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Abstract: The concept of infinity is analyzed with an objective to establish different infinity levels. It is 
proposed to distinguish layers of infinity using the diverging functions and series, which transform finite 
numbers to infinite domain. Hyper-operations of iterated exponentiation establish major orders of infinity. 
It is proposed to characterize the infinity by three attributes: order, class, and analytic value. In the first 
order of infinity, the infinity class is assessed based on the “analytic convergence” of the Riemann zeta 
function. Arithmetic operations in infinity are introduced and the results of the operations are associated 
with the infinity attributes. 
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1. Introduction 

Traditionally, the abstract concept of infinity has been used to generically designate any extremely large 
result that cannot be measured or determined. However, modern mathematics attempts to introduce new 
concepts to address the properties of infinite numbers and operations with infinities. The system of 
hyperreal numbers [1], [2] is one of the approaches to define infinite and infinitesimal quantities. The 
hyperreals (a.k.a. nonstandard reals) *R, are an extension of the real numbers R that contains numbers 
greater than anything of the form 1 + 1 + … + 1, which is infinite number, and its reciprocal is infinitesimal. 
Also, the set theory expands the concept of infinity with introduction of various orders of infinity using 
ordinal numbers. The first transfinite ordinal, denoted ω, is the order type of the set of nonnegative integers 
[3]. This is the "smallest" of Cantor's transfinite numbers, defined to be the smallest ordinal number greater 
than the ordinal number of the whole numbers, and is denoted with the notation ω={0,1,...|}. The surreal 
number system [4], [5] represents an arithmetic continuum containing the real numbers as well as infinite 
and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number.  
The hyperreal numbers can be realized as subfields of the surreals. The surreal numbers contain all 
transfinite ordinal numbers and are constructed through forms inductively as equivalence classes of pairs of 
sets of surreal numbers, restricted by the condition that each element of the first set is smaller than each 
element of the second set. The arithmetical operations of surreal number forms, e.g. x = {XL | XR} and y = {YL 
| YR}, are defined by recursive formulas. The surreal numbers establish different orders of infinity using 
powers of transfinite ordinal, i.e. ω,  ω ன,  ω ன ಡ… 

This paper presents a different approach to mathematical perception of infinity and its classification 
based on hyper-operations and Riemann zeta-function. The zeta function, ζ(s) is a function of a complex 
variable s, which analytically continues the sum of the infinite series and converges when the real part of s > 
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1. The Riemann zeta function is an important special function, which arises in definite integration. The zeta 
function has a unique analytic continuation to the entire complex plane, excluding the point s=1, which 
corresponds to a simple pole with complex residue [6]. For even arguments, the zeta function can be 
computed analytically.  
2. Transform to Infinity 

It is not possible to define the infinite number in the finite domain of numbers.  This does not mean that 
infinite number does not exist, but only the fact that it cannot be defined within the known domain of finite 
numbers. Let’s assume that infinite numbers do exist and can be defined in a different domain, but remain 
undefined and not “reachable” from the domain of finite numbers. Diverging function or series can be 
perceived as “infinity transform”, which map the finite domain to the infinite domain (Fig. 1). The 
mathematics of finite numbers considers divergence as an approach to single infinite number, regardless of 
the type of the divergence. However, if infinite numbers exist in the infinite domain, then “infinity transform” 
may approach different infinite numbers.  Thus, infinity numbers are perceived as ever changing dynamic 
values in infinite domain as opposed to the static values of finite numbers domain. 

The infinite number cannot be “visualized” from the finite numbers perspective, but its divergence 
“trajectory” can be used for segregation of infinity into different layers. It is not possible to determine the 
precise infinite numbers using the expressions of finite domain. However, it may be possible to segregate 
the infinite numbers by assigning a category to the path yielding to infinite numbers. The extension of the 
single infinity number concept to “poly-infinity” also allows introduction of operations on infinite numbers. 
The actual resulting value of the operations on infinite numbers is undetermined, but the associated 
attributes can be established. 

 

 
Fig. 1. Transform from finite to infinite domains. 

 
3. Infinity Classification 

The common definition of infinity is “a number greater than any assignable quantity or countable 
number.” However, an unassignable quantity can still be compared to other unassignable quantities at any 
given moment of diverging process based on the significantly different quality of greatness. Two power 
functions of different power do not intersect anywhere in infinity for →x ∞, and therefore can be considered 
approaching infinity in different layers of infinity or effectively belong to different levels of infinity with 
respect to the intensity of their divergence. 

It is proposed in [6] to distinguish infinity and infinitesimal based on the Riemann zeta-function [7] for an 
integer argument s. 
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                                              (1) 

 
For s=1, the zeta function diverges, i.e. ζ(1)=∞. However, the following function resolves the asymptotic 

divergence of zeta function near the pole of zeta function [6].  
 

