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Abstract: In this paper we studied a class of Volterra integral equation by using Monch fixed point theorem,
we intend to offer new numerical methods to solve the fuzzy Volterra- Fredholm integro-integral equations.
By using the comparison theorems and Picard iterated approximation method we obtained the existence
theorem of the solution under some weaker conditions, and we proved the theorem. Some examples are
investigated to verify convergence results and to illustrate the efficiently of the method.
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1. Introduction

The definition and properties of fuzzy differential and integral have been discussed by many people see
[1]-[4]. Dubois and Prade [5]-[7] are the earlier and more all-around among them. Kaleva [8]-[10] discussed
the properties of fuzzy different and integral, meanwhile he studied Cauchy problem of fuzzy differential
equation. Seikala [11], [12] discussed the solvability of fuzzy initial value problem basing on the special
structure of E. Park et. al. [13]-[17] and Song [18]-[21] studied existence and uniqueness theorem of the
solution of other type of fuzzy differential equations [FDE] and fuzzy integral equations [FIE].

Due to different understand to fuzzy number space (the complete metric space; the cone of some Banach
space; The family of the interval sets) and different methods to deal with equations, There are different
methods to discuss FDE and FIE. The methods of [16], [17], [21] is basing on Picaerd successive iteration or
comparison theorems, [20] used embedding theorem of E», so it can use some subtle method such as
maximum and minimum method. Seikala [22] utilized special structure of E!, deal with FDE (I) by
transferring FDE to infinite system of ODE.

In [16], [17], [20] Volterra integral equation were also discussed. In [16], [17] it is studied by using
comparison theorems and Picard iterated approximation method, in [20] it is studied by Darbo fixed point
theorem. Moreover [16] researched indeed to the fuzzy functional integral equation. In this paper we
studied a class of Volterra integral equation by using Moénch fixed point theorem, and obtained the existence
theorem of the solution.

In this paper the conclusions above is extended under the weaker conditions.

2. Procedure for Paper Submission Preliminarues

P((R")-{A cR"}A is nonempty compact convex subsets of R",; ().(R")-{AcR"}A is nonempty
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bounded(closed)convex subsets of R".
and define the addition and scalar multiplication in P, (R™) as usual. Let I= [ 0, a] <R, (¢ > 0) be a
compact interval and denote E"={u:R s [0, 1] |[where u satisfies (i) - (iv) below},

1) wuisnormal,i.e.thereexistsanxy €R " ,such that u(xp)=1;

2) uisfuzzy convex, ie. u(Ax+(1-A)y)>min{u(x),u(y)},xye E",A€][0,1];

3) uisupper semicontinuous;

4)  [u]°=cl{x€ R"|u(x)>0}is compact.

Ifue E", then u s called a fuzzy number and E" is said to be a space of fuzzy numbers.

For O<a <1, denote [u] ‘ ={x€ R " | u(x) > a}. Then from (i)-(iv), it follows that the « -level set

[u] “€P (R") forall0< @ <1,

For the addition and scalar multiplicationin E", we have
[wev]“=[u] "+, [ku] “=[kv] ",
where u, vE€ E" ,k€R,0< o £1. Define D: E"x E" —[0, %) by the equation :

D(u,v)= sup d([u] *,[v]"),

0<a<l

where d is the Hausdorff metric defined in P, (R " ). Then it is easy to see that D is a metricin E" .

Further, using the results in [16], we know that

1) (E",D)is acomplete metric space;

2) (E",D)isinvariant,ie.D(u+w,v+w)=D (u,v)forallu,we E";

3) D(ku, kv) =|k| D(u,v) forallu,ve E",k€R.

Now, we recall some integrability properties in [10] for the fuzzy set-valued mappings of a real variable
whose values are in (E", D).

Definition 2.1. We say that a mapping F : I= E" is strongly measurable, if for all oz [0, 1] the

set-valued mapping F «: [P, (R ") defined by

Fe(=[F(@®)]"

is (Lebesgue) measurable, when P, (R " ) is endowed with the topology generated by the Hausdorff metric

A mapping F : I= E"is called integrably bounded if there exists an integrable function h such that
|X|< h(t) forall x€ Fo(t).

