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Abstract: In this paper we studied a class of Volterra integral equation by using Mönch fixed point theorem, 

we intend to offer new numerical methods to solve the fuzzy Volterra- Fredholm integro-integral equations. 

By using the comparison theorems and Picard iterated approximation method we obtained the existence 

theorem of the solution under some weaker conditions, and we proved the theorem. Some examples are 

investigated to verify convergence results and to illustrate the efficiently of the method. 
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1. Introduction 

The definition and properties of fuzzy differential and integral have been discussed by many people see 

[1]-[4]. Dubois and Prade [5]-[7] are the earlier and more all-around among them. Kaleva [8]-[10] discussed 

the properties of fuzzy different and integral, meanwhile he studied Cauchy problem of fuzzy differential 

equation. Seikala [11], [12] discussed the solvability of fuzzy initial value problem basing on the special 

structure of E1. Park et. al. [13]-[17] and Song [18]-[21] studied existence and uniqueness theorem of the 

solution of other type of fuzzy differential equations [FDE] and fuzzy integral equations [FIE]. 

Due to different understand to fuzzy number space (the complete metric space；the cone of some Banach 

space；The family of the interval sets）and different methods to deal with equations，There are different 

methods to discuss FDE and FIE. The methods of [16], [17], [21] is basing on Picaerd successive iteration or 

comparison theorems，[20] used embedding theorem of En, so it can use some subtle method such as 

maximum and minimum method. Seikala [22] utilized special structure of E1, deal with FDE (I) by 

transferring FDE to infinite system of ODE.  

In [16], [17], [20] Volterra integral equation were also discussed. In [16], [17] it is studied by using 

comparison theorems and Picard iterated approximation method, in [20] it is studied by Darbo fixed point 

theorem. Moreover [16] researched indeed to the fuzzy functional integral equation. In this paper we 

studied a class of Volterra integral equation by using Mönch fixed point theorem, and obtained the existence 

theorem of the solution.  

In this paper the conclusions above is extended under the weaker conditions. 

2. Procedure for Paper Submission Preliminarues 

}R{A-)(RP nn

k  A is nonempty compact convex subsets of 
nR , }R{A-)(R nn

c )f(b A is nonempty 
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bounded(closed)convex subsets of nR  . 

and define the addition and scalar multiplication in )(RP n

k  as usual. Let I= [ 0 , a]R , (ɑ > 0) be a 

compact interval and denote 
nE ={u: R [0 , 1] |where u satisfies (i) - (iv) below}, 

1) u is normal , i.e. there exists an x0 R
n

, such that  u(x0)=1; 

2) u is fuzzy convex,  i.e.  u( x+(1- )y)min{u(x) , u(y)}, x, y  E
n

, [0 , 1]; 

3) u is upper semicontinuous; 

4)  [u] 0 =cl{x  R
n

| u(x)>0} is compact.  

If u nE , then u is called a fuzzy number and 
nE  is said to be a space of fuzzy numbers. 

For 0<  1, denote [u]


={x  R | u(x)   }. Then from (i)-(iv), it follows that the  -level set 

[u] 


P (k R ), for all 0  1.      

For the addition and scalar multiplication in 
nE , we have  

[u + v] = [u] + [v] ,  [ku] = [kv] , 

where u, v
nE , k R, 0  1. Define D: 

nE ×
nE →[0,  ) by the equation : 

D(u , v)= 
10

sup


d([u] , [v] ), 

where d is the Hausdorff metric defined in P (k R
n

). Then it is easy to see that D is a metric in
nE . 

Further, using the results in [16], we know that 

1) (
nE , D) is a complete metric space;  

2) (
nE , D) is invariant , i.e. D(u + w , v + w) = D (u , v) for all u , w nE ; 

3) D(ku , kv) =|k| D(u , v) for all u, v nE , k R. 

Now, we recall some integrability properties in [10] for the fuzzy set-valued mappings of a real variable 

whose values are in (
nE , D). 

Definition 2.1. We say that a mapping F : I→
nE  is strongly measurable, if for all  [0 , 1] the 

set-valued mapping F : I→P (k R ) defined by 

F (t) = [F (t)]


 

is (Lebesgue) measurable, when P (k R ) is endowed with the topology generated by the Hausdorff metric    

A mapping F : I→
nE is called integrably bounded if there exists an integrable function h such that 

)(thx   ,for all x F0(t). 

Definition 2.2.  Let F : I→
nE . The integral of F over I, denoted by (t)dtF

I  , is defined -levelwise  by 

the equation  

[ ]α
I
F(t)dt = α

I
F (t)dt  ={(L) 

nI R
I

f(t)dt f :  is a measurable selection for F } ,for all  0< 

1. 

