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Abstract: Emptiness is usually considered to be absolute and equal to null or zero. This paper proposes to 

analyze conditions close to emptiness. A relaxation of abstract concepts of zero and emptiness is used to 

analyze sparsely populated sets. The proposed definition of emptiness is based on the Riemann’s zeta 

function and depends on the perspective of the point from which emptiness is perceived. The new 

symmetric and asymmetric analytic continuations are proposed to resolve the asymptotic behavior of the 

zeta function near the pole. Different levels of infinity and emptiness are associated with “analytic 

convergence” using the asymmetric analytic continuation for the zeta function. The classifications of 

emptiness and infinity improve efficiency of data search in sparsely populated large sets, especially, when 

the data retrieval effort depends on the distance to remote data source. 
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1. Introduction 

The common understanding of “emptiness” is a domain or population with no elements. This is an 

abstract concept, which works very well for mathematical calculations. However, approaching absolute 

emptiness with no elements maybe just as strong of an abstraction as approaching infinity or approaching 

absolute zero. Do an absolute zero and infinity really exist or they are just the perception boundaries, 

because of the limits of our knowledge about the physical world, which is yet to be explored? For operating 

with extremely small and extremely large values, a new mathematical apparatus may need to be developed 

to obtain successful results. Some new research papers [1], [2] address the division by zero using the 

introduction of “nullity” Φ as a new number to model “undefined values.” This approach defines a “transreal 

arithmetic” on the set of numbers that contains {-∞,-1,0,1,+∞, Φ} as a proper subset. Also, the modern 

mathematics attempts to address the properties of zero and infinity through an introduction of “surreal” 

number system, which is an arithmetic continuum containing the real numbers as well as infinite and 

infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number [3]. 

Adding one positive infinity with another positive infinity is usually considered to result in yet another 

infinity, because the infinity indicates that limits "grow beyond any number.” However, intuitively, we 

understand that this is a level of abstraction that may need to be quantified, and the resulting infinity may 

have a higher “level” of infinity than the two infinite components that form the sum. Determination of 

infinity’s level requires classification of infinities. In a similar way, we can consider that domains in infinite 

space with extremely dispersed elements may have different degree of “emptiness”, which can be 

distinguished and manipulated at the level of extremely small values. When assumed zero value is not 
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precisely zero for very small values, then a simple measure and a classification of emptiness are needed to 

operate with “quasi-empty” domains. 

2. Measure of Emptiness 

A system may contain complexities, which are not effectively captured by a model of the system, and thus 

a zero value in the model may not be a precise zero. Let us assume that there is a very small quasi-zero 

value 𝛆0, which is considered so close to an absolute zero value 0, that for all practical purposes in the 

physical world it can be treated as zero. The value 𝛆0 represents an “imprecise zero” as the low limit of the 

study environment, where extremely small value can work just as fine as an absolute zero in terms of 

getting realistic results in an infinite domain. 

The broad understanding of zero encompasses different categories of zero, e.g. a zero scalar value, a 

zero-magnitude vector, an empty set without elements, a region of space with zero volume, a null as the lack 

of an element. The focus of this analysis are sets of coordinates with very small number of dispersed points 

in extremely large space domain approaching infinity, and subsequently, the space occupancy approaching 

zero. The non-absolute nature of emptiness is understood as reaching an “imprecise zero” value of 

“quasi-emptiness.” The number of points and their coordinates in space determine the emptiness. Therefore, 

the measure of space emptiness is relative to the view point, from which the emptiness is perceived.  

Let us consider a sparsely populated set of points in infinite space domain. For the determination of 

“emptiness”, we propose to evaluate the amount of non-∅ values in the set from a chosen study “view” point 

in space. The further the non-∅ values are from the “view” point, the less is their contribution to filling the 

space domain of the set. For two-dimensional analysis, Euclidean distances from the “view” point 

coordinates (x0, y0) to the point with coordinates (xA, yA) can quantify how far away the non-∅ value is 

located in the set.  

 

𝐷 𝑥𝐴 , 𝑦𝐴 =  
  𝑥𝐴−𝑥0 

2+ 𝑦𝐴−𝑦0 
2

 𝑥0
2+𝑦0

2
                                   (1) 

 

The distance D normalized to the “view” point coordinates depends on the coordinates of the “view” 

point and can represent a simple measure of relative emptiness from that “view” point to the next non-∅ 

value. The following formula is proposed to find the measure of “quasi-emptiness” in a two-dimensional 

domain, but can be generalized for a multi-dimensional space domain. 