Definition 2.2. Let F: [— E". The integral of F over I, denoted by J.IF(t)dt , is defined -levelwise by

the equation

[J.I F(t)dt]” :L F (Hdt ={(L) J.I f(t)dt ‘ f :1 — R" is a measurable selection for F ¢ } forall 0<a <

A strongly measurable and integrably bounded mapping F : I= E" is said to be integrable over I, if
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jIF(t)dt € E".

Proposition 2.1. If F: [— E" is strongly measurable and integrably bounded, then F is integrable .
Corollary 2.1.If F: I—= E" is continuous, then it is integrable .

Proposition2.2. Let £ G: [~ E" beintegrableand cel .Then
“F(tydt = [ F@ydt+[ F(td
jo ) t:jo (t) t+L (t) t.

Proposition 2.3. Let F, G: [~ E" be integrable and A €R.Then
1y (F()+G()dt= | F(odt+ | G(Hdt;

2) | AFDdt =4 | F(t)dt;

3) D(F, G) is integrable;
4) b [F@dt, [6dt)<() [ D(F(t),GM)dt.

Furthermore, we list the embedding theorem in [11] on the space (E", D).

C. There exists a real Banach space X such that E" can be embedding as a convex cone € with vertex O into
X. Furthermore, the following conditions hold true:
1) the embeddingj is isometric;

2) addition in X induces addition in E";

3) multiplication by nonnegative real number in X induces the corresponding operationin E";

4) C -CisdenseinX;

5) Cisclosed.

Remark 2.1. In this paper, we always denote X to be the Banach space in Proposition 2.4, j the isometric

embedding from (E",D) into X.
Let(E",D) be the space of fuzzy numbers, E; =E"xE"xE" , [I=0,a], a>0 and

D={(¢t,s)€ R? | 0<s<t<a}, D, =I XI. The fuzzy number @ is defined by
1 r=0.

6 () -
) -

and define function @ =6(t) =6, forall tel.
LetC(I,E") denote the space of continuous fuzzy set-valued mappings from I into E". The addition

and nonnegative scalar multiplication in C(I,E") are induced, respectively, by the corresponding
n
operations in E . Then it is easy to see that C(l,E") isa convex cone.

We know that the space C(l, E") with the metric

D(u, 6) = sup,, D(u(t) .0) ueC(l E"),

becomes complete metric space. It has analogous results for the space C (I x E%E ")
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By Proposition 2.4, we know that the embedding j from (E",D) onto its range j(E")c X is

isometrically isomorphism, and so the embedding
jr C(,E")—>C(l, J(E") =C(I,X)

is also isometrically isomorphism.
Let C(I, X) denote the Banach space of abstract continuous function from I to X, and the norm

X[ =max ce1 X (t)]-
For H=C(I, X) , we denote

H()={x() [xeH} <X,

H(D={x(t) |xeH t€ = JH(t) <x.

tel

Definition 2.3. Let A be a bounded subset of X, the Kuratowski measure of noncompactness is defined
by

o (A)=inf { £ >0: A can covered by a finite number of sets each with diameter< ¢ }.

Proposition 2.6. Let & be the Kuratowski measure of noncompactness and suppose that 4 and B are
two arbitrary bounded subsets of X, then we have

1) «a(A)=0 iff. Aisrelatively compact;

2) aA)La(B), IfACB;

3) o)==« (E) (A)), where co(A) denotes the convex hull of 4;
4) a(AVYB)=max{a(4), a(B)};
5) a(tA)=|t| «(A), wheretA={tx:xeA};

6) «a(A+B)< o (A)+ o (B),where A+B={x+y|x€Aandye B}.
Proposition 2.7. Suppose H< C (I, X) be bounded and equicontinuous, then
) a)=a(HD);

2) a(H({I))=max o (H(t)).

Corollary 2.2. Suppose A X be bounded, the mapping f: IXXA—X is bounded and uniform continuous.
Then

a (f(1 XB))= n?alx a (f(tB)), VB-A

In this section, we suppose that (X, || || ) is a real Banach space.

Let/=[0,a],a>0,D={(t,s) e R?|0<s<t<a} andDy=1 I

The space of continuous functions C( /, X )={ X|X .1 —> X is continuous }with a norm ||X||C = malx||x(t)||
te

becomes Banach space.

Lemma 2.1 [13]. Let B,,B, ©cC(l,X) be two countable sets and for every X, €C( I, X ) and

B, = co({X,}UB,), then B, (t) = co({x,(t)}UB,(t)), forall tel.

