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Abstract: The image quality and the resolving power of an optical device can be improved by improving its 

modulation-transfer-function (MTF). It is especially important for the devices which are designed for 

conditions of low illumination, such as a night vision. The case of infrared image converters and intensifiers 

with an inverting electron-optical system (EOS) and a micro-channel plate (MCP) as an amplifier is taken 

for consideration in this work. The electron amplification process in the channel is simulated by Monte 

Carlo methods. As a result, the energy and angular distributions are determined and used as initial 

conditions for calculation of the current density distribution in the channel image on the screen. The effect 

of the electrostatic field penetration into the channel on the current-density distribution and the MTF of the 

system is under investigation in this work. The effect of the length of the contact conducting layer on the 

field penetration and MTF is evaluated. It is also shown how the emission from the conducting layer affects 

the resolution. The optimal parameters of EOS which provide a flat image surface to coincide with the 

channel plate are defined. Position of the best focus in the electron beam, what provides the highest 

resolution, is determined. Finally, the total MTF of the imaging device is calculated. 
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1. Introduction 

Distinction of small details of an object, and therefore, the range of vision of any image detector, are 

limited by optical properties of the detector, which are usually characterized by a 

modulation-transfer-function (MTF) [1]. The MTF describes the resolution over the image area of an image 

device, and gives the dependence of the output contrast on the spatial frequency. The image quality, and the 

resolving power of the device can be improved by improving its MTF. It is especially important for the 

devices which are designed for conditions of low illumination, such as a night vision. The case of infrared 

image converters and intensifiers with an inverting electron-optical system (EOS) and a micro-channel 

plate (MCP) as an amplifier is taken for consideration in this work [2], [3].  

The process of image conversion and intensification in such devices is evaluated as follows: (a) 

electromagnetic radiation from a certain part of the spectrum is absorbed by a photocathode; (b) an optical 

image is converted into an electron image by means of the photoemission; (c) the photoelectrons of this 

electron image are accelerated and focused by an electron optical system, and intensified by the MCP; (d) 

the intensified electron image is converted into a visible image by a luminescent process on a screen. 

The MTF of the overall system, at a given spatial frequency, is the product of the MTFs of the elements. 
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Consequently, to evaluate the total MTF of the imaging system with the MCP, the MTFs of the 

electron-optical system and MCP-screen system should be determined.  

MCP is a thin plate made up of a large number of single channels, each of which acts as an electron 

multiplier [4]. A single channel multiplier consists of cylindrical dynode having a small diameter. For each 

primary electron entering a channel, a large pulse of electrons will exit as a result of multiple collisions of 

both primary and secondary electrons with the inner secondary-emission layer as they traverse the length 

of the channel (Fig. 1). It is a compact, efficient amplifier of two-dimensional electron-images and provides 

several advantages such as very high gain, good resolution and small size. 

 

 
Fig. 1. MCP and electron multiplication in the channel. 

 

The MCP is placed behind the anode diaphragm close to the screen. To accelerate the secondary electrons 

toward the exit of the channel, the voltage is applied by depositing a contact conducting layer at its ends.The 

electrostatic field of the MCP-screen gap penetrates into the channel and creates an electrostatic lenswhich 

affects the electron trajectories, and consequently, the current-density distribution on the screen at the MCP 

exit, and therefore, the image quality on the screen [5], [6]. The potential distribution in the field of lens 

depends on the field intensity in the MCP-screen gap and in the channel, the channel diameter size, and the 

sputtering depth of the contact conducting layer at the channel output. The current density distribution in 

the image of an individual channel and its MTF are determined from the arrival coordinates of the electrons 

on the screen which depend on energy and angular distributions of the electrons that come out of the 

channel. 

Calculation of the channel amplifier’s MTF requires a simulation of complicated stochastic processes of 

the secondary electron emission inside the channel, where energy, angular and the current-density 

distributions are determined. It also requires to calculate anon uniform field at the exit of the channel and 

in the MCP-screen gap, and trajectories of the electrons in such field. 

For the best image quality on the screen the EOS should provide a flat image surface to match the micro 

channel plate. Also, the position of the surface of the best focus, where the spatial resolution is the highest, 

should coincide with the MCP position. Such analysis includes numerical calculation of the field distribution 

inside the EOS and trajectories of electrons emitted from the photocathode. 

