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Abstract: In this paper, we consider an epidemic model with the infectious force in the latent and recovered 

period and establish the SEIR epidemic model with standard incidence rate. Then, we find the basic 

reproduction number 0R  which determines whether the disease exists. By using Liapunov function 

method, we prove that the disease-free equilibrium 0E  is globally asymptotically stable and the disease 

goes away when 0 1R  . By Hurwitz criterion, we also prove that 0E is unstable and the unique endemic 

equilibrium *E is locally asymptotically stable when 0 1R  . It is shown that when disease-induced death 

rate and elimination rate are zero, *E  is globally asymptotically stable and the disease persists. Finally, we 

give numerical simulation to illustrate the theoretical analysis. 
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1. Introduction 

In our life, there are a variety of infectious diseases. For a long time mathematical models which describe 

the population dynamics of infectious diseases have been playing an important role in a better 

understanding of disease control and epidemic pattern. In order to predict the spread of infectious disease 

among the areas, the transmission dynamics of infectious disease is studied by many epidemic models in 

host populations. The dynamics of the classic SIR or SIRS epidemic models have been widely studied 

[1]-[10]. However, many infectious diseases such as pertussis, SARS and so on, incubate inside the 

population for a period of time before they become infectious. So the systems that are more general than 

SIR or SIRS types need to study the role of incubation in the spread of infectious disease. The present model 

is of SEIR or SEIRS class, depending on whether the adaptive immunity is permanent or otherwise.  

Li [11] analyzed the global dynamics of a SEIR model with varying total population size. Fan [12] 

discussed the global stability of an SEIS epidemic model with recruitment and a varying total population 

size. Sun [13] studied the global analysis of an SEIR model with varying population size and vaccination. Yi 

[14] considered an SEIR epidemic system with nonlinear transmission rate. Zhang [15] studied global 

asymptotic stability of a delayed SEIRS epidemic model with saturation incidence. Yan and Zhang [16] 

considered an SEIR epidemic system with nonlinear transmission rate. Liu [17] analyzed the global stability 

of an SEIR epidemic model with age-dependent latency and relapse. 

However, for malaria and some other infectious diseases, the latent and immune period may be infectious. 

The epidemic model of SEIR with infectious force in both infected and recovered period is rarely studied in 

the paper. Motivated by literature [11]-[17], we consider an epidemic model with the infectious force in the 
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latent and recovered period and establish the SEIR epidemic model with standard incidence rate. 

2. Model Formulation 

The host population is divided into four classes, the susceptible, latent, infectious, and recovered, with 

sizes denoted by  S t ,  E t ,  I t and  R t , respectively. The SEIR model having infectious force in the 

latent and recovered period is depicted in the following system of differential equations              
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where A  is constant recruitment rate of the population;, 2 , 3  
are the rate of the efficient contact in 

the latent, infected and recovered period respectively; 1 , 2  
are denote the rate of disease-caused death 

of the exposed and the infectious respectively; d  is the natural death rate of the population; 1k , 2k
 

are 

the elimination rate of the exposed and the infectious respectively;   is the transfer rates between the 

exposed and the infectious;   is the removed rate from the infective class to the recovered class. 

The total population size  N t  which can be determined by          N t S t E t I t R t   

implies N A dN   . From biological considerations, we study (1) in the feasible region

  , , , 4 0S E I R R S E I R N A d         , where 
4R  

denotes the non-negative cone and its 

lower dimensional faces.   can be shown to be positively invariant with respect to (1). 

Set each of the differential equations on the right side equal to zero in (1), we have the following system 
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         (2) 

 

And we have the following equation about N  

   0F N A dN  . 
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where 

  1 2 3F N Ad
d d

 
     
  

       
  

    1 2 3dN d d
d


        

 
       

 
, 

so the system (1) always has the disease-free equilibrium  0 ,0,0,0E A d
 

in the interval  0, A d . 

Define the basic reproduction number of (1) as
1 2 3

0
dR


   



 

 . Since 

 

  1 2 30 0F Ad
d d

 
     
  

        
  

,     10F A d A d d R       . 

 

( )F N  is monotone increasing and   0F A d  , so that ( ) 0F N   has only a positive root in 

 0, A d , (1) has an unique endemic equilibrium  * * * * *, , ,E S E I R , where *S ,
*E ,

*I ,
*R  are 

determined by (2). 

3. Global Stability of the Disease-free Equilibrium 

Theorem 1. The disease-free equilibrium 0E
 

of (1) is globally asymptotically stable in   if 0 1R 

and 0E
 

is unstable if 0 1R  . The solutions to (1) starting sufficiently close to 0E
 

in   move away 

from 0E except that those starting on the invariant S axis approach 0E
 

along this axis. 

Proof. Constructing a Liapunov function 
1 2 3 2 3

3d dV E I R
d

 
     



 

  

   , 

Its derivative along the solutions of (1) with respect to t gives 
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dV

dt

+ +1 2 3
d
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
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+
3

d


  I dR 

 

 

  11 2 3 0

S
E I R R

N
  

 
    

 
  1 2 3 0E I R R     1 . 

