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Abstract: A group G is called л-nilpotent, л a set of primes, if G has a normal л’-subgroup N with G/N a 

nilpotent л-group. Let H be a nilpotent л-Hall subgroup of G, 1＜Z1(H)＜Z2(H) ＜┄＜Zn(H)=H be the upper 

central series of H. If every Zi(H) is weakly closed in H (about G). Then we say that the upper central series 

of H is weakly closed in H (about G). Let H be a subgroup of a finite group G. We call H weakly s-normal in G 

if there exists a Sylow p-subgroup Sp which is permutable with H for every prime p∣|G|. In this paper, with 

the conception above, several determine theorems for G to be a л─nilpotent group are given and some 

properties about л─nilpotent groups are considered. Several results about nilpotent groups are 

generalized. 
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1. Introduction 

All groups considered in this paper will be finite. We use conventional notions and notations, as in [1]. Let 

л be any set of primes and л＇the complementary set of primes. We denote M G to indicate that M is a 

maximal subgroup of G. Also, | : |G M


 denotes the л-part of |G:M|. 

Definition 1.1 A group G is called л-nilpotent, л a set of primes, if G has a normal л’-subgroup N with G/N 

a nilpotent л-group.  

It is very easy to prove that every subgroup and every image of a л-nilpotent group are likewise 

л-nilpotent. 

Definition 1.2 Let H be a subgroup of a finite group G. We call H weakly s-normal in G if there exists a 

Sylow p-subgroup pS  which is permutable with H for every prime p∣|G|. 

Definition 1.3 Let G be a finite group, H be a л-Hall subgroup of G. We call G л-normal if ( )gZ H ≤H

( )gZ H =Z(H), for every g∈G. 

Definition 1.4 Let H be a nilpotent л-Hall subgroup of G, 1＜ 1Z (H)＜ 2Z (H)＜┄＜ nZ (H)=H be the 

upper central series of H. If every iZ (H) is weakly closed in H (about G). Then we say that the upper central 

series of H is weakly closed in H (about G). 

Definition 1.5   (G)=∩{M|M G with [G: M]  =1}. 

2. Preliminarie 
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We will give some lemmas that are useful to the proofs of the theorems. 

Lemma 2.1 Let H be a nilpotent л-Hall subgroup of G, N G. Then /G NN  (HN/N)= GN  (H)N/N. 

Proof (1) /G NN  (HN/N)= GN  (HN)/N 

Since HN GN  (HN). Hence HN/N GN  (HN)/N. Therefore (HN)/N  /G NN  (HN/N). Let /G NN  

(HN/N)=M/N. Then HN/N
/G NN  (HN/N)=M/N. Hence HN M. It implies that M

GN  (HN). Hence M/N

 GN  (HN)/N. Therefore /G NN  (HN/N)= GN  (HN)/N. 

(2) GN  (HN)= GN  (H)N 

Since N G. Hence GN  (H)  GN  (HN). Again N  GN  (HN). Therefore GN  (H)N  GN  (HN). 

Conversely, picking arbitrarily an element x in GN  (HN). Then 
xH NHN. It implies that 

xH HN. Now 

both 
xH  and H are л-Hall subgroups of HN. Again, H is a nilpotent л-Hall subgroup of HN. By [2, Theorem 

9.1.10], there exist an element hn in HN, where h∈H and n∈N, such that 
xH =

hnH =
nH , It implies that 

H=
1xnH



. Hence x
1n

∈ GN  (H). It implies x∈ GN  (H)N. Therefore GN  (HN)  GN  (H)N. Since GN  

(H)N
GN  (HN). Hence GN  (HN)= GN  (H)N. 

By (1) and (2), we have that /G NN  (HN/N) = GN  (H)N/N.  

Lemma 2.2 Let G be a finite group. Then G is л─nilpotent if and only if G/Z(G) is л-nilpotent. 

Proof By introduction, we need only prove the “if” part. Let G/Z(G) be л-nilpotent. It implies that G is 

л-solvable. Hence there are   -Hall subgroups in G. Let N be a   -Hall subgroup of G. Then NZ(G)/Z(G) is 

a   -Hall subgroup of G/Z(G). Hence NZ(G)/Z(G) G/Z(G). It yields that NZ(G) G. Obviously N NZ(G). 