A strongly measurable and integrably bounded mapping F : I→
nE  is said to be integrable over I , if 

n 



n


n

    



 




n



n




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(t)dtF
I . 

Proposition 2.1. If F : I→
nE  is strongly measurable and integrably bounded, then F is integrable . 

Corollary 2.1. If F : I→
nE  is continuous, then it is integrable . 

Proposition2.2. Let F, G : I→
nE  be integrable and c I  . Then  

=
. 

Proposition 2.3. Let F , G : I→
nE  be integrable and λ R. Then  

1) G(t))dt(t)(F
I

 = (t)dtF
I +  I

G(t)dt ; 

2) (t)dtλF
I  = (t)dtF

I ; 

3) D(F , G) is integrable; 

4) D( (t)dtF
I , (t)dtG

I )≤(L) dttGtFD
I

))(),(( . 

Furthermore, we list the embedding theorem in [11] on the space (
nE , D). 

C. There exists a real Banach space X such that 
nE can be embedding as a convex cone C with vertex O into 

X. Furthermore, the following conditions hold true: 

1) the embedding j is isometric; 

2) addition in X induces addition in 
nE ; 

3) multiplication by nonnegative real number in X induces the corresponding operation in 
nE ; 

4) C–C is dense in X; 

5) C is closed . 

Remark 2.1. In this paper, we always denote X to be the Banach space in Proposition 2.4, j the isometric 

embedding from (
nE ,D) into X. 

Let ),( DE n
 be the space of fuzzy numbers , nnnn EEEE 3  ,  [I =0 , a] ,  a 0  and  

D={(t , s) ∣ ats 0 }, =I×I. The fuzzy number  is defined by  

             1     r=0. 

     

(r) =

  
0     r 0,

 

and define function , for all . 

Let ),( nEIC  denote the space of continuous fuzzy set-valued mappings from I into . The addition 

and nonnegative scalar multiplication in ),( nEIC  are induced, respectively, by the corresponding 

operations in E . Then it is easy to see that ),( nEIC  is a convex cone.  

We know that the space ),( nEIC with the metric  

, , 

becomes complete metric space. It has analogous results for the space ),( 3 nEEIC  . 

 nE


a

F(t)dt
0  

a

c

c

F(t)dtF(t)dt
0





 2R 0D











  )(t It

nE

n

)θ,(t)(sup),(


 uDuD It )C( n,EIu
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By Proposition 2.4, we know that the embedding j from ),( DE n
 onto its range XEj n )(  is 

isometrically isomorphism, and so the embedding  

),(C))(,(C),(C: XIEjIEIj nn   

is also isometrically isomorphism. 

Let C(I , X) denote the Banach space of abstract continuous function from I to X, and the norm  

x =max t∈I )(tx . 

For HC(I , X) , we denote  

H(t)={x(t) x H} X, 

H(I)={x(t) x H ,t I}=
It

H(t)


X. 

Definition 2.3.  Let A be a bounded subset of X, the Kuratowski measure of noncompactness is defined 

by  

 (A)=inf { >0: A can covered by a finite number of sets each with diameter  }. 

Proposition 2.6. Let   be the Kuratowski measure of noncompactness and suppose that A and B are 

two arbitrary bounded subsets of X ,  then we have 

1)  (A)=0  iff.  A is relatively compact; 

2)  (A)  (B) ,  if A B; 

3)  (A)= ( co (A)), where co(A) denotes the convex hull of A; 

4)  (A B)=max { (A) ,  (B)}; 

5)  (tA)= t   (A), where t A={tx : x A}; 

6)  (A+B)  (A)+ (B) , where A+B = {x + y |xA and yB}. 

Proposition 2.7. Suppose HC (I , X ) be bounded and equicontinuous, then  

1)  (H)= ( H (I) ); 

2)  (H (I ) )=
It

max


 ( H (t) ). 

Corollary 2.2. Suppose A X be bounded, the mapping f : I×A→X is bounded and uniform continuous. 

Then  

 (f(I×B))= 
It

max


  ( f (t, B) ) ,    BA. 

In this section, we suppose that  ( X ,   ) is a real Banach space . 

Let I = [0 , a ], a > 0 , D }0),{( 2 atsRst   and D0= I I. 

The space of continuous functions C( I , X )={ XIxx :  is continuous }with a norm )(max txx
ItC 

  

becomes Banach space.  

Lemma 2.1 [13]. Let 1B , )(C2 I,XB   be two countable sets and for every 0x C( I , X ) and

)}({ 201 BxcoB  , then ))()}(({)( 201 tBtxcotB  , for all It . 