 

Furthermore, 0V   if and only if 0E I R   or 0 1R  . Therefore the maximum compact invariant 

set in   R4, , , 0S E I R V
  is the singleton 0E when 0 1R  . LaSalle's invariance principle then 

implies that 0E is globally asymptotically stable in  .                        

4. Local Stability of the Endemic Equilibrium 

Theorem 2. The endemic equilibrium 
*E  of (1) is locally asymptotically stable if 0 1R  . 

Proof. The Jacobian matrix of (1) at a point 
*E  is 
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 
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Its characteristic equation is   *det 0I J E   , where I  is the unit matrix, * * *S E N m ,

* *E I  ,
* *R I d . So the characteristic equation become to

  3 2

1 2 3 4 0d b b b a          , where 

 

 

 
2 3

1 *

1 2 3

0
dm

b d
N d d

   


     


    

 
,

 * * *

3 *2 *2
0

mS d d N S
b m

N N

  


  
   , 

 

 

* *
2 3

2 *2

1 2 3

d d N S
b d m

d d N

   
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N
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It is easy to calculate  1 2 3 4 0b b b a   . According to Hurwitz criterion, the endemic equilibrium 

*E of (1) is local asymptotical stability. 

5. Global Stability of the Endemic Equilibrium 

Let =dt , the system (1) becomes 
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,

,

,
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
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
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                                (3) 

 

where 1 1 d  , 2 2 d  , 3 3 d  , 0 10 10k     1 , 0 20 201 k      , 0 d  ,

0 d  , 10 1 d  , 20 2 d  , 10 1k k d , 20 2k k d . The equation for the total population is 

 

   10 10 20 20

dN A
N k E k I

d d
 


      . 
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We use N  as a variable in place of the variable S to give the following system 
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   
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,

,

,

.
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 
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                   (4) 

 
The system (4) is equivalent to (3). From biological considerations, we discuss (4) in the closed set

  = 4, , , 0T E I R N R E I R N A d      . We denote by T  and T  the boundary and the 

interior of T  in 
4R , respectively. 

For (4), the global stability of the endemic equilibrium 
*E  is considered when 

10 20 10 20 0k k     . Since N A d as  , we can obtain the following limit system 
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We make the change of variable x A d E I R    , y E , z I , then the following (5) is equivalent 

to the above system 
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 
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             (5) 

 
Theorem 3. Consider the following system 

 

 x f x ,  1 nf C R , nx T R  .                                (6) 

 

where T  is an open set, if the system (6) satisfies the following conditions: (1) The system (6) exists a 

compact absorbing set K T  and has a unique equilibrium P  in T ; (2) P  is local asymptotically 
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stable; (3) The system (6) satisfies a Poincare-Bendixson criterion; (4) A periodic orbit of (6) is 

asymptotically orbitally stable. Then the only equilibrium P  is the globally asymptotically stable inT . 

Theorem 4. A sufficient condition for a periodic orbit   : 0P P t t   
 

of (6) to be asymptotically 

orbitally stable with asymptotic phase is that the linear system  
 

    
2

f
z t P t z t

t


 

  
is 

asymptotically stable, where 

 2
f

t



  
is the second additive compound matrix of the Jacobian matrix 

f

t



  
of

f . The system (6) called the second compound system of the orbit  P t . 

Lemma 2. Any periodic solution to (5), if it exists, is asymptotically orbitally stable. 

Proof. Suppose that the solution       , ,x t y t z t
 

is periodic of least period 0   such that 

      0 , 0 , 0x y z T  . The periodic orbit is   : 0P P t t    . We have the second compound 

system  y J P y 
 

of the differential system 
   2

x J P x 
 

in the periodic solution is the following 

periodic linear system 
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where  
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   
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2
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Suppose that       , ,X t Y t Z t  is a solution to (7). Let     , , , , , sup ,V X Y Z x y z X y Y Z z  . 

From the condition (1) of Theorem 3, we can know there exists constant 0  such that

   , , , , , , ,V X Y Z x y z X Y Z ,   3, ,X Y Z R  ,  , ,x y z P . Direct calculations lead to the following 

differential inequalities 

 

          11 2 3D X t a X t xd A Y t Z t      ,                         (8) 

 
                   

         0 22 1 3D Y t X t a Y t dx A Z t       ,                          (9) 

 

          32 1 3D Z t a Y t dx A Z t         .                         (10) 

 
Using (9) and (10), having 

 

    y zD Y t Z t          0 1y z y y z z y zX t Y t Z t       
.   (11) 

                    
From (6) and (9) leading to 

 

     1 2,supt g g tD V V  ,                                 (12) 

                                        
where 

 1 3 3 1 31 d A dx A yg                2 3 3 2 3z x d A xdz yA           (13) 

 