Since N is a   -Hall subgroup of NZ(G). Hence N char NZ(G) G. It yields that N G. Thus G has normal 

л-complements. Let H be a л-Hall subgroup of G. Then HZ(G)/Z(G) is a л-Hall subgroup of G/Z(G). By 

assumption, HZ(G)/Z(G)≌H/H∩Z(G) is nilpotent. Again H∩Z(G) Z(H). Hence H/Z(H) is nilpotent. By [2], 

we get that H is nilpotent. Therefore G is л─nilpotent. 

Lemma 2.3 Let H be a nilpotent л-Hall subgroup of G. Then G is л─nilpotent if and only if G is л-normal 

and GN  (Z(H)) is л─nilpotent. 

Proof By [3, Th 3], we need only prove the “if”part. Let 1H  be a subgroup of H with Z(H)≤ 1H .We 

consider 1( )GN H .  x ∈ 1( )GN H . Since 1[ ( )]xZ H H H   and G is л-normal. We have that 

[ ( )] ( )xZ H Z H . Hence Z(H)   1( )GN H  It implies that 1( )GN H ≤ GN  (Z(H)). Since GN  (Z(H)) is л

─nilpotent. Hence 1( )GN H  is also л─nilpotent. By [4, Th1], we get that 1( )GN H / 1( )GC H  is a л-group. 

Again, By [4, Th2], we have that G is л─nilpotent. 

Lemma 2.4 Let N be a  -nilpotent normal Hall-subgroup of G and let N∩   (G) be a nilpotent 

subgroup of G. Then   (N)=N∩   (G). 

Proof The same argument as that of corresponding theorem in [5]. 

Lemma 2.5 Let G be a soluble group and let MN G. Suppose that N is a  -nilpotent Hall-subgroup 

of G and N∩   (G) is a л-nilpotent group. We have that if N/M(N∩   (G)) is 1 -closed, then N/M is 

1 -closed, where 1  is a set of some primes with л 1 . 
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Proof Let L= M(N∩   (G)) and let H/L be Hall 1 -subgroup of N/L. Since N/L is 1 -closed. We have 

that H/LN/L. Since N∩   (G) is a nilpotent. We have that L/M≌
( )

( )

N G

M G












 is a nilpotent group. 

Hence there exists normal Hall 1  -subgroup K/M in L/M. It follows that /
/

L M
K M

≌K/L is a 1 - 

group. Since K/M char L/M H/M. We have that K/M H/M. Since [H/M : K/M]=[H : K]=[H : L][L : K]. 

Again [H : L] and [L : K]. are 1 -numbers. Therefore [H/M : K/M] is a 1 -number. Since K/M is a 1 

-group. It follows that K/M is a Hall 1  -subgroup of H/M. By Schur throrem, we get that H/M has 1 

-complement A/M. That is H/M=(K/M)(A/M), with K∩A=M. By the generalized Frattin argument, we have 

that N/M=( /N MN  (A/M))(H/M)=(N N (A)H)/M. It follows that N=N N (A)H= N N (A)AK= N N (A)K= N N (A)L= 

N N (A)M(N∩   (G)). By lemma 2.4, we have that N∩   (G)=   (N). Again M≤A. Therefore we have 

that N= N N (A)M(N∩   (G))= N N (A)   (N). We can prove that A/M is a Hall 1 -subgroup of N/M. In 

fact, [N/M : A/M]=[N : A]=[N : H][H : A]=[N/L : H/L][H/M : A/M] is a  -number. Hence [N : N N (A)]  =1. 

By [6, Theorem3.1], we get that N= N N (A). It implies that AN. Hence A/M is a normal Hall 1 -subgroup 

of N/M. That is to say that N/M is 1 -closed. 

3. Main Results 

Theorem 3.1 Let |G| |= p q 
, P∈syl p G. Then G is p-nilpotent if and only if 

a) p q 
 is a p-subgroup. 

b) Every maximal subgroup of P is weakly s-normal in G.. 

Proof First we prove the “only if” part. Let G be a p-nilpotent group. Then G has a normal p-complement 

Q. By [4, theorem1], we have that a) holds. Since Q G. We have that 1P Q=Q 1P  for every maximal 

subgroup 1P  of P. That is b) holds. 

Next we prove the “if” part. Assume that the hypothesis holds. Then we have  

Every Sylow p-subgroup 
*P of G satisfies the hypothesis a) and b) 

In fact, by Sylow
,
s theorem, there exists y∈G such that 

*P =
yP , This yield that 

*( ) [ ( )]y

G GN P N P , 

Hence 
* *| ( ) / ( ) | | ( ) / ( ) |G G G GN P C P N P C P  is a power of p. Picking arbitrarily a maximal subgroup

*

1P

of 
*P . Hence we have that (

*

1P )
1y

is a maximal subgroup of P. By assumption, there exists Q∈Syl q (G) 

such that (
*

1P )
*

1P Q=Q(
*

1P )
1y

. This yield that 
*

1P
yQ =

yQ
*

1P . 