Lemma 2.2 [9]. Let B be the countable set of strongly measurable functions X:| — X . If there is
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meL(lI,R") such that

||X(t)||£ m(t), ae. tel, xeB,

then a(B(t)) e L(I,R") and a({jI x(t)dt‘x eB}) <2 f. a(B(t))dt.
Lemma 2.3 [8]. Let B < C(l, X) be a equicontinuous and bounded set. Define m(t) = a(B(t)),
t € |, then m(t) is continuous on I and Oc(J.I B(t)dt) < J.Ia(B(t))dt.

Lemma 2.4[13].Letpe C(I,R ") satisfies
t T
p(<M j p(s)ds +N j p@E)ds, tel,
where M>0, N2 0 such that N (e Mt -1)<M,then p(t) =0, t€L
Lemma 2.5 [4]. Let B < C(l,X) be the equicontinuous and bounded set, then «(B) = max a(B(t)),
te

where B(t) :{X(t)|X eB}c X.

Lemma 2.6. Let j is the embedding operator defined as Proposition 2.4, c is a real numberand Bc E",
then we have

a(j(cB)) =|da(jB).

Lemma 2.7. (Monch Fixed Point Theorem). Let X be the Banach space, K eP, (X). If the

pmapping F :K — K satisfies the following conditions
(C,) F:K —>K is continuous

(C,)C cK is countable, Xe X and C =co({x}UF(C))implies that C is compact (i,e,C is relatively

compact), then F has at least one fixed point in K.

3. Math Main Results

In this section, we shall study the following fuzzy integral equation (FIE)

t
u(t)=g() + IO k(t,s)f(s,u(s), (Tu)(s), (Su)(s))ds
(VTS){Tu(®) = [ p(t,s)u(s)ds

Su(t) = j:q(t, s)u(s)ds

where tel ,T:C(l,E") > C(I,E") is Volterra integral operator and S:C(I,E") —>C(l,E") is
Fredholm integral operator .

For Bc C(l,E") and tel,let B(t)={u(t)\ ueB},
(TB) (t) ={Tu(t)| u € B}, (SB) (t) ={Su(t)| u € B}.

We suppose that the following conditions are satisfied for the equation (VTS).
(G) gec(I’En)i
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(KPQ) k,peC(A, RYYand qeC(l,,RY,
whereD:{(t,S)|O£S£t£a} and DO=1 X,

By the compactness of the set D and DO, we have that K, =max|k(D)|, Po :max|p(D)|, and
g, = max|q(D, )| exist.

(F) feC(IxEl,E),

(F,) @“@<ai

where M (R) =sup{D(f (t, u(t), (Tu)(t), (Su)(t)), 9)| D.(u,6) <R},

(F;) Forany countable equicontinuous bounded set B C(I,E") and tel,

a(jf (s, B(s), (TB)(t), (SB)(8))) < Lia(jB(s)) +L,a(i(TB)(s))+ Lx(J(SB)(S))

where j is the embedding operator defined by Proposition 2.4 and L; >0, (i=1,2,3) are the constants
that satisfies one of the following conditions

(L) aqL,(exp(2ak, (L, +ap,L,)) -1) <L, +ap,L,

(L) ak, (2L, +ap,L, +ag,L,) <1

Theorem 3.1. Assume that FIE (VTS) satisfies all above conditions, then (VTS) has at least one solution in

ca EM.

Proof. Define the operators
FIT, Slu(®) = f(t,u®), Tu)®), Cu®), tel,
K({T,S, f ,u)(t)=j;k(t,s)F[|’ , SJu(s)ds, tel,

Au)=gt)+K(T,S, f,u), tel. (2)

Clearly, ue C (I,E") is the solution of (VTS) if and only if u is the fixed point of the operator A in C (I,
E™).
At first we prove that A: C(I, E")—C(I, E") is continuous. For this, for any u,,u, € C(LE"), tel.

