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Abstract: Partial integro-differential equations occur in many fields of science and engineering. Besides, the 

class of parabolic-type differential equations is modelled in compression of poro-viscoelastic media, 

reaction-diffusion problems and nuclear reactor dynamics. In recent years, most mathematical models used 

in many problems of physics, biology, chemistry and engineering are based on integral and 

integro-differential equations. In this work, we propose a new effective numerical scheme based on the 

Laguerre matrix-collocation method to obtain the approximate solution of one dimensional parabolic-type 

Volterra partial integro-differential equations with the initial and boundary conditions. The presented 

method reduces the solution of the mentioned partial integro-differential equation to the solution of a 

matrix equation corresponding to system of algebraic equations with unknown Laguerre coefficients. Also, 

some numerical examples together with error estimation are presented to illustrate the validity and 

applicability of the proposed scheme. 

 

Key words: Laguerre series, laguerre matrix-collocation method, parabolic-type volterra partial 
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1. Introduction 

In this study, we consider parabolic-type Volterra partial integro-differential equations which combined 

the partial differentiations and the integral term. Partial integro-differential equation and its applications 

play an important role from biology to physics and engineering, and from economics to medicine. However, 

there are some different types of partial integro-differential equations and we focus on the parabolic-type of 

these equations [1]-[3]. 

This class of equations is applied in many different areas such as compression of convection-diffusion, 

reaction–diffusion problems and nuclear reactor dynamics. In particular, there are some numerical methods 

are useful to get approximate solutions; such as finite element methods, Rayleigh-Ritz, Galerkin, iterative 

methods, collocation methods and so on [4]. In this study, we develop an efficient Laguerre 

matrix-collocation method for solving the following parabolic-type Volterra partial integro-differential 

equation 

TtlxdssxustxKtxutxatxgtxu

t

xxt   0,0,),(),,(),(),(),(),(
0
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under the initial and boundary conditions 
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where 22 /,/ xuutuu xxt  . The functions ag,  are continuous functions and K  is the kernel 

function of the integral part of (1) which are define on ℝ2 and hmf ,,  are functions on ℝ for our 

purpose, we assume the approximate solution of the problem (1) (2) in the truncated Laguerre series form 
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where )(xLn
denotes the Laguerre polynomials;  
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and ),...,1,0,(,, Nsna sn  are unknown Laguerre polynomial coefficients, and N  is chosen as any positive 

integer such that 2N . 

The outline of this paper is as follows. In the next section we introduce some important properties of 

Laguerre polynomials. In Section 3, fundamental matrix relations and Laguerre matrix-collocation method 

is introduced. Section 4 discusses various techniques that can be used to perform error analysis. Section 5 is 

devoted to some illustrative examples of parabolic-type Volterra partial integro-differential equations on 

this topic. The paper concludes with a discussion of future developments [5], [6]. 

2. Some Important Properties of Laguerre Polynomials  

Laguerre polynomials 𝐿𝑛(𝑥, 𝛼) are orthogonal in the interval (0, +∞) with respect to the weight 

function 𝜔 𝑥, 𝛼 = 𝑥𝛼𝑒−𝑥 . For 𝛼 = 0, these polynomials become ordinary Laguerre polynomials 𝐿𝑛(𝑥); 

𝐿𝑛 𝑥, 0 = 𝐿𝑛(𝑥). Polynomials 𝐿𝑛(𝑥, 𝛼) are defined by the generating function 

(1 − 𝑡)−(𝛼+1) 𝑒−𝑥𝑡

(1−𝑡)
=  𝐿𝑛(𝑥, 𝛼)+∞

𝑛=0
𝑡𝑛

𝑛!
.                              (5) 

From the relation (5), the three term recurrence relation is obtained as 

 

 𝑛 + 1 𝐿𝑛+1 𝑥, 𝛼 =  2𝑛 + 𝛼 + 1 − 𝑥 𝐿𝑛 𝑥, 𝛼 − (𝑛 + 𝛼)𝐿𝑛−1 𝑥, 𝛼  

 
with starting values 𝐿0 𝑥, 𝛼 = 0, 𝐿1 𝑥, 𝛼 = 𝛼 + 1 − 𝑥. Expanding the left side of (5) in powers of 𝑡, and 

then comparing coefficients with 𝑡𝑛 , the explicit representation of 𝐿𝑛 𝑥, 𝛼  is obtained as 

 

𝐿𝑛 𝑥, 𝛼 =   −1 𝑛  
𝑛
𝑘
 

𝑛

𝑘=0

Γ 𝛼 + 𝑛 + 1 

Γ 𝛼 + 𝑘 + 1 
 

=   −1 𝑘  
𝑛
𝑘
 

𝑛

𝑘=0

 𝛼 + 𝑛 + 1 𝑛−𝑘
k!  𝑛 − 𝑘 !
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where 

 

(𝑠)𝑛 = 𝑠 𝑠 + 1 …  𝑠 + 𝑛 − 1 =
Γ 𝑠 + 𝑛 

Γ 𝑠 
 

 

and Γ is the gamma function. Specifically, if 0 , we can define (4) [7]. 