Lemma 2.2 [9]. Let B be the countable set of strongly measurable functions XIx : . If there is 



 






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),(L  RIm   such that   

)()( tmtx  ,  a.e.  It ,  Bx , 

then ( ( )) L( , )B t I R   and  
II

dttBBxdttx ))((2}))(({  . 

Lemma 2.3 [8]. Let ),(C XIB   be a equicontinuous and bounded set. Define )),(()( tBtm   

It , then m(t) is continuous on I and  
II

dttBdttB ))(())((  . 

Lemma 2.4[13]. Let p  C(I ,
R ) satisfies  

p(t)M (s)dsp
t

0  +N (s)dsp
T

0 ,  tI, 

where M>0, N 0 such that N (e -1) < M, then  p(t) 0,   t I. 

Lemma 2.5 [4]. Let ),(C XIB   be the equicontinuous and bounded set, then ))((max)( tBB
It



 , 

where XBxtxtB  })({)( . 

Lemma 2.6. Let j is the embedding operator defined as Proposition 2.4, c is a real number and 
nEB  , 

then we have  

)())(( jBccBj   . 

Lemma 2.7.  (Mönch Fixed Point Theorem). Let X be the Banach space, )(P XK cf . If the 

pmapping KKF :  satisfies the following conditions  

)( 1C KKF :  is continuous  

KCC )( 2  is countable, Xx and ))(}({ CFxcoC  implies that C  is compact (i,e,C is relatively 

compact) , then F has at least one fixed point in K. 

3. Math Main Results 

In this section, we shall study the following fuzzy integral equation (FIE) 


























a

t

t

dssustqtSu

dssustptTu

dssSusTususfstktgtu

0

0

0

)(),()(

)(),()(

)))((,))((,)(,(),()()(

)VTS(   

where It , ),(),(: nn EICEICT   is Volterra integral operator and ),(),(: nn EICEICS   is 

Fredholm integral operator . 

For ),( nEICB   and It , let })({)( BututB  , 

(TB) })({)( ButTut  , (SB) })({)( ButSut  . 

We suppose that the following conditions are satisfied for the equation (VTS). 

(G) ),( nEICg , 



MT
 
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(KPQ) , C(k p △, 
1R ) and 0(C Iq ,

1R ), 

where D }0),{( atsst   and  D 0= I I, 

By the compactness of the set D and D0, we have that )(max0 Dkk  ,  0 max ( )p p D , and

)(max 00 Dqq  exist. 

)(F1  ),(C 3

nn EEIf  , 

)(F2
 

0

1)(
lim

akR

RM

R




, 

where ˆ( ) sup{ ( ( , ( ) , ( )( ) , ( )( )) , ) ( , ) }CM R D f t u t Tu t Su t D u R   , 

)(F3
 For any countable equicontinuous bounded set ),( nEICB   and It , 

))(())))((,))((,)(,(( 1 sjBLsSBtTBsBsjf    )))((()))((( 32 sSBjLsTBjL    

where j is the embedding operator defined by Proposition 2.4 and )3,2,1(,0  iLi  are the constants 

that satisfies one of the following conditions  

 201201030 )1))(2(exp( LapLLapLakLaq   

)( 2L  1)2( 302010  LaqLapLak  

Theorem 3.1. Assume that FIE (VTS) satisfies all above conditions, then (VTS) has at least one solution in 

C (I, 
nE ). 

Proof. Define the operators  

                   ,)),)((,))((,)(,()(],[ IttSutTututftuSTF                  

,,)(],[),())(,,,(
0

ItdssuSTFstktufSTK
t

   

                   .),,,,()()( ItufSTKtgtAu                                (2) 

 

Clearly, u  C (I,
nE ) is the solution of (VTS) if and only if u is the fixed point of the operator A in C (I,

nE ). 

At first we prove that A: C(I, 
nE ) C(I, 

nE ) is continuous. For this, for any 21,uu  C (I,
nE ), It . 

By the definition od the operations T and S, we have  

 

                               

hence T, S : )( C)( C nn I,EI,E   is continuous. Since 


a

dssuSTFsuSTFDktAutAuD
0

21021 ))(],[,)(],[())(,)((  

thus by the continuity of the mapping f , we have that A is continuous. 



)( 1L




a

C dssusuDpTuTuD
0

21021 ))(,)((),(


a

C dssusuDqSuSuD
0

21021 ))(,)((),(
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By the assumption )(F2 , there are )
1

,0(
0ak

r  and 00 R  such that  

rRRM )( , 

for all 0R R . 