In this work the electron amplification process in the channel is simulated by Monte Carlo methods [7], [8] 

where electron trajectories in uniform electrostatic field inside the channel and in non uniform field at its 

end are calculated from the relevant equations of motion. As a result, the energy and angular distributions 

are determined and used as initial conditions for calculation of the electron trajectories in the MCP-screen 

gap. The resulting distribution of the arrival coordinates of the electrons on the screen determine the 

current density distribution in the channel image. The effect of the electrostatic field penetration into the 

channel on the current-density distribution and the MTF of the system with MCP is under investigation in 

this work. The effect of the length of the contact conducting layer on the field penetration and MTF is 

evaluated. It is also shown how the emission from the conducting layer affects the resolution. 

Trajectories of the photoelectrons in the non uniform electrostatic field of the EOS are calculated to find 

coordinates of the minimal cross section of the electron beams from the cathode [3]. Thus, the curvature of 
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the image surface is determined as a total combination of minimal cross sections of the electron beams, 

emitted from different points of the photocathode. The optimal parameters of EOS which provide a flat 

image surface to coincide with the channel plate are defined. Position of the best focus in the electron beam, 

what provides the highest resolution, is determined. Finally, the total MTF of the imaging device is 

calculated. 

2. Computational Methods 

2.1. Motion of Electrons in the Potential Field 

Calculation of the electrostatic field in the device with rotational symmetry (Fig. 2 and Fig. 3) is a matter 

of finding a solution to the Laplace's partial differential equation expressed in cylindrical coordinates [3]: 
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where U(r,z) is the potential at any point (z,r), z is the coordinate along the axis of symmetry and r is the 

off-axis radius. 

It is the classical mixed problem for the equation of Laplace in some region with Dirichlet and Neumann 

boundary conditions. The finite difference method is used to obtain the field distribution. 

 

 
Fig. 2. Equipotential lines and central meridional trajectories of electron beams. 

 
Fig. 2 shows the computational results of the potential distribution (given by the equipotential lines) in 

the cross-section of the EOS. Fig. 3 shows the computational results of the electrostatic lens at the exit of a 

single channel.  

In the cylindrical coordinate system, equations of motion of electrons can be written as: 
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where t is time, 
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  are the radial and axial components of the strength of the 

electrostatic field respectively, 0r  is the initial electron coordinate, 0V  is the initial azimuthal 
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component of the electron velocity, e and m are electron charge and mass respectively. 

 

 
Fig. 3. Electrostatic field at the exit of the channel. 

 
The system of equations (2) is solved by the Runge-Kutta method for the electron motion inside the EOS 

of the device, and in the area of the inhomogeneous electrostatic field of the channel multiplier. The 

strengths of the electrostatic field at the exit of a single channel and inside the EOS are calculated using 

different interpolating polynomials [3]. Fig. 2 shows central meridional trajectories of the electron beams 

emitted from the photocathode. 

2.2. Simulation of Stochastic Processes 

The process of Monte Carlo simulations uses a random number generating procedure [7], [8] to sample 

the various distributions such as: the distribution of the actual yield of secondary electrons after each 

collision, the emission energy, and the direction of each secondary electron. 

The actual number of secondaries generated by the particular collision is a random sample taken from 

the Poisson distribution 
!
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Secondary Emission Yield (SEY). The variation of the SEY is defined by a secondary emission function [7]: 
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where V  is the collision energy in eV, 0  is the collision angle (angle between the direction of the 

primary electron and the normal to the surface), m  is the maximum SEY for the normal incidence 0 = 0) 

which is achieved for  mVV   (both mV  and m  are functions of 0 ); α and β are constants of the 

channel multiplier surface , and are chosen to fit experimental secondary emission curves at normal 

incidence. 

The energy distribution is described by the formula [9]: 

)/5.1exp(1.2)(
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

p , where  is the mean energy. 

Each secondary electron is assigned two emission angles chosen from the Lambert's law:  

 2sin)(1 p and   2/1)(2 p , where   is the angle between the normal to the surface and 

emission direction, and   is the azimuthal angle. 

The trajectory of each electron is calculated in three dimensions from the equations (2), and the position, 

energy, and angle of the subsequent collisions are determined. The result of each collision is calculated as 

before and the process is repeated for each secondary electron generated. 

2.3. Modulation Transfer Function of the Image System 
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The MTF in the image plane for the point on the axis of the symmetry of EOS is calculated using the 

formula [10]: 
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where 0J  is the Bessel's function, ν is a spatial frequency, and )(rA  is an electron density distribution 

in the cross section of the axial electron beam on the image surface. 

To find the electron density function )(rA  let assume that ),,( dN  electrons are emitted from the 

axial point of the photocathode in a time unit with initial energies in the interval ],[  d , initial angles 

],[  d and ],[  d , where   and   are meridional and azimuthal angles respectively. 