3. Fundamental Matrix relations And Laguerre Matrix-Collocation Method 

Let us consider Eq. (1) and find the matrix forms of the equation. First we can write the solution function 

(3) in the matrix form 

 

  ALL )()(),( txtxu                                       (6) 

 

where 

𝐋 𝑥 =  L0(𝑥) … L𝑁(𝑥) , 𝐋  𝑡 =  
𝐋 𝑡 … 0
⋮ ⋱ ⋮
0 … 𝐋 𝑡 

 , 𝐀𝒊 =  𝑎𝑖0 𝑎𝑖1 …  𝑎𝑖𝑁 
𝑇 , 𝑖 = 0,1,… , 𝑁 

𝐀 =  𝐀0 … 𝐀𝑁 
𝑇 =  𝑎0,0 𝑎0,1 …  𝑎0,𝑁 𝑎1,0 𝑎1,1  … 𝑎1,𝑁 …   𝑎𝑁,0𝑎𝑁,1 … 𝑎𝑁,𝑁 𝑇 

 

Then, we use the matrix relation 
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and 
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Also, the relations between the matrices )(xX , )(tX  and their derivatives )(xX , )(xX 
 and )(tX , 

)(tX   can be written as 

 

BXX )()( xx  , 2))(()( BXX xx                                   (9) 
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 BXX )()( tt  , 2))(()( BXX tt                                    (10) 

where 

 

























00000

0000

0200

0010

N







B

      





















B

B

B

B









00

00

00

 

 

Besides, we organize the derivatives of ),( txu  with respect to (6), (7), (8), (9) and (10) in the matrix 

forms 

  ALBHXALL )()()()(),( txtxtxux 
 

 

                         ALHBXALL )()()()(),( 2 txtxtxuxx                         (11) 

 

  ALHXALL )()()()(),( txtxtxut
  

 

Now, we convert the kernel function ),,( stxK  and the function ),( sxu  to the matrix forms in the 

integral part of Eq.(1), by means of the following procedure. Firstly, the function ),,( stxK can be expressed 

by the truncated Taylor series 
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and then, it can be written in the matrix form 

 

  )()()(),,( stxstxK T
KXXX .                            (12) 

 

In addition, matrix form of the function ),( sxu  becomes from (6) and (7) 

 

  AXXAXX )()()()(),( xssxsxu  .                         (13) 

 

By using (12) and (13), the matrix form of integral part are obtained as follows: 
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By substituting the relations (11) and (14) into Eq.(1), we have the matrix form of (1) 

 

      ),()()()()()()(),()()( *2 txgxttxtxtxatx  AXKQXXALHBXLHX         (15) 

 

where 

 

𝐀 ∗ =  𝐀 0 𝐀 1 … 𝐀 𝑁 
𝑇 𝐀𝒊

∗ =  𝑎0𝑖 𝑎1𝑖 …  𝑎𝑁𝑖  
𝑇 , 𝑖 = 0,1,… , 𝑁 

 

Similarly, we organize the matrix equations for the initial and boundary conditions (2) by using (11): 

 

     )()0()()0()()0,( xfxxxu ALHXALL  
 

            )()0()()0()()0,( xmxxxut ALHXALL                    (16) 

 

     )()()0(),0( thttu ALL  

          

Then, we have the modified matrix system by simplifying (16) 

 

        ALH )0( ,  ALH )0( , ALL )()0( t                         (17) 

               

By putting the collocation points 
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l
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N

T
t j ,...,1,0,    and 

N

l
h                   (18) 

 

into Eq.(15), we have the fundamental matrix equation as 

 

       GAXKQXXALHBXLHX  ),()()()()()()(),()()( *2

jiiijijijij txgxttxtxtxatx
 

 

where 

 

𝐆 =  𝑔0,0 𝑔0,1 …  𝑔0,𝑁 𝑔1,0 𝑔1,1  … 𝑔1,𝑁 …   𝑔𝑁,0𝑔𝑁,1 … 𝑔𝑁,𝑁 𝑇 

 

Briefly, 

GAWAW  ** ),(),( jiji txtx                                 (19) 

 

If we follow the same procedure for the initial and boundary conditions (17), we have, 

 

iAU , 
iAV , 

jAZ                                (20) 

               

Consequently, to obtain the solution of Eq. (1) under the conditions (2), by replacing the row matrices (20) 

by the last rows of the augmented matrix (19), we have the required augmented matrix. Then, (19) becomes 
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     GWW ;
~

;
~ *

                                        (21) 

 

By solving the augmented matrix form system the unknown Laguerre coefficients are computed. Thus, 

the approximate solution ),( txu , Ttlx  0,0  is found in the truncated Laguerre series (3), [8], [9]. 