Take 
0

* RR   and put ,),(),C({ *RguDEIuW C

n                                       

))(,)(())(,)(( 2121 tgtgDtutuD  ]}),(),(),([
22

1 0
211

* dsstkstkdsstkrR
tt

t    

then )),(( n

cb EICPW   is equicontinuous and for every 2121 ,,, ttIttWu   

, 

   

                      ))(,)(( 21 tgtgD ))(],[),(,)(],[),((
21

0
1

0
1 

tt

dssuSTFstkdssuSTFstkD  

                      
))(],[),(,)(],[),((

22

0
2

0
1 

tt

dssuSTFstkdssuSTFstkD
 

                      ))(,)(( 21 tgtgD dssuSTFDstk
t

t
)ˆ,)()],[(),(

2

1
1   

                        

                       ))(,)(( 21 tgtgD  )()),(( *

1

2

1

RMdsstk
t

t                                     

                         

                         
]),(),(),([

22

1 0
211

* dsstkstkdsstkrR
tt

t  
.  [3] 

 

Hence WWA :  is continuous. Observe the continuity of the embedding operator j, we know that the 

operator jWjWjA :  is also continuous.  

Let WuWuB n  0,}{  such that  

Next to prove that . 

By Lemma 2.1 we have  

. 

Thus by Lemma 2.2 and 2.6, the properties of measure of noncompactness and (2) we have 

)))((())(())(( tjBAtjBtjB    

 

**

0

*

0 )(),( RRrakRMakgAuDC 

))(,)(())(,)(( 2121 tgtgDtAutAuD  ))(],[),(,)(],[),((
21

0
2

0
1 

tt

dssuSTFstkdssuSTFstkD

dssuSTFDstkstk
t

)ˆ,)()],[(),(),(
2

0
21  

)()),(),(( *

0
21

2

RMdsstkstk
t

 

 ))(,)(( 21 tgtgD

))(}({ 0 BAucoB 

)),(C()),(C( n

k

n

k jEIPEIjPjB 

)))(()}(({)( 0 tBjAtjucotjB  )))(()}(({ 0 tjBAtjuco 

))(],[),((
0

dssuSTFstkj
t


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dssuSTjFstk

t

))(],[(),(2
0


                                (4) 

                                                           

Then by the condition )(F3 , Lemma2.3 and observe that TB and SB are equicontinuous bounded subset 

of C (I , 
nE ) and the continuity of the operator j, we obtain that  

         djBqLdjBpLsjBLsuSTjF
as

))(())(())(())(],[(
0

03
0

021              (5) 

By (4) and (3), we get 

2𝐿2𝑝0𝑘0   𝑎 𝑗𝐵 𝜏  𝑑𝜏𝑑𝑠
𝑠

0

𝑡

0
 

 

and then we have 

2𝐿2𝑝0𝑘0   𝑎 𝑗𝐵 𝜏  𝑑𝜏𝑑𝑠
𝑠

0

𝑡

0
 

 

By the equicontinuity and boundedness of ),( nEICB  , we know   

l( t)= ),())((  RICtjB . 

1) Suppose that  ,0L i   i=1, 2, 3 satisfies the condition ( 1L ), then from (6) we have  

 
at

l(s)dsNl(s)dsMl(t)
00

, 

where 1 0 0 0 22 2M L k p k L  , 0 0 32N q k L . 

By Lemma 2.4, it follows l (t)  0,  t I. 

2) Let 0L i  , i=1, 2, 3 satisfies (ii) in ( 2H ) , also from (6) we have 

 
aaa

dssldttLkqtLkpLkdssl
0

100200
0

10
0

)(]222[)(  


a

dsslLkqaLkpaLak
0

300

2

200

2

10 )(]2[  


a

dsslLaqLapLak
0

302010 )(]2[ . 

Thus 0)(
0

 dttl
a

, hence l(t)  0,  t I, 

By Lemma 2.5, both (i) and (ii) follows that 

                                  
0))((max)( 


tjBjB

It


, 

 
t

dssjBkLtjB
0

01 ))((2))(( 

 
t a

dsdjBkqL
0 0

003 ))((2 

))(( tjB   dssjBLk
t

))((2
0

10  dsjBtLqk
a

))((2
0

300  

  dssjBLk
t

))((2
0

10   
t

dssjBstLpk
0

200 ))(()(2  dsjBtLqk
a

))((2
0

300  

 

 
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therefore we have ( ( )) ( ( ))n n

k kjB P C I , jE jP C I ,E  . 

It show by Lemma 2.7 the operator jWjWjA :  has at least one fixed point 
*v  in 

),(C njEIjW  . Put )( ** ujv  for some Wu *
, thus 

*u is the (global) solution of (VTS) in 

),(C nEI . 
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