 

                           (2) 

 

where n is the sequential number of the non-∅ subset; Dn is the distance to a non-∅ subset number n; (xn, yn) 

are the coordinates of the non-∅ subset number n; (x0, y0) are the coordinates of a “view” point. In formula 

(2), it is assumed that the distances are sorted in their incremental order, i.e. Dn+1 > Dn. The normalization 

factor will be dropped further below assuming that it is incorporated in normalized coordinates and the 

pertinent distance Dn. The summation over number n is performed on all components of the set until we 

reach the Nε, which corresponds to the circular border (X,Y) determined by quasi-zero value 𝜺0, i.e.  

 𝑋 − 𝑥0 
2 +  𝑌 − 𝑦𝑜 

2 =
𝑥0

2+𝑦0
2

𝜀0  2
                                (3) 

3. Emptiness Classification 

We propose to distinguish “quasi-empty” sets defined in space domain using the Riemann zeta-function 
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[4], [5] for an integer argument s 

 

                                     (4) 

 

The value of ζ(2s) for even integers is known [4], [5] to be calculated using Bernoulli’s numbers B [6], [7].  

 

𝜁 2𝑠 =
 2𝜋 2𝑠(−1)(𝑠+1) 𝐵2𝑠

2 2𝑠 !
                                         (5) 

 

If distances Dn for each next element n of the set grow as fast as ns then we can consider that the growth 

of distances between elements of the set are of the same power as ns. Thus, the density of elements in a 

study set can be compared to the density of ns. 

For s=1, the zeta function diverges, i.e. ζ(1)=∞. Therefore, we introduce the following new “symmetric 

analytic continuation” function:  

 

𝜃 𝑠 = 𝜁 𝑠 +  𝜁 2 − 𝑠                                           (6) 
 

 

 

 

 

 

 
Fig. 1. Symmetric θ(s) and asymmetric Z(s) analytic continuations of ζ(s). 

 

Analytic continuation on the sums (4) is illustrated with a smoothed version of the sums and its cutoff 

function with the appropriate properties. As shown on Fig. 2, analytic continuation is visualized as an 
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where, if s=1, 𝜃 𝑠 = lim∆𝑠→0 𝜁(1 + ∆𝑠) + 𝜁 1 − ∆𝑠 

The function θ(s) and its components are shown on Fig. 1 with smoothed curves and interpolated values. 

The analytic continuation of the zeta function ζ(s) for s<1 is also shown smoothed and without trivial zeros 

for even integer s values. The formula for calculation of the analytic continuation was initially proposed by 

Euler and later generalized using Bernoulli numbers:

𝜁 −𝑚 = (−1)𝑚
𝐵𝑚+1

𝑚+1
                                      (7)

for m=0, 1, 2, 3,…

ζ s =  
1

ns

∞

n=1



  

intersection of the smoothed function with the vertical axis. For s=0, that smoothed version of the sum is a 

linear function y(n)=n–½ , and the intersection with the vertical axis y(0)=ζ(0) = – ½ . A similar 

approximation of summations exist for s<0. For s=1, the intersection does not exist and the approximated 

function y(n) is diverging in both directions (i.e. for n→0 and n→∞). 

 

 

Fig. 2. Visualization of analytic continuation for zeta function. 
 

Although ζ(1) does not exist, it is possible to extract the Euler-Mascheroni constant γ for s=1
 
[6], [7] as 

shown in formula (8) below.  

ζ 𝑠 =
1

1−𝑠
+ 𝛾 + 𝑓 𝑠 − 1 

  
                                   (8)  

where f(s-1)
 
→

 
0, as s →

 
1, and

 

 

     

 

Then, using equation (6) in (8) for s=1, we can establish  

              

θ 1 = 2𝛾                                            (9) 
 

The derivative of θ(s) for small s is determined using the zeta function derivative formula 

 

                               (10) 

 

where (−1)𝑛
𝛾𝑛

𝑛!
 are Stieltjes constants, and γ0=γ. 

