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Abstract: In this work, we propose a mathematical model based on reaction-diffusion equations to describe 

the development of normal and leukemic hematopoiesis. Specifically, we introduce a parameter that 

characterizes the strength of mutation. According to its value, leukemia will or will not develop. On the 

other hand, we show the existence of a traveling wave providing a transition from an equilibrium to other. 
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Erythropoiesis is a process of producing red blood cells (erythrocytes), which occurs primarily in the 

bone marrow. Erythropoiesis begins with engaged erythroid progenitors that differentiate into more 

mature cells, the erythroblasts, which differentiate into reticulocytes thereafter. In mammals, anucleated 

reticulocytes leave the bone marrow by entering the bloodstream where they become mature erythrocytes.

In adults, erythropoiesis occurs in the medullary cavities of flat bones [1]. 

Erythropoiesis is the process of production and regulation of red blood cells. It is step of a more general

process, hematopoiesis that is a process in which three main cell types are produced and regulated: the red

blood cells (or erythrocytes), the white blood cells (or leukocytes) and the platelets (or thrombocytes). It is

the set of mechanisms that ensure the production and renewal of different blood cells. The Abnormalities in

this developmental program lead to blood cell diseases including leukemia.

Hematopoiesis is a very intense and a very complex process with many levels of regulation: intracellular, 

extracellular, from other organs. These mechanisms control self-renewal, differentiation and apoptosis of 

hematopoietic cells and the response to various physiological situations, such as hypoxia, bleeding or 

infection. If some of these control mechanisms do not work, then various blood diseases including leukemia 

can develop.

Leukemia is type of cancer that affects the blood cells. It starts in the bone marrow, the soft tissue inside 

most bones, where blood cells are made. In this disease abnormal white blood cells are produced. Those 

cells, called leukemia cells, don’t function as normal white blood cells because they grow faster than normal 

cells and they don’t stop growing when they should to do it. There are several different types of leukemia. In 

general, each type of leukemia is carachterized by how fast it gets worse and the kind of white blood cells it 

affects. 

The leukemia may be acute or chronic. Acute leukemia gets worse very fast and may make you feel sick 

right away. Chronic leukemia gets worse slowly and may not cause symptoms for years. Also the leukemia 

may be lymphocytic or myelogenous. Lymphocytic (or lymphoblastic) leukemia affects white blood cells 
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called lymphocytes. Myelogenous leukemia affects the other type of cells that normally become 

granulocytes, red blood cells, or platelets. 

It is a blood cancer characterized by an abnormal proliferation of immature blood cells, in the bone 

marrow.  

From a mathematical point of view, the modeling of leukemia or any other pathology linked to the 

deregulation of the blood cell manufacturing mechanism is still in the embryonic stage. There is as yet no 

research project dedicated to the mathematical modeling of these phenomena. The best known overseas 

team interested in the modeling of hematopoiesis using partial differential equation systems [1] is directed 

by M.C. Mackey of McGill University in Canada. In the majority of cases, these are structured models in age 

and maturity (level of cell development). These approaches allow to take into account the different stages of 

development of the cells (primitive stem cells, progenitors, precursors and mature cells mainly).  

We discuss here leukemia development. In particularly erythroleukemia is characterized by a rapid 

increase of erythroid progenitors in the bone marrow and the blood. A number of mathematical models has 

been proposed to understand hematopoiesis ([2]-[7]) and erythropoiesis ([8]-[10]). In [11] the authors 

investigate erythroid cell dynamics by means of a reaction-diffusion system describing cell dynamics and a 

system of ordinary differential equations describing concentrations of intra-cellular proteins involved in the 

regulation of self-renewal, differentiation and apoptosis. This model is used to focus on erythroleukemia. 

They modeled normal and leukemic erythropoiesis by reaction-diffusion systems, introducing the notion of 

strength of mutation. If this parameter exceeds a critical value, the leukemia will develop. In the case where 

the mutation is not strong enough, the leukemia will not develop. 

We focus in this work on the development of normal and leukemic erythropoiesis modeled by 

reaction-diffusion systems, taking into account that the mutated cells can interact with each other. 

In Section 2, we present the results of the existence and stability of leukemic equilibrium and we give the 

numerical examples and simulations in Section 3, and finally in section 4 we show the existence of traveling 

waves in the bistable case. 

2. Model 

 
Table 1. Table of Parameters 

Parameters Meaning 

PD  diffusion rate of normal cells 

QD  diffusion rate of mutated cells 

s  self-renewal rate of normal cells 

d  differentiation rate of normal cells 

a  apoptosis rate of normal cells 

ms  self-renewal rate of mutated cells 

md  differentiation rate of mutated cells 

ma  apoptosis rate of mutated cells 

H  constant flux of hematopoietic stem cells differentiating in erythroid progenitors 

0P  constant of maximal cell density 

 

Consider two cell lineages, normal and mutated. The lineage of mutated cells will differ by the rates of 

self-renewal, differentiation and apoptosis. Mutated cells can self-renew more and differentiate less than 

normal cells. Consequently, the number of immature cells or blasts will increase replacing other cells, 

possibly resulting in the development of acute leukemia.  

Denote by P cell from the normal lineage and by Q cell from the mutated lineage. We are interested in this 



  

work in the reaction-diffusion system of equations considered as a model of leukemia development: 
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where the parameters are presented in the following table: 
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3. Existence and Stability of Leukemic Equilibrium 

In this section, we study the existence and stability of equilibrium points of system (S). 

Proposition 1   

Existence and stability of the equilibrium points for the system (S), is given by the following two cases: 
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Remark 2   

The inverse parameter 
1


 is called the strength of mutation. It characterizes the advantage of mutated 

cells over normal cells from the point of view of their survival and proliferation. Indeed, if the rate of 

self-renewal sm of mutated cells increases, then the value of 
1


 also increases. If the rates of 

differentiation dm and of apoptosis am decrease, then, again, 
1


 grows. Hence increase of this parameter 

corresponds to greater self-renewal and lesser differentiation and apoptosis of mutated cells in comparison 

with normal cells. 

Consider a numerical simulation for the equilibrium of leukemia in the bistable case. 
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The following figure represents a bistable case under conditions of (1.1) in proposition for the leukemic 
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Fig. 1. Case (1.1) of proposition, the system (S) is stable around the equilibrium points 
hE , 

lE  and 

unstable around 
iE . 

4. Existence of Travelling Waves in the Bistable Case 

The analysis of the ordinary differential system of equations allows us to do some conclusions about the 

behavior of solutions of a reaction-diffusion system (S). Precisely, classical results on monotone systems 

allow to conclude to the existence of a traveling wave providing a transition between healthy equilibrium 

and the leukemic equilibrium in the bistable case. The existence result is stated in the next theorem. 

Theorem 3  

In the bistable case, there exists a unique traveling wave solution connecting the healthy equilibrium 
hE  

and the leukemic equilibrium 
lE , i.e. there exists a constant c  and a  vector valued function 
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Proof. 

We put P U and 0P Q V  , then the system (S) becomes: 
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Then the system (S’) is monotone. The monotony of the system ensures the existence and uniqueness of 

traveling wave solutions in the bistable case (see [12],[13]). 
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