The number of electrons ),,( dN depends on the total number of the electrons 0N  emitted from one 

point of the photocathode and the probability of the emission ),,( P . Therefore,  
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where ),,( p  is the probability density, and dd sin . 
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)(),(  pp , and )(p  are probability density functions of the electron's energy, meridional and 

azimuthal angles respectively. Assuming that  2)( p  is the uniform distribution, the expression for 

the number of the emitted electrons ),,( dN  can be written as: 
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The photoelectrons with the initial energy   would have a distance r  from the axis of the symmetry at 

the image surface if their initial angle   satisfies a condition 0),(  fr . Using the  -function the 

expression for the electron density at the distance r  from the axis of the symmetry can be written as: 
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Integrating (4) with respect to energy   the electron density function )(rA  can be expressed as 
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Substituting (5) to (3) the expression for the modulation transfer functions can be written as: 
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Using the property of the  -function that 



0

00 )()()( xdxxxx   the final formula for the 

modulation transfer functions can be obtained: 
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where )(),(  pp  are energy and angular distributions of the electrons respectively (here the angular 

distribution is described by Lambert's law,  cos)( p , and the electron energy is chosen from the 

parabolic function )1(
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),( fr  is the distribution of the electron radial coordinates at the image surface which can be written 

as: 
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 , where 0E  is the strength of the electrostatic field 

near the photocathode; )(1 zu  and )(2 zu  are two particular solutions of the equation of the motion of 

paraxial electrons. )(1 zu and )(2 zu are calculated as described above. 

Formula (3) is used in computations of the MTF of the MCP-screen system as well. The electron density 

distribution )(rA  in the image of an individual channel is determined from the arrival coordinates of the 

electrons on the screen. 

Taking into account the discreet nature of the determination of )(rA , and using the relationship 

  )()(1 xJxdxxJx n

n

n

n
, the calculating formula for MTF of the channel multiplier can be written as: 
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3. Computational Results 

3.1. Spatial Resolution of the Channel Amplifier 

The current density distribution in the image of the individual channel on the screen, is determined by 
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The use of MCP as an amplifier in image devices has many advantages, but the discrete structure of the 

MCP and defocusing of the electron beam in the space between the MCP and the screen, restricts the spatial 

frequency what can be transferred by the device. A meaningful MTF can be obtained up to the array 

frequency [1]. The loss in contrast due to the divergence of the electrons in the MCP-screen gap can be 

reduced by carefully designing the electron lens at the output of each channel. The lens is formed by the 

penetration of the gap field into a channel [5], [6]. The limit is set by the smallest gap that will reliably hold 

of the voltage necessary to excite the phosphor of the screen.



  

the energy and angular distributions of the electrons, emerging from the channel, and depends on how the 

electrostatic lens at the output of the channel focuses the electron beam. 

The multiplication process of the electron flux in the channel was modelled as it is described in section 

2.2, and for electrons, leaving the channel, the energy, angle and the arrival coordinates were determined. 

Calculated energy and angular distributions for the electrons exiting the channel are shown in Fig. 4 and Fig. 

5 respectively, and are well agree with data in [7], [11]. Computational results were obtained for the 

following channel parameters: diameter 𝑑 = 10 𝜇𝑚, voltage on the channel V=800 V, strength of the 

electrostatic field in the MCP-screen gap E = 5 kV/mm, and the length of the contact conducting layer at the 

end of the channel h = 1.5d. 

 

 
Fig. 4. Energy distribution. 

 

 
Fig. 5. Angular distribution. 

 

The current density distribution in the image of the channel were determined from the arrival 

coordinates of the electron on the screen where the energy and angular distributions are used as the initial 

parameters in the further calculations. Fig. 6 and Fig. 7 demonstrate the results of calculations of the 

current density distribution for the uniform and nonuniform electrostatic fields at the exit of the channel. 

Corresponding MTFs are shown in Fig. 8 where curves 1 and 2 represent MTFs for the nonuniform field at 

the exit of the channel without (curve 1) and with (curve 2) the emission from the contact conducting layer. 

Curve 3 is obtained for the uniform electrostatic field at the exit of the channel. Fig. 8 demonstrates the 

effect of the field penetration into the channel and the electron emission from the contact conducting layer. 