Then, using definition (6) for θ(s) and formula (10), we can conclude that 

 

θ ′ 1 = 0                                                (11) 
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𝜃(1) = 𝜃𝑚𝑎𝑥 = 2γ                                          (12) 
 

The function θ(s) is defined based on the zeta function, but unlike the latter, θ(s) does not have apole, it 

is continuous, and has no trivial zeroes for all s. Essentially, θ(s) is the absolute difference of the zeta 

function for s>1 and its analytic continuation for s<1. The growth of the zeta function for s>1 and the growth 

of the analytic continuation for s<1 near the pole (s=1) are of the same magnitude, and their difference 

converge to the value equal to two times that of the Euler constant γ. Usually the sum of positive and 

negative infinity in considered to be indeterminate (unless the continuum of “surreal numbers” is 

considered [3]). The function θ(s) for s=1 is the case when “adding” two infinities of opposite sign is clearly 

interpreted by a finite value. 

We will define the “asymmetric analytic continuation” Z(s) functionas follows: 

 

𝑍(𝑠) =
2𝛾−𝜃(𝑠)

2𝛾−1
𝑠𝑖𝑔𝑛 1 − 𝑠                                           (13) 

 

The “asymmetric analytic continuation” Z(s) can serve as a progression rate or “strength” of the ζ(s) zeta 

function series (4) and the emptiness. 

In general, distances Di do not tend to progress precisely at the rate of ns for each consecutive distance 

calculation from one element to the next element of a set. However, we can “estimate” the Di trend by 

associating it with the ζ(s) zeta function series. A corresponding value s of the associated zeta function can 

represent a “density” of the set with Di distances, and Z(s) can represent the progression strength of 

elements in the set.  

Thus, we propose to classify infinite sets by relating values of emptiness E and ζ(s)-1 as follows: 

  

 𝐍𝐨𝐧 𝐄𝐦𝐩𝐭𝐲: 𝐸 + 1 > 𝜁 2 =
 𝜋2 

6
                               (14) 

 

 𝐄𝐦𝐩𝐭𝐲:     𝐸 + 1 ≤ 𝜁 2 =
 𝜋2 

6
                                 (15) 

 

For very large finite sets, a similar approach is exercised by assessing a value of emptiness E for all 

components of the set until we reach the circular border determined by the quasi-zero value 𝜺0 in equation 

(3). If emptiness E, calculated within the quasi-zero value border is remaining greater than ζ(2)-1, then we 

consider the set non-empty. Otherwise the set is called “empty.” After associating the summation of 

distances with the ζ(s) zeta function for s ≥ 2 and establishing equivalent s, an asymmetric analytic 

continuation Z(s) is calculated to determine the measure of the density in the set. This function can be used 

to translate emptiness into a value defined for any s, where Z(s) for extremely high emptiness approaches 

minus one, and E is approaching zero. 

It is also possible to elaborate on the “non-empty” quality and establish a measure of the set’s population 

in terms of high density for s ≤ 0. The asymmetric analytic continuation Z(s) distinguishes the sets with very 

high compression and translate that compression into a value defined for any s, where Z(s) for extremely 

high compressions approach plus one, and E is approaching infinity.  

All formulas above are based on the Euclidean distance. In a three-dimensional domain, it is more 

applicable to use non-Euclidean’s geometry, like the elliptic Riemann–Finsler [8]-[11] geometry. The latter 

allows applying the curvature geodesic and sense of direction to the distance measured from one point to 

another. The concepts and classifications established here with Euclidean geometry can be applied to 

similar analysis using Riemann–Finsler calculations of distance, but the details of such a presentation is 
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beyond the scope of this paper. 

4. Infinity Classification 

The classic definition of infinity is “a number greater than any assignable quantity or countable number.” 

Let us assume that there can be different levels of infinity even if the actual quantity is undefined and 

diverging. An unassignable quantity can be potentially evaluated on its quality of largeness compared to 

other unassignable quantities. For example, if x→∞, then, the functions f1(x)=ax and f2(x)=bx2 also approach 

infinity, but with very different intensity. For a very large argument x approaching infinity, the function f2 is 

much greater than f1, as x is greater than any finite values of a and b. Therefore, the functions f1 and f2 have 

no intersection for x→∞ and approach different quality levels of infinity or effectively belong to different 

classes of infinity. The intensity of the function’s growth or its derivative becomes a determining factor of 

the infinity level that function can approach. Let’s associate the infinity of the power function f=axs with its 

integral, and subsequently, with the corresponding summation of the zeta function.  

 

                            (16) 

 

In spite of the fact that the infinity of the function does not have any directly assignable quantity or 

countable number, the analytical association with the zeta function provides a virtual finite value that can 

be assigned to the intensity level of the divergence, which can qualify the class of divergence. For a power 

function, the infinity class s is considered to be “analytically converging” to the value of Z(s).  

