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Abstract: This paper deals with the dynamics of a stage-structured predator-prey system. The immature 

and mature prey are predated by the predator for which modified Holling type II functional response is 

considered in the model. The solution of the system is positive and bounded. Stability analysis has been 

discussed about all possible feasible equilibrium points. The origin and boundary equilibrium points are 

shown to be globally asymptotically stable. The parameters are identified for which system also admits 

trans-critical bifurcation about these points. The occurrence of Hopf bifurcation has been shown through 

numerical simulation about positive interior point. Persistence condition is obtained. 
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1. Introduction 

In the real world, almost all animals have the stage structure of immature and mature population. It has 

its own significance in the dynamics of the interacting species. Many authors have studied the 

stage-structured predator-prey models, in which either juvenile prey or adult prey is predated by the 

predator [1]-[5]. Some authors have investigated stage-structured predator-prey systems where predator is 

predating over juvenile/ immature or adult/ mature prey [6], [7]. A predator-prey system with group 

defense of immature class is considered, in which it is proved that for stable co-existence point, mortality 

rate of mature prey and carrying capacity must be neither too small nor too large [6].  

Yang and Zhong [7] have considered two stage-structured deterministic and stochastic predator-prey 

systems where juvenile prey is predated with Beddington-DeAngel is functional response, while adult prey 

is predator with Holling-type II functional response. In this model, it has been assumed that the energy 

derived from immature prey is independent of mature prey. It does not matter that how much the predator 

has already taken from immature while predating over mature prey. This is possible if predator has two 

independent guts; one for immature prey and other for mature prey. However, this is not true. To resolve 

this issue, modified Holling type functional response is proposed, where the functional response 

incorporates both immature and mature population. 

2. Model Formulation 

Let )(),( 21 tXtX  and )(tY  be the densities of immature prey, mature prey and predator respectively. 

Growth of juvenile prey species is proportional to mature prey. The predator is predating over both types of 

prey with modified Holling type II functional response. The predator-prey system with stage structure can 

be modeled as follows: 
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The growth of the immature species directly depends upon mature prey and 21 , DD and 3D are the death 

rates of immature, mature prey and predator respectively. Let R  be the birth rate andC  be the conversion 

rate of immature prey. The crowing effect is considered only on the adult prey and is denoted by .2D   

Let us introduce non-dimensional state variables and parameters as below: 
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Then the dimensionless form of the system (1) is given as 
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3. Analysis 

From the biological point of view, it is necessary to establish that the solution of the initial value problem 

(2) remains positive and bounded. 

It may be observed that 21 xx   plane is invariant since .0y  Further, 0,0 21  xx 
 on yx 2

plane while 0,0 21  xx 
 on yx 1  plane. Accordingly, the vector fields point towards the interior of

.3

R  

To establish the boundedness of the system, consider the function 
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Computing its time derivative and substitution of (2) and further simplification yields 
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3.1. Existence of Equilibrium Points 

The stage structured predator-prey system (2) admits the following three equilibrium points: 

1) The trivial equilibrium point )0,0,0(0 E
 

always exists. 

2) The planar equilibrium point 
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 can be obtained by solving 

following three 

equations: 
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Elimination of y from first and second equations of (3) gives the quadratic 
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The third equation of (3) gives:  

 

    42422141

'

1   xx
 

 

)(),(; 422411421   QPQxPx                         (5) 

 

Now putting 
P

xQ
x 24

1





 
in equation (4), gives cubic equation in 2x  
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The y-coordinate from first and second equations of (3) is given as 
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From equation (5), no positive value of 1x is possible for 0P  and 0Q . Considering, 0P  and

0Q , by Descartes rule of sign, the equation (6) will possess either one or three positive roots. Since

0)0( f  and   04  Q/f , there may exist one positive value of 2x . Further, 1x and y may have one 

positive solution. Accordingly, one positive interior point may exist. 

 Considering, 0P  and 0Q , by Descartes rule, the cubic equation (6) admits only two positive 

roots. Now 0)0( f  and   04  Q/f . Consequently, 2x has only one positive root in the interval

 Q/,0 4 . Further, only one positive value of 1x  is possible, provided Qx /42   and y admits positive 

values, when equation (7) is satisfied. Combining these facts, the system admits only one equilibrium point 

in this case.  

However, for 0,0  QP , 1x  is positive for Q/x 42  . Consequently, )( 2xf  admits at the most 

two positive roots in the interval  ,/4 Q . It is concluded that at the most two interior points are 

possible depending upon the condition (7).   