By the definition od the operations T and S, we have

De (Tuy , Tu,) < Py [ D(Uy(S) , Uy (s))ds

Dc (SU; , SU) < G [ D(Uy(5) , U, (s))ds
hence T,S:C (I,LE") - C(I,E") is continuous. Since

D(Au, (1), Au, () <K, | D(FIT , S (5) FIT , Slu, (9)ds

thus by the continuity of the mapping f, we have that A is continuous.
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1
By the assumption (F,), thereare r e (0, T) and R, >0 such that
ako

M(R) <R

forall R>R;.
Take R">R, andput W ={ueC(l, E”)|Dc(u ,0)<R",

w2 t,
D(u(t) , u(t,)) < D(g(t,), 9(t)) + R'[J “fk(t,  )ds+] “lk(ty ) —k(t, , s)dsTy
then W € P,.(C(l ,E")) isequicontinuous and forevery ueW, t ,t,el, t <t,

D.(Au, g) <ak,M(R") <rak,R" < R*'
D(Au(t,), Au(t,)) = D(g(t) , g(t,)) +D([ "Kk(t, . FIT, Slu(s)ds, [ "Kk(t, ,S)FIT , S]u(s)ds)
<D(g(t), 9(t,) +D(J; k(t, LT, Slu(s)as, | 'k(t, FIT, Slu(s)cs)

+ D(j: k(t, ,s)F[T, Su(s)ds, j: k(t, , S)F[T, Su(s)ds)

<D(g(t), 9(t,)) + "kt , IP(FIT  )lu(s) , H)ds

+[F[k(t, . ) —k(t, , YD(FT , $)]u(s) , H)ds
<D(9(). 9(t,) +([ kit . 9UIMR")
([ Kt ) -k, M (R)

<D(g(t). g(t) + |rR*[jtj|k(t1,s)|o|s+j02|k(tl,s)—k(t2 ,S)|ds]. 5

Hence A:W —W is continuous. Observe the continuity of the embedding operator j, we know that the
operator JA: JW — jW is also continuous.

Let B={u }cW, u, €W suchthat B =co({u,}U A(B))
Next to prove that jB € P, (jC(1,E")) = P, (C(l, JE")).
By Lemma 2.1 we have
JB(t) = co({ ju, (1} U JAB)(1) =co({ ju,()}U A(jB)(1)) |
Thus by Lemma 2.2 and 2.6, the properties of measure of noncompactness and (2) we have
a(jB()) =a(jB() = a(A(jB)(t))
=a(j[ k(t, S)FIT , Su(s)ds)
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<2 Jk(t, s)a(JFIT , Slu(s))ds “
0 4

Then by the condition (F,), Lemma2.3 and observe that TB and SB are equicontinuous bounded subset

of C (I, E")and the continuity of the operator j, we obtain that

a(jFIT,SJu(s)) < La(iB() + Ly b, [ (a(iB()dr+ Ly, [ a(iB(x)de (5)
By (4) and (3), we get

a(jB() < 2Lk, [ a(jB(s)ds+ 2Lypoky [} [} a(jB(D))drds

tpea B
+ 2L3q0k0j0j0 a(jB(z))dwds

and then we have

a(jB(t)) < 2k,L, j ; a(iB(S)ds+2Lypok f, f; a(jB(x))drds +2K,GoLst j :a( iB(s))d

t N t . a .
< 2k,L, [ a(iB(s)ds+ 2k pL, [ (t—s)a(jB(s))ds+ 2kyaoLst | a(jB(s))d
By the equicontinuity and boundedness of B < C(I,E"), we know
I(H=a(jB()) eC(l,R").

1) Supposethat L, >0, i=1,2, 3 satisfies the condition (L, ), then from (6) we have
It <M [ I(s)ds + N [ “I(s)ds
—_ O 0 )

where M =21k, +2p,k,L,, N =20,k,L;.
By Lemma 2.4, it follows 1 (t) = 0, t€l.
2) Let L; >0,i=1,2, 3 satisfies (ii) in (H,) , also from (6) we have

[ 0a| (s)ds < Oa[2k0 L + 2ok Lot + 205k, Lytldt | Oal (s)ds
= [2ak, L, + 8 ok, L, +a°0ok, L ][ 1(s)ds

=ak,[2L, +ap,L, + aq0L3]'[:I(s)ds.

Thus | Oa I()dt =0, hencel(t) = 0, t€1,
By Lemma 2.5, both (i) and (ii) follows that

a(jB) = max a(jB(1)) =0

)
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therefore we have jBe P (C(l, jE") = jR.(C(I ,E")).

It show by Lemma 2.7 the operator jA:jW — jW has at least one fixed point V' in
jW < C(1,jE"). Put V' = j(u’) for some U €W, thus U is the (global) solution of (VTS) in
C(l,E").
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