5. Operations on Quasi-Empty Sets 

In addition to the proposed measure E of “quasi-emptiness” and measure Z(s), we propose to assign a 

quality class K of emptiness to a set using the zeta function. The class of emptiness is equal to an integer 

value K>0, such that 

 

𝜁 𝐾 + 2 < 𝐸 + 1 ≤ 𝜁 𝐾 + 1                               (17) 
 

For a “non-empty” set, the class K=0. The higher class corresponds to a higher degree of emptiness, and 

for K→∞, emptiness E→0. 

The following global topological deformations can represent operations on quasi-empty sets with finite 

or infinite number of elements: Expansion, Contraction, Warping, and Twisting. 

It is possible to analyze other global deformations, e.g. partial morphing, swirling, taper and the 

compound of several global deformations, which are beyond the scope of this paper’s analysis. 

The deformation strength, or “level” of deformation L, is defined here in relation with emptiness as a 

change of class K after applying the deformation. 

 

𝐸 ≤ 𝜁 𝑠 − 1                                          (18) 
 

𝐸(𝐷𝐹) ≤ 𝜁 𝑠 ± 𝐿 − 1                                          (19) 

 

where E and E(DF) are emptiness of the original and deformed sets and s and L are positive integer values. 

Expansion is an operation that evenly “stretches” the quasi-empty set to change its quality from one class 

of emptiness to a higher class, i.e. operation expands a set to the +L higher class. 

Contraction is an operation that evenly “shrinks” the quasi-empty set to change its quality from one class 
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𝑎𝑥𝑠 ⇛  
1

𝑛−𝑠

∞

𝑛=1

⇛ 𝑍 −𝑠 



  

of emptiness to a lower class, i.e. contracts a set to the -L lower class. The lowest level of contraction is the 

zero class of the non-empty set. 

A uniform linear expansion/contraction results in effective global scaling deformation, which results in 

getting all coordinates of the elements scaled proportional to the same value r. Then, the 

expanded/contracted emptiness 

 

                              (20) 

 

Let us interpret the global scaling deformation of coordinates in the set as an equivalent L-level 

“expansion/contraction” in a zeta function by the following formula: 

 

                                    (21) 

 

Then, based on formula (4) and (20), the value r resulting in level L expansion/contraction is presented 

as 

 

𝑟(𝐿) =  
𝜁 𝑠 −1

𝜁 𝑠±𝐿 −1
                                           (22) 

 

Warping is an operation that unevenly “bends” the quasi-empty set to change its quality only in specific 

parts of the set and results in the change of emptiness class. An example of warping on Fig.3 shows small 

circles as non-empty coordinates on the warped surface. 

If we warp the one-dimensional domain set in two dimensions and introduce a second coordinate y, then 

we can reduce the effective distance between x-coordinates calculated in two dimensions. In the 

one-dimensional domain, the distances remain the same, but in the two-dimensional domain, the warping 

results in getting the distance reduced by curving the space. The following formula calculates the length DL 

of a curve from xi to xj. 

 

𝐷𝐿 =   1 +  
𝑑𝑦

𝑑𝑥
 

2𝑋𝑗
𝑋𝑖

𝑑𝑥                                      (22) 

 

 
Fig. 3. Warping of quasi-empty set. 

 

For illustration simplicity, let us assume that the curve is a half circle bending in y coordinate, which is 

referred further as warping. It is shown on Fig.4 how the original distance xj-xi between point i with 

International Journal of Applied Physics and Mathematics

18 Volume 7, Number 1, January 2017

𝐸(𝑟) =  
1

  𝑟𝑥𝑛 − 𝑥0 
2 +  𝑟𝑦𝑛 − 𝑦𝑜 

2

𝑁𝜀

𝑛=1

𝜁 𝑠 ± 𝐿 = 1 +  
1

𝑟𝑛𝑠

∞

𝑛=2



  

coordinate xi and point j (of a non-∅ subset) with coordinate xj is reduced to a new distance xj(w)-xi for a 

simple half-circular warping with radius R, such that the length of the warped half circle is equal the 

original distance xj-xi 

 

(𝑥𝑗 − 𝑥𝑖) = 𝜋𝑅                                        (24) 

xj(w) xjxi

R=(x j-x
i)/
π

y

x

 

xj − xj(w)

xj − xi
 =  1 −

2

π
  

 Fig. 4. Simplified half-circular warp deformation. 

