,Cﬁ,C;l,Cllj,C;g,-",Cg_lz,CF‘,’_m,Cﬁ_",Cﬁ_z are odd integer
numbers, and C?,C;,Cf,Cf-'-Cg_B,CS_B are even integer numbers. Thus,

C;ap‘l —C;ap_3 +C;ap‘5 —C;a‘” +---—C§‘4a4 +C§‘2a2 is even, however, +2" —1 is odd.
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Let p=8k+7, by lemma3, Ct,Cg,Cz,Cél,Cllj,C‘l)g,---,CF’)’_H,C‘f—lO,CE_“,Cg_Z are odd integer
numbers, and Cf,,C;,Cf,Cf---,Cg_g,Cﬁ_S,Cg_z are even integer numbers. Thus,

Céa’“ —Cf;a” +Cf;a"*5 —C;a‘” +-~-—C§*“a4 -FC’EHa2 is even, however, 2" —1 is odd.

If b=+2'(1<t<n-1) , then
C;ap‘l —Czap_gb2 —I-Cgap_y’b4 —C;a‘”be +---iC’f—4a4b p-5 ¢C£—2a2b P34+pPT=42"" 50 a is even.
Thus
x=a’-Cla"’b*+Cja""b*-C a""b° +.--FC "a'b?" FC *a’h"* FCa®h"* +C)"ab*"
is even, this contradict with X = 1( mod 2) ;

If b=-2",When p sl(mod 4),

Cia" —C’aP**+Ca"°b' —ClaP"h° +---+C)“a’b?° -C)?a’h"* +b"* =—-1  that s
Cla’'-Cla’*b*+C%a" b ~Cla’ "b° +---+C’*a’h"* —CP?a%P?* = —1- 2P " : 50
2P0 — —1(mod p) , but ,indeed, by lemma 4, 2P — 1(m0d p);

When p= 3(mod 4),

Cla’ —C%a 3%’ +C%aP"b* ~Cla" b +.--—C“a’b?° +CP2a’h"° —b** = -1,

thatis CtaP'-ClaP’b®+C3a" " ~Cla’ 'b® +---—~CP*a*h"® +C 2a’hP* = 2" 1,

3 5 7 -4 2
so a’|a"”® —&a”’sb2 +&a"’7b4 —&a"’gb6 +-~—ia2b"’5 +$abp*3 =20
p p p p P
2(p—l)n—1
p

If b=2",When p sl(mod4),

thus only when contains some square factors, the equation may have integer solutions.

C,a"*-ClaP*b?+CoaP " ~Cla"b® +---+C2“a'h?* —CP?a%hP* +hP* =1,

p

that is Ctap‘1 —Czap‘?’b2 +C2ap‘5b4 —C;a'”b6 +---+C§‘4a4b"‘5 —C;"Zazb"‘3 =1 2P

c? (o3 C’ cr cr? (p-Dn-1
so —a’ {ap‘B — PPt 4 TPt TR gP Ot . TR 2P S TP gpPd (=2 o

P P p p p

(p-n-1 . . . .
thus only when 2 A contains some square factors, the equation may have integer solutions.

When p=3(mod4),

Cla’ —C%aP3? +C%aP*b* —Cla* 'b® +.-.—CP“a*h?® +C? %a’h”* —bP* =1,
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thatis CiaP?—C3aP?b? +C2aP®h* ~Cla’ b’ +---—~CP*a’bP* + CP%a% " = 20" 41
p p p p p p ’
so 20PN = —1(mod p),but, indeed, by lemma 4, 2(P=n zl(mod p);
So, whenXEl(mOd 2), one necessary condition which the equation has integer solutions is that

2(p—1)n—1 .
p contains some square factors.

2) Second, suppose XEO(mOd 2), thus yzO(mod 2). Now make X=2X,Y=2Y,, then the equation can
be turned into )(12-|-4n*1 =P y," , obviously X150(m0d 2) , then make X=2% , it can be

Xz2 +472 =0 y,*, also make X, =2X, again, it can be X32 +4"3 =P8 y,", .., make Xp3

= 2Xp;1 again,
2

p-1 p+l
n-— -
it can be Xp;l2 +4 7 =2y, now make X,;=2X,,),=2), itcanbe ijz +4 2 =2""y,”, then make
2 2 2 2
nPr3
— ; ; 2 2 _op3,p _ . .
Xpu = 2XL+3 again, it can be X3 +4 =2""y,", .. make Xpy = 2Xp again, it can be
2 2 2

X,'+4"" = y,”, where X, X,, -+, X, y.Y,€Z.

According to such substituted method, it can be concluded:

When N sl(mod p), the original equation is equivalent to solving x> +4= y?, and according to the
above-mentioned regularity, it is finally equivalent to solving X? +1:2p‘2y“ ; When n52<m0d p), it is
equivalent to solving X244 = y®, and according to the same regularity, it is finally equivalent to solving
X +1=2""y?; When nES(mod p), it is equivalent to solving X’ +4°=Y", and according to the same

. o X . . 2 _np-6,,p _ p_l s .
regularity, it is finally equivalent to solving X" +1=2""y"; .., When n=7(mod p), it is equivalent to

L_l
solving X +42 = y?, and according to the same regularity, it is finally equivalent to solving X2 +1= 2y°;

p+l

+1 =
When nspT(mod p), it is equivalent to solving X442 = y", and according to the same regularity, it is

equivalent to solving X' +1=2"'y";.., When nsp—l(mod p), it is equivalent to solving X'+4"'=}", and
according to the same regularity, it is finally equivalent to solving X’ +1=2°y"; When nzo(mod p), the

original equation is equivalent to solving X +4° = yp, and according to the same regularity, it is finally

-1

=]

-3
equivalent to solving X’ +1=Y". Therefore, by lemma2, when Nn=1, 2,3,~-,pT, ,~--,p—1(mod p), the

'\) ‘

equation has no integer solutions;

p-1 : . . .
When nEO,T(mod p), the equation has integer solutions, and when nEO(mod p) that is

n= pk(kZl), solutions of the equation will must be (X, y):(0,4k); if nEpT_l(mod p), that is
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— =
n=pk+ pTl(k 2 0), all integer solutions are (J_rgpk 2 22k+1J .
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