(ݏ)఍ߗ = (ݏ)ߞ + 2)ߞ  −  (2)                                             (ݏ
 
For s=1,  ߗ఍(1) =  lim∆௦→଴ 1)ߞ + (ݏ∆ + 1)ߞ − (ݏ∆ =  ߛ2

where γ – is Euler–Mascheroni constant 
The following function allows to assign a value that can indirectly serve as a measurement of divergence 

intensity: 
 

(ݏ)ܼ = ଶఊି఍(௦)ି఍(ଶି௦)
ଶఊିଵ 1)݊݃݅ݏ −  (3)                                       (ݏ

 
Let’s associate (denoted as symbol below) the infinity of the power function f=axS with its integral, and 

subsequently, with the corresponding summation of the zeta function ζ(s) and its “analytic value” Z(s).    
 

                          (4) 
 
In spite of the fact that the infinity of the function does not have any directly assignable quantity or 

countable number, the analytical association with the zeta function provides a virtual finite value that can 
be assigned to the quality level of the divergence.  For a power function, the infinity level s is considered to 
be “analytically converging” to the value of Z(s).  

Evidently, the power functions do not cover all transforms to infinity, which are mapped and associated 
with Riemann’s zeta function ζ(s). Hyper-operations deliver much more intense divergences. The 
hyper-operation sequence is an infinite sequence of arithmetic operations that starts with the unary 
operation of successor (order 0), then continues with the binary operations of addition (order 1), 
multiplication (order 2), and exponentiation (order 3). After that, the sequence proceeds with further 
binary operations extending beyond exponentiation, using right-associativity. Hyper-operation [8] of forth 
order (hyper-4) is defined as s-times iterated exponentiation function, also known as “tetration” [9], which 
is presented in one of the following notations [3] as s-th tetration of x: 

 
ℎସ(ݔ, (ݏ = …௫ೣݔ = ݔ ↑↑ ݏ = ݔ ↑ଶ ݏ =  (௦ݔ)                           (5) 

 
For s=2, the tetration function h4(x, 2)= xX. The sequence of hyper-powers x, 2x, 3x, 4x . . . = {Sx} converges 

for all x in the interval [e-e, e1/e], and diverges for all x outside of that interval [8]. For →s ∞, the infinitely 
iterated tetration function H4(x)=lim௦→ஶ ℎସ(ݔ,  represents an extremely fast divergence to infinity when (ݏ
→x ∞, and subsequently H4(x) can be related to the an ultra-high order of infinity.  

Hyper-operations [8] of higher order can be also defined, e.g. “pentation” (hyper-5), which is iterated 
“tetration”, and uses notation x↑↑↑s or x↑3s. The definition of similar hyper-operations can be extended to 
hyper-M, and ultimately to hyper-∞, with inϐinite number of arrows in the notation, which is the infinite 
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order of infinity. 

Let’s introduce the following function K(s) based on the tetration function h4(n) for integers:  
 

                                                 (6) 
 
The function K(s) is similar to Riemann’s zeta function ζ(s), and can be used to define ultra-high infinite 

numbers, where s is positive integer. For s=1,  (1)ܭ = (1−)ߞ = − ଵ
ଵଶ, and for any integer s>1, it can be 

shown that K(s) is greater than corresponding Riemann’s zeta function sums, i.e. 
 

                                       (7) 
 
Evidently, the zeta function cannot provide adequate categories of infinity for the hyper-operations and 

the relevant divergence to extremely high levels of infinity. For these ultra-high infinities, it is more 
appropriate to establish higher orders using the order of hyper-operations. Hyper-operations allow 
definition of infinite orders of infinity.  

Most common mathematical operations used in the physical world belong to the first order of 
non-iterated operations at simple exponentiation of 3, i.e. x↑s. In the first order, the zeta-function can be 
effectively used as a classification to distinguish infinity levels approached by the power functions, and the 
Z(s) function can be used to assign an analytic value to the infinity. 

For hyper-operations, it may be also possible to find a function, which can serve as analytic value. For 
example, for tetration, the following function provides calculation similar to the function (2). 

 
,ݏ)ுߗ (ݔ =(௦ݔ) + (ି௦ݔ)                                         (8) 

 
A linear approximation of  Sx to the differentiability requirement is given by: 
 

(௦ݔ) = ൝    log௫(௦ାଵݔ) ݏ        ≤ −1  
 1 + −         ݏ 1 < ݏ < 0
ݏ                   (ೞషభ ௫)ݔ > 0

                                   (9) 
 
Then, for s > 1 
   

,ݏ)ுߗ (ݔ = (ೞషభ ௫)ݔ + log௫(௦ାଵݔ)                             (10) 
 