 
The new warped distance 

 

𝐷𝑤 = 𝑥𝑗 (𝑤) − 𝑥𝑖 = 2𝑅                                   (25) 

 

Thus, for the half circle warp the distance xj-xi is effectively reduced in two-dimensional domain by 

  

𝑥𝑗 − 𝑥𝑗 (𝑤) = (𝑥𝑗 − 𝑥𝑖)( 1 −
2

𝜋
 )                                    (26) 

 

The change of coordinates determined by warp W is calculated by the following formula: 

 

𝑊 = 1 −
𝐷𝑤

𝐷
= 1 −

𝑥𝑗  𝑤 −𝑥𝑖

𝑥𝑗−𝑥𝑖
                                        (27) 

 

where 0<W<1 

In case of very high deformation, warp approaches one and the warped distance approaches zero, i.e. 

W→ 1 and Dw→ 0, while xj(w) is approaching to xi. In case of a very low deformation, warp approaches zero 

and the warped distance approaches the non-warped distance, i.e. W→ 0 and Dw→ D, while xj(w) is 

approaching xj. 

We can represent a set with the warp or bend between points m1 and m2 using formula (2) for 

quasi-emptiness. 

 

                             (28) 

 

The warp results in a reduction of emptiness, which is equal to the difference between the non-warped 

and warped emptiness of the set. 

                             (29) 
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𝐸(𝑤) =  
1

𝐷𝑛

𝑚1

𝑛=1
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1
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𝑚2

𝑛=𝑚1+1

+  
1

𝐷𝑛

𝑁𝜀

𝑛=𝑚2+1

𝛥𝐸 𝑤 = 𝐸(𝑤) − 𝐸 =   
1

𝐷𝑛 𝑤 
−

1

𝐷𝑛
 

𝑚2

𝑛=𝑚1+1
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The warp and subsequent reduction of emptiness may change the emptiness class. The comparison of the 

difference ∆E(w) and change of corresponding zeta function 

 

 𝛥ζ𝐿 = ζ s − 𝐋 − ζ s                                        (30) 
 

can determine the L level of the warp in terms of emptiness. 

Using definition of warp (25), for a warp occurring between two consecutive points, i.e. m2=m1+1  

 

𝛥𝐸 𝑤 =
1

𝐷𝑛 𝑤 
−

1

𝐷𝑛
=

𝑊

𝐷𝑛 (1−𝑊)
= 𝛥𝜁𝐿                                    (31) 

 

Then, based on formulas (30) and (31), the following is the formula for the warp resulting in level L 

contraction: 

 

𝑊 𝐿 =
𝐷𝑛 [ζ s−𝐋 −ζ s ]

1+𝐷𝑛 [ζ s−𝐋 −ζ s ]
                                            (32) 

 

Twisting is an operation that modifies several coordinates, but keeps other coordinates unchanged. The 

following formula can represent a z-axis twisting of x, y, z coordinates into new coordinates xt, yt, zt in 

three-dimensional space 

 

𝑥𝑇 = 𝑥 𝑓𝑇(𝑧)                                       (33) 
 

𝑦𝑇 = 𝑦 𝑓𝑇(𝑧)                                          (34) 
 

𝑧𝑇 = 𝑧                                             (35) 

 

The function fT(z) determines the actual character and intensity of the twist, e.g. for the 360° twist on the 

interval zn < z < zm, the function 𝑓𝑇 𝑧 =
𝑧𝑚−𝑧

𝑧𝑚−𝑧𝑛
 . Twisting operation does not result in the change of an 

emptiness class, but can be compounded with other deformations described above, which do affect 

emptiness.   

6. Application of Emptiness in Quasi-Empty Sets 

Now that we have established the basis for classification of sparsely populated sets with an infinite 

number of elements, let us illustrate how the concept of quasi-emptiness is applied to the search in 

“quasi-empty” sets. We assume that there is a large number of multisets P, which are sparsely populated 

with subsets Ai. The “time-effort” of analyzing components of the set is increasing with the distance from 

the beginning of each set. Thus, the father the element is from the “view” point the longer the processing 

time and the larger the effort it takes to fetch the information about that element.  Any element in the set 

can potentially contain valuable information, but a balance needs to be reached between the effort of the 

information extraction and the value of that information.  