4. The Final Conclusion 

We can easily prove that every quotient group of G satisfies the hypothesis. Assume N is a minimal normal 

subgroup in G.. By induction on |G|, we can assume that G/N has a normal p-complement H/N. If N is a 

q-subgroup, then H is a normal p-complement of G. Since G is solvable, next we can assume that N is a 
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p-subgroup . Furthermore we can assume that only p-subgroup can be the minimal normal subgroup in G. If 

Ф(G)≠1, then G/Ф(G) is a p-nilpotent group by induction on |G|. Therefore G is a p-nilpotent group. Next we 

assume thatФ(G)=1 and A is a maximal subgroup of G such that N≮A. It yield that G=AN and A∩N=1. Let 
*P  be a Sylow p-subgroup of A. This yield that 

*P A is a Sylow p-subgroup of G. By (1), with no loss, we 

can assume that P=
*P A. Picking 1P  is a maximal subgroup of P such that 

*P ∠ 1P . By assumption, there 

exists Q∈Syl q (G) such that 1P Q=O 1P . It is easy to show that |N: 1P ∩N|=p. Let 1P Q∩N= 1P ∩N=D. We 

have that D G. By the minimal characteristics of N. We have that D=1. This yield that |N|=p. This implies 

that every minimal normal subgroup of G. is a cyclic group of order p. If q>p. Since N∈syl p H and N is cyclic. 

We get that H has a normal p-complement L. It is easy to show that L is also a normal p-complement of G. If 

q<p. Picking arbitrarily a maximal subgroup M of G. If M≯F(G). Since F(G) is a products of all minimal 

normal subgroup of G. Then there exists a minimal normal subgroup 1N  of G such that M 1N =G and M∩

1N =1. Since G/ 1N  M/M∩ 1N . We have that |G:M|=| 1N |=p. By theorem 3.3 in [7], We get that G is 

supersoluble. It implies that P G. By hypothesis a), we get that Q
GC  (P). Hence we have that Q G. 

Therefore G is a p-nilpotent group. 

Theorem 3.2 Suppose that G is a л-nilpotent group, H is a nilpotent л-Hall subgroup of G. Suppose 

further that N is normal in H. Then N is weakly closed in H (about G). 

Proof Since G is л-nilpotent and H is a nilpotent л-Hall subgroup of G. So we can assume that G=HM, 

where M G and H∩M=1. Suppose that 
gN ≤H, where g∈G. We prove that 

gN = N . Since G=HM. So we 

can assume that g=hm, where h∈H and m∈M. Hence 
gN =

hmN =
mN .  n∈N, we have that mn = 1m

nm=n
1 1n m 

nm∈NM. Hence 
mn ∈H∩NM=N(M∩H)=N. It implies that 

mN ≤N. Therefore 
mN =N. Thus 

completes the proof. 

Theorem 3.3 Let H be a nilpotent л-Hall subgroup of G. Then G is л-nilpotent if and only if the upper 

central series of H is weakly closed in H (about G) and GN  (H) is л-nilpotent. 

Proof By Theorem 3.2, we need only prove the “if” part. By induction on |G|, we prove that G is 

л-nilpotent. We consider the following cases. 

(1) GN (Z(H))=G  

Since GC (Z(H))≤ GN (Z(H))=G . We distinguish two cases again. 

Case 1 GC (Z(H))= GN (Z(H))=G  

GC  (Z(H))=G implies that Z(H)≤Z(G). Let G =G/Z(H) and H  be a л-Hall subgroup of G . If Z(H)=H. 

Then H≤Z(G). By Schur Theorem, G is л-nilpotent. If Z(H)≠H. Then we can prove easily that 

1( ) ( )i iZ H Z H .  g ∈ G, if 
1

( )ig Z H g H


 , then 
1

1( )ig Z H g H

  . It implies that 

1

1( )ig Z H g H

  . Since 1( )iZ H  is weakly closed in H (about G). We have that 

1

1 1( ) ( )i ig Z H g Z H

  . It follows that 1( ) ( )i iZ H Z H =
1

1

1( ) ( )i ig Z H g g Z H g




  . That is that the 

upper central series of H  is weakly closed in H  (about G ). Moreover, by Lemma 2.1, we have that 

( ) ( )GG
N H N H . We obtain that ( )