The Table 1 provides a list of infinity transforms and the corresponding infinity attributes to characterize 

uniquely the associated infinity numbers produced by the divergence. The analytic values are provided only 
for power functions, as analytic continuations of other diverging functions are yet to be clearly established. 
4. Operations in First Order of Infinity 

Since infinity is a domain of a different nature, it is conceivable that arithmetic of finite numbers may be 
not applicable in infinity and even mixing of finite and infinite numbers in the infinite domain may not be 
feasible as it is possible in the finite domain. To distinguish the arithmetic of undefined numbers in the 
infinite domain from the arithmetic of finite number, the term “infinetic” is used further below. Let us try to 
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define basic manipulations with infinite numbers, i.e. summation, subtraction, multiplication, division.  
The result of the infinetic operation is still an undefined number, which belongs to infinite domain, but it 
has associated attributes: infinity order, class, and analytic value.  

 Table 1. Infinity Attributes for Diverging Transforms 
Transform 

Attributes 
Order Class Analytic Value 

lim௫→ஶ (1−)ߞ 1 1 ݔ = − ଵ
ଵଶ  ; 

ܼ(−1) ≈ 0.23122 
lim௫→ஶ (2−)ߞ ଶ 1 2ݔ = 0  ; 

ܼ(−2) ≈ 0.46692 
lim௫→ஶ  ;(M−)ߞ ெ 1 Mݔ

ܼ(−M); 
lim௫→ஶ ௫ݔ  2 1  
lim௫→ஶ ௫ೣݔ  2 2  
lim௫→ஶ(ேݔ) 2 N  
lim௫→ஶ(ݔ ↑ଷ   1 3 (ݔ
lim௫→ஶ(ݔ ↑ସ   1 4 (ݔ

 
Let’s look at the summation and subtraction through the “infinite transform” perspective. The power 

function transform to infinity is measured exclusively on the basis of the diverging intensity of xS, because 
the finite coefficient a, no matter how large, belongs to the finite domain, and therefore, coefficient a will be 

→always less than the x ∞. Two power functions transform to inϐinite domain as follows: 
 

(11) 
 

(12) 
 

where s1 > s2. 
Then, the summation and subtraction can be associated to Riemann’s zeta function ζ(s) and the analytic 

value of Z(s) function through class comparison: 
 

(ଵݏ)݂݊ܫ ⊕ (ଶݏ)݂݊ܫ  ⊜  (13)                                     (ଷݏ−)ܼ 
 

(ଵݏ)݂݊ܫ ⊖ (ଶݏ)݂݊ܫ  ⊜  (14)                                    (ଷݏ−)ܼ 
 

where s3 is the solution of the following equation for summation 
 

(15) 
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where (ݏଵ + (ଶݏ < ଷݏ < 1 + ଵݏ) +  (ଶݏ

The encircled arithmetical symbols designate “infinetical” operations, i.e. arithmetical operations on 
infinite numbers.  

Essentially, the proposed summation/subtraction of infinite operands result in the assignment of the new 
order, which is incremented/decremented by s<1 to the result of summation/subtraction. 

The change of order s≥1 occurs in case of multiplication or division of infinite numbers. The 
multiplication and division through the “infinite transform” perspective can be also associated to Riemann’s 
zeta function ζ(s) and the analytic value of Z(s) function as follows: 

 
(ଵݏ)݂݊ܫ ⊗ (ଶݏ)݂݊ܫ  ⊜ ଵݏ−)ܼ  −  ଶ)                             (16)ݏ

 
(ଵݏ)݂݊ܫ ⊘ (ଶݏ)݂݊ܫ  ⊜ ଵݏ−)ܼ  +  ଶ)                             (17)ݏ

 
The proposed approach of association with Riemann’s zeta function and Z(s) function provides a 

possibility to quantify the result of operations on infinite numbers in terms of the achieved order of infinity 
and the analytic value. 
5. Conclusions 

The objective of this research is the analysis of infinity and the possibility of analytical interpretation of 
infinite numbers. The proposed approach attempts to develop a plural nature of infinity. The infinity is 
understood not as a single undefined large value of an absolute nature, but rather as a dynamic collection of 
multiple undefined values, which belong to a separate domain with its own mathematics applicable only to 
the infinite numbers. The actual infinite values may remain undefined, but the attributes of the undefined 
values can be elaborated.  This research proposes to use order, class, and analytic values as infinity 
attributes, which can uniquely characterize the infinite numbers. The classification is based on the intensity 
of diverging functions, which approach infinity. For lower order of infinity, it is proposed to use the 
association with Riemann’s zeta function for establishing analytic value of infinity. 

The proposed classification of infinite domain allows definition of arithmetic operations on infinite 
numbers. The result of operations on infinite numbers can be presented as another infinite number with 
unknown value, but with known characteristics. These resulting characteristics are determined by the 
attributes of operands, and the analytic value can identify the result of arithmetical operation in infinite 
domain.  
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