3.2. Local Stability Analysis 

The Jacobian matrix about any equilibrium point for the system (2) is computed as 
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 The characteristic equation about )0,0,0(0 E
 

is obtained as 
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Accordingly, the point 0E
 

is locally asymptotically stable for 21    and saddle for 21   . There 

is a possibility of trans-critical bifurcation at 21   . It can be established using Sotomayor’s Theorem 

[8]. 
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is given by: 
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The two of the eigenvalues about 1E  are negative while eigenvalues in y-direction is 

International Journal of Applied Physics and Mathematics

27 Volume 7, Number 1, January 2017



  

  
   4

21213

2121

3 



 






 
 

Hence, the boundary equilibrium 1E is locally asymptotically stable if 
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It will become saddle, if above condition is violated. The trans-critical bifurcation occurs at 
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Note 1: There exists no periodic solution in 21 xx   plane. 
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when 21   . The system (2) admits trans-critical 
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evaluated from the expression (8). The Sotomayor’s Theorem is applied to establish the trans-critical 

bifurcation. 
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The characteristic equation about 
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It is clear that, 00 A
 

and .02 A  By Routh-Hurwitz criteria, interior point is locally asymptotically 

stable if .0210  AAA
 

Analytically the above condition could not be examined further. However, numerically it is verified for 

certain choice of parameters.  

3.3. Global Stability Analysis 
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Since, time derivative is negative definite, the boundary equilibrium point is globally asymptotically 

stable in the positive quadrant of 21xx -plane. 

4. Persistence 

The system is said to be persist, if all the populations survive for a long time. 

Theorem 5.1: In the absence of nontrivial periodic solution in 21 xx  plane, the system (2) persists, if 
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For 21   , 0E is unstable and the planar point exists. No periodic solution is possible under (9). Further, 
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3

R . 

5. Numerical Simulation 

Consider the data set: 

 

25.0,5.0,15.0,35.0,22.0,5.0,4.0,3.0,2.0 214321121  
 

 

For this data set, 0,0  QP , then the interior point *E  becomes (0.244909, 0.268207, 0.56578).At 

this
210 AAA  >0. The fig. 1(a) shows the local stability of interior point.  

The Hopf bifurcation is investigated with respect to parameter 1   and it occurs in the neighbourhood of  

1 4.8085. At 1 4.8084903, the interior point becomes *E (0.029808, 0.033929, 0.70747) and the 

corresponding eigenvalues are -1.58567, ± (0.166065)i. Also,  210 AAA 0 and the first Lyapunov 

coefficient is computed as -1.097495e-003. The fig.1 (b) shows the existence of Hopf bifurcation. 

 

   
(a)                                 (b) 

Fig. 1. Phase-portraits showing (a) local asymptotically stability behavior of 
*E  and (b) existence of Hopf 

bifurcation at 1 4.8084903. 

 

Now, consider the case, 0,0  QP , which is possible for the following choice of data: 

 

25.0,5.0,15.0,22.0,35.0,5.0,06.0,3.0,2.0 214321121    
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The polynomial )( 2xf has three positive roots, which are 21x 0.486266, 22x 0.60575 and 23x

44.0898. Now, 01 x  for 21x  and corresponding to 22x and 23x , the value of 1x is obtained as 12x

0.600719 and 13x 761.5714 respectively. Also, 0y for 232 xx  . In this case, unique interior point *E

(0.60072, 0.60575, 0.06086) exists and found to be stable, since 210 AAA  >0.  The fig.2 (a) verifies its 

stability.   

However, the Hopf bifurcation occurs at 1 5.7291806, the interior point will be *E (0.02527, 

0.027121, 0.373455) and the corresponding eigenvalues are -1.54346, ± (0.120576)i. The first Lyapunov 

coefficient is computed as -1.050622e-003. The existence of Hopf bifurcation can be seen from fig.2 (b). 

 

   
(a)                                 (b) 

Fig. 2. Phase-portraits showing (a) stability behavior of 
*E and (b) existence of Hopf bifurcation at 1

5.7291806. 

 

6. Conclusion 

In this paper, a stage-structured predator-prey system is proposed, where both immature and mature 

prey are taken by the predator. Two types of bifurcations are investigated; trans-critical bifurcation about 

trivial and planar points and Hopf bifurcation about interior point with respect to some parameter. It is 

observed that, if predator is not getting enough energy from immature prey, so that conversion factor

01  , then the chances of co-existence of species will be less. It is clear that food taken from juvenile prey 

may be crucial for the survival of predator. 
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