4. Error Analysis 

In this section, we give brief error estimation for the Laguerre polynomial solution (3) and it supports the 

accuracy of Laguerre polynomial solution. We define error function     ,...1,0,,,00,,   Tlttxx
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where kk

N txE 
 1010),( 


, ( k  is positive integer) is prescribed, then the truncation limit N

increased until difference ),(  txEN
 at each of the points becomes smaller than the prescribed k10 . On 

the other hand we use different error norms for measuring errors. These error norms are defined as 

follows: 
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where ),(ˆ),(  iii xuxue   also u  and û  are the exact and approximate solutions of the problem 

respectively and   is an arbitrary time t  in  T,0  [10]. 

5. Illustrative Examples 

In this section, several numerical examples are given to illustrate the accuracy and effectiveness 

properties of the method and all of them were performed on the computer using a program written in 

Maple 18. 

5.1. Example 5.1 

We consider the parabolic-type Volterra partial integro-differential equation 

 

10,10,),()1(2),()5(),(),(
0

  txdssxutxstxutxtxgtxu

t

xxt
         (22) 

 

with following initial and boundary conditions 
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1,0,0)0,()0,(
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tttu

xxuxu t                                  (23) 

 
where )(),( 8-6x18tx-x9t+x2t+x3t-x2t+x-3tttxg 322343444  . We follow the same procedure in Section 
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3 and by substituting (23) initial and boundary conditions the exact solution of (22) is obtained as 
23 )43(),( txtxu  . 

5.2. Example 5.2 

We consider the following problem 

10,10),(),(),(),(
0

  txtxgdssxutxutxu

t

xxt
                 (24) 

with initial and boundary conditions 
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where ),( txg  is chosen with respect to r  value of exact solution  )sin()1(
2

1
),( 6 txx

r
txu 







 
 . Similarly, 

we have the approximate solution of (24) under the conditions (25). In Figure 1 and Figure 2, we can see 

the relation of the solutions for different r  values. 

 

 
Fig. 1. Approximate solution for r=0 value Example 5.2. 

 

 
Fig. 2. Approximate solution for r=1 value Example 5.2. 

 

5.3. Example 5.3 

We consider the following problem 

 

10,10),(),(3),(4),(
0

23   txtxgdssxuxttxutxu

t

xxt
                (26) 
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with initial and boundary conditions 

 

 

0,0),1(),0(

1,0),
2

cos()0,(





ttutu

xxxu

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where 23

12

1
5),( txxtxg  . Similarly, we have the approximate solution of (26) under the conditions (27). 

In Table 2, we see that absolute, 2L , L  and RMS errors are examined. 

 
Table 2. Absolute, 

2L , 
L , RMS Errors of Example 5.3. for N=4 and h=0.1. 

(t) Absolute error 2L -error 
L -error RMS-error 

0.0 0.21205E-5 0.25986E-7 0.41187E-6 0.23614E-5 

0.1 0.35498E-4 0.20562E-5 0.77451E-5 0.11033E-4 

0.2 0.84625E-4 0.35622E-5 0.41422E-5 0.22603E-4 

0.3 0.75452E-4 0.95136E-5 0.45512E-4 0.22603E-4 

0.4 0.62451E-4 0.75451E-4 0.32134E-4 0.32400E-4 

0.5 0.95175E-4 0.54247E-4 0.65196E-4 0.63541E-4 

0.6 0.52533E-4 0.55405E-4 0.74157E-4 0.78642E-4 

0.7 0.65161E-4 0.62142E-4 0.54335E-4 0.29413E-4 

0.8 0.45261E-3 0.95151E-4 0.41142E-3 0.06532E-3 

0.9 0.85246E-3 0.75481E-4 0.21332E-3 0.16273E-3 

1.0 0.75395E-3 0.74114E-4 0.73194E-3 0.35022E-3 

 

6. Conclusion 

Parabolic-type Volterra partial integro-differential equations play an important role in the fields of 

science and engineering and numerical methods may be required to obtain their approximate solutions. 

Thus, the Laguerre collocation method has been presented. A considerable advantage of the method is 

shorter computation time and lower operation count results in reduction of cumulative truncation errors 

and improvement of overall accuracy. Illustrative examples support the efficiency of the method, and 

performed on the computer using a program written in Maple18 to obtain the results fast and reliable. As a 

result, the power of the employed method is confirmed. The method can also be extended to another 

applications but some modifications are required [11], [12]. 
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