It is obvious that the electrostatic lens at the exit of the channel has a significant influence on the electron 

trajectories and the spatial resolution. 
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The lens, formed by the penetration of the MCP-screen gap field into a channel, depends on the depth h of 

the conducting coating at the output of the channel. The described model was used to investigate the effect 

of the length h on the current density distribution in the channel image on the screen. A set of MTFs was 

calculated for different h values, and was replotted as a family of N=f(h,T ) curves (Fig. 9), where N is the 

spatial frequency (in the relative unit) at which the contrast is equal to T. ( Value of h is normalized to the 

channel diameter d). 

 

 
Fig. 6. Current – density distribution for the uniform field. 

 
As seen from Fig. 9, the contrast T at all spatial frequencies increases monotonically with an increase of 

the length h. This effect is explained by the fact that with an increase in the depth h of the contact layer the 

electrostatic field of the MCP-screen gap penetrates deeper into the channel, focuses the electron beam, and 

increases the image contrast. Moreover, the exit aperture of the electron beam is decreased with an increase 

of h, i.e. the coating at the output of the channel acts as a limiting diaphragm. 

 

 
Fig. 7. Current – density distribution for the nonuniform field. 

 

 
Fig. 8. MTFs of the MCP – screen system. 
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However, the increase in the sputtering depth leads to a reduction of the gain due to the “settling” of 

electrons on the coating. Fig. 10 shows the dependence of the electron loss on the sputtering depth h. The 

electron loss was defined as the ratio of the difference in the number of electrons at the entrance of the 

sputtered region and the electrons at the output of the channel to the number of electrons at the entrance of 

the sputtered region (the emission from the coating was taken into account). Therefore, it is necessary to 

compromise between the MTF and the gain in choosing the length of the contact conducting layer. 

 

 
Fig. 9. Dependence of the spatial frequency N on the length of the conducting layer h for different contrasts. 

 

 
Fig. 10. Dependence of the electron loss on the sputtering depth h. 

 

3.2. Spatial Resolution of the Electron Optical System and the Device 

To provide the best image quality in the inverter imaging systems with MCP the image plane must be flat 

to match the micro channel plate, and the plate position should coincide with the surface of the best focus 

[3]. Fig. 11 represents the meridional trajectories of the electron beam near the screen calculated as 

described in section 2.1. It is seen that the image contrast at the point of the best focus 𝑧𝑓  will behigher 

than the image contrast at the cross-over position 𝑧𝑚 . To evaluate the image contrast and precisely define 

the position of the surface of the best focus in the device, the MTF in the image plane for the point on the 

axis of the symmetry was calculated using the approach described in section 2.3. 

The curvature of the image surface has been calculated as a total combination of minimal cross sections 

of the electron beams (cross-over positions), emitted from different points of the photocathode. Fig. 2 

shows the central trajectories of the electron beams where coordinates of the minimal cross sections show 

the curvature of the image surface. It is seen that the image surface is not flat, and does not coincide with 

the channel plate. It leads to the nonuniform quality of the image on the screen. 

To improve the image quality, the numerical experiments have been conducted for different radii of the 

spherical photocathode and distances from the photocathode to the anode. The numerical experiments 

show (Fig. 12) that the radius of the photocathode affects the curvature and the position of the image 
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surface. It is seen that the relative radius of the photocathode, R=0.625, provides the nearly flat image 

surface, and determines the position of the MCP in the device. 

 

 
Fig. 11. Electron trajectories near the screen. 

 

 
Fig. 12. The curvature of the image surfaces for different radii of the photocathode. 

 
The final MTF of the image system is the product of the MTFs of the EOS and MCP. Fig. 13 shows the MTFs 

of the EOS (curve 1), MCP (curve 2) and the total MTF of the image device (curve 3), where the solid curves 

represent calculations (d=10 μm) and dashed curve represents the experiment (d=12 μm [12]) for the 

MCP-screen gap D=0.4 mm. 

 

 
Fig. 13. MTFs of the EOS (curve 1), MCP-screen (curve 2) and the total MTF of the image device (curve 3). 

 

4. Conclusion 

The angular, energy and current-density distribution of the channel image on the screen have been 
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calculated. The MTFs of the EOS, MCP-screen system and the total MTF of the device have been determined. 

It has been shown that the electrostatic field penetration into the channel at the exit significantly effects the 

image quality. The effect of the length of the contact conducting layer on the field penetration and MTF has 

been evaluated. It has also been shown how the emission from the conducting layer affects the resolution. 

The optimal parameters of EOS which provide a flat image surface to coincide with the channel plate have 

been defined. Position of the best focus in the electron beam, what provides the highest resolution, has been 

determined. Finally, the total MTF of the imaging device has been calculated.  
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