 2 0 1y z y y z zg        .                                 (14) 

 
Rewriting the last two equations of (5), obtaining 

 

    2

2 3 3 1 3 3dxz Ay y y dx Ay dx A dx Ay             ,             (15) 

 

                      
0y z z z    .                                     (16) 

 
                                                   

Substituting (15) into (13) and (16) into (14), having 
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   1 3 3 1 21 1y y d A dx A dy A dz Ag d A x y z x y              ,       (17) 

 

2 1y yg   .                                         (18) 

 

Thus     1 2,sup 1g t g t y y  ,       1 2 00
, lnsup g t g t dt y t

 
     . From (10), we obtain 

 lim 0
t

tV



 

and in turn that    , , , , , , ,V X Y Z x y z X Y Z  as t  . As a result, the second 

compound system (5) is asymptotically stable and the periodic solution       , ,x t y t z t
 

is 

asymptotical orbital stability by Theorem 3. 

Lemma 3. The system (5) is uniformly persistent when 0 1R  . 

Proof. Set  0G P , when 0 1R  , the stable set sG  is just contained in the S-axis and thus in the 

boundary of  . It also implies that the stable set sG  is isolated in  . Then, when 0 1R  , the system (5) 

satisfies the conditions of Theorem 2 of [18], namely, (a) the maximal compact invariant set G  in the 

boundary of   is isolated and (b)the stable set sG  of G  is contained in the boundary of  . Therefore, 

the system (5) is uniformly persistent in   when 0 1R  . 

Lemma 4. The system (3) is competitive when 0 1R 
 

and 10 20 10 20 0k k     . 

Proof. Set 1x S , 2x E , 3x I , 4x R , the system (3) is replaced by 

 

,1 1 1 3 4 2 1 2 4 3 1 2 3 1

,2 1 2 2 3 3 4 2

,3 0 2 3

.4 0 3 4

A d A d A d A
x S x x x S x x x S x x x x

d A d A d A d

d d d
x S x S x S x x

A A A

x x x

x x x

  

   

 



              

    

  

  

      
     
     






  

 

Furthermore, the system has the following form 

 

    xx A t I C t    . 

 

where   4

1 2 3 4, , ,x x x x x R  , I denotes the 4 4 unit matrix,  C t  is a vector function, and 

 

 

       1 2 3 2 3 1 3 1 2

0 1 0 2 3

0 00 0

0 0 00

d d d d
S S S S

A A A A

d d d
A t S S S

A A A

        

   

 



    

 



 
 
 
 
 
 
 

. 

 

The off-diagonal entries in this matrix are non-negative, the system as a whole is quasimonotone. Thus it 
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can be verified that the system (3) is competitive with respect to the partial ordering defined by the orthant 

  , , , 4 0, 0, 0, 0K S E I R R S E I R      . 

Theorem 5. If 0 1R  , the endemic equilibrium 
*E  of (1) is globally asymptotically stable when

1 2 1 2 0k k     . 

6. The Numerical Simulation 

 

 

Fig. 1. Variational curves of S 、E 、 I and R  with t  when 0 0.55R  . 

 

 

Fig. 2. Variational curves of S 、E 、 I and R  with t  when 0 1.73R  . 
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Set the parameters 0.6A , 0.05d  , 0.07  , 0.15  , 1 0.08  , 2 0.1  , 1 0.04k  ,

2 0.08k  , And set five initial values  1.5,2.5,3,4.6 ,  6,0.4,3,2.5 ,  6.5,1.8,0.5,2 , 

 3.8,2.6,2.1,3.3 ,  5,1.7,2.3,2 . 

 

  

 

When set 1 0.07  , 2 0.15 
 

and 3 0.05  , the basic reproduction number 0 1.73 1R   . The 

endemic equilibrium  * 6.958,1.261,1.576,2.203E   is global asymptotical stability in  , as shown in 

7. Conclusions  

This paper has discussed an SEIR epidemic model with infectious force in latent and recovered period. 

The basic reproductive number 0R
 

is identified. If 0 1R  , the disease-free equilibrium 0E is globally 

asymptotically stable in the feasible region so that the disease dies out. If 0 1R  , the endemic equilibrium

*E is globally asymptotically stable in the interior of the feasible region, and once the disease appears, it 

eventually persists at the unique endemic equilibrium level. It is obtained that 0R
 

is a monotony increase 

function of 1  
and 3  

by the formula of 0R . The smaller the infectious force in latent and recovered 

period, the more detrimental to the control and elimination of the infectious disease. Therefore, the infected 

patients, the latent patients and recovered patients are all controlled for the disease with the infectious 

force in latent and recovered period. 

In this paper, we study the asymptotic stability of the SEIR model with infectious force in latent and 

recovered period, and enriches the research work of the dynamics of infectious diseases. In addition, there 

is a lot of work waiting for us to study in this field. It is difficult for the pulse mode of the epidemic model to 

be thought of. We will study these problems in the future. 
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