Each subset A consists in its turn of -1, 0, +1, and U, where U is “instability”, represented by infinite 

summation of +1 and -1 as per formula (36). The result of the summation is either 1 or 01. 
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1
Diverging series of "Ramanujan summation" [11] are associated with a single finite number, e.g.   −1 n∞

n=0 = ζ 0 = −
1

2
. 

However, in the example of search analysis, the U summation is still considered diverging and indeterminate. 



  

𝑈𝑏 = 1 − 1 + 1 − 1 + 1 − 1 + 1…                                    (36) 

 

The instabilities U are randomly spread in subsets Ai, and the objective of the search is to find as many 

instabilities as possible in an allocated time period. We also add a special condition that instability is 

detected only when the unstable element is viewed several times, because it oscillates in the range of 1 to 0 

each time it is viewed. The existence of U is rare enough to occur, and a subset Ai may have either one U or 

none. 

In order to make the search algorithm more efficient compared to brute-force calculations, the following 

procedure is executed using quasi-empty definitions and classifications. 

1) Establish small quasi-zero value 𝜺0 

2) Establish the classification LP for all multisets P as per formula (17). Segregate empty and non-empty 

multisets. Start the search analysis from the non-empty sets and then proceed in the increasing class 

of emptiness to ensure that the most populated domains are analyzed with higher priority. 

3) Examine Ai only in the multisets P of class LP using quasi-zero value 𝜺0 within the extent of search 

border. 

a. For each Ai in P, establish its own set classification LA and at the same time “memorize” the 

total “checksum” by adding non-zero elements in the set. 

b. For subsets Ai of class LA=0, re-open the subset and verify the change of “checksum” in order 

to detect the existence of U.  

c. If checksum has not changed, then continue searching in the next subset. 

d. If checksum has changed, then examine all non-zero elements and find coordinates of U in 

the subset Ai. 

4) Repeat the previous steps for all multisets until the allocated search time expires or satisfactory 

number of objects are found. 

 

 
Fig. 5. Comparison of results for the search of information in sparsely populated large sets. 

 

The above algorithm was evaluated using simplified software model developed specifically for the 

analysis of search efficiency. The model simulates two dimensional space coordinates as a very large matrix 

of quadrants. The data retrieval effort is simulated by a time delay proportional to the distance between the 

reference point and the location of information. Also, the detection of a non-zero value takes longer time 

than a detection of zero or null value. The following are parameters of the simulation: 10,000 sparsely 
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populated multisets P, population of 1000 subsets A distributed in multisets (50% randomly distributed 

and 50% distributed with exponentially increasing coordinates in each multiset), and 20 instabilities U with 

totally random distribution. The objective of the search was to find as many the instabilities U in the 

allocated period of time. The Fig.5 shows the results of comparison between brute-force sequential search 

and the search with pre-processing classification multisets P. The comparison demonstrates that the 

sequential approach finds less objects of interest in allocated time, because the sequential scan sometimes 

gets “trapped” in the populations that have no valuable information. The classification pre-processing 

followed by search retrieves more objects of interest as it has prior “intelligence” of populations with 

“non-empty” quality. The search moves from one “non-empty” population to another upon achieving the 

pre-established border of the population spread in space. 

7. Conclusions 

The objective of this research is analysis of non-absolute nature of infinity, zero, and emptiness. The 

proposed approach of “imprecise zero” and association with Riemann’s zeta function provide a possibility 

to measure the emptiness of sparsely populated sets of coordinates, which contain infinite number of 

elements. The following bullets summarize the results of this research: 

1. The measure of emptiness is introduced using distances to the set’s elements relative to the “view” 

point. 

2. Infinity is classified by the quality of the diverging intensity. Emptiness is classified by the quality of 

the space density. The classifications of “quasi emptiness” allows to define operations in the form of 

global deformations, such as expansion, contraction, warp, and twist. 

3. New symmetrical and asymmetrical analytic continuations of Riemann’s zeta function are proposed 

to “resolve” its asymptotic infinities at the pole. The asymmetrical analytic continuation provides a 

possibility to evaluate and assign a value to the degree of emptiness and infinity. 

4. The measure of emptiness establishes a basis for a more efficient information search in infinite and 

sparsely populated domains, where the information extraction effort depends on the coordinates of 

the elements in the set. Analyzing classification of infinite sets prior to performing the information 

search, provides a practical way to the extraction of information, which is faster than brute-force 

sequential analysis of information in infinite domains. The pre-processing and evaluation of 

information, which is natural for human approach to search problems is applicable to computer 

analysis. 
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