G
N H  is л-nilpotent. Now we conclude that G =G/Z(H) is 

л-nilpotent by induction on |G|. Since Z(H) ≤Z(G). By lemma 2.2, we obtain that G is л-nilpotent. 
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Case 2 GC  (Z(H))＜ GN  (Z(H))= G  

Let 1G = GC  (Z(H)). Then 1G 
GN  (Z(H))= G . Since H≤ 1G . Hence the upper central series of H is 

weakly closed in H (about 1G ). Since 
1
( )GN H  is a subgroup of ( )GN H  which is л-nilpotent. So 

1
( )GN H  is also л-nilpotent. By induction on |G|, we get that 1G  is л-nilpotent. So we can assume that 1G

=HK, where K 1G  and K is a normal л-complement of 1G . If K=1. Then H= 1G  G. It follows that G=

( )GN H . By assumption, G is л-nilpotent. If K ≠1. Then K char 1G  G. It follows that K G. Since K is a 

-group. Hence H ≌H. Therefore ( ) ( )i iZ H Z H .  g∈G, if 
1

( )ig Z H g H


 , then 
1 ( )ig Z H g H  . 

It implies that 1 ( )ig Z H g HK G   . By [3, Theorem 9.1.10], there exist some element k of K such that 

1 ( ) k

ig Z H g H  . Hence k 1 1( )ig Z H gk  ≤H. Since ( )iZ H  is weakly closed in H (about G). Therefore k

1 1( )ig Z H gk  = ( )iZ H . It implies 1 1( ) ( )i ig Z H g k Z H k  . Hence we have 

1
1 1( ) ( ) ( ) ( ) ( )i i i i ig Z H g g Z H g k Z H k Z H Z H


     It shows that the upper central series of H  is 

weakly closed in H  (about G  ).Since /( ) ( / ) ( ) / ( )G K G GG
N H N HK K N H K K N H   . By 

assumption, we obtain that ( )
G

N H  is л-nilpotent. So, by induction on |G|, we get that G =G/K is 

л-nilpotent. Therefore G is л-nilpotent. 

(2) GN (Z(H))＜G 

Let 1G = GN (Z(H)). Since ( )GN H ≤ GN (Z(H)). We can conclude that 
1
( )GN H = ( )GN H . By assumption, 

we obtain that 
1
( )GN H  is л-nilpotent. Since H≤ 1G . The assumption in Theorem 3.2 implies that the upper 

central series of H is also weakly closed in H (about 1G ). That is that 1G  satisfies the conditions of 

Theorem 3.2. By induction on |G|, 1G = GN (Z(H)) is л-nilpotent. By Lemma 2.3, we get that G is л-nilpotent. 

Theorem 3.4 Let G be a л-soluble group. Suppose that H is a Hall л-subgroup of G and H is a cyclic group. 

If H≤G . Then G  is a л-nilpotent group. 

Proof If O   (G)=1. Since G is a л-soluble group. By [8, Theorem 6.12], we have that GC ( O (G))≤O  

(G). Since H is a Hall л-subgroup of G. Hence O (G)≤H. It follows that H≤ GC (O (G))≤O (G). This implies 

that H=O (G). Applying N/C theorem to O (G), we conclude that G/ GC (O (G)) Aut(H). Since H is a 

cyclic group . We obtain that G/ GC (O (G)) is an abelian group. It yield that G≤ GC (O (G))=H. By the 

assumption that H≤G . We get that G=H. Therefore G  is a л-nilpotent group.  

If O  (G)≠1. Then we consider G/ O  (G). It is easy to show that H O  (G)/ O  (G) is a Hall л-subgroup 

of G/ O  (G) and HO  (G)/O  (G) H/H∩O  (G) is a cyclic group. It is easy to prove that G/ O  (G) 

satisfies the hypothesis of the theorem. By induction on |G|, we get that G O  (G)/ O  (G) is a 

л-nilpotent group. Assume that N/O  (G) is a normal л-complement 0f G O  (G)/O  (G). Then we have 

that G O  (G)=HN. Hence G=G∩HN=H(N∩G ). Since N∩G  is a normal л-complement 0f G . It 

follows that G  is a л-nilpotent group. 

Theorem 3.5 Let G be a soluble group and let MNG. Suppose that N is a л-nilpotent Hall-subgroup of 
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G and N∩  (G) is a nilpotent group. If N/ M(N∩    (G)) is a л-nilpotent group, then N/M is also a 

л-nilpotent group. 

Proof Let L= M(N∩    (G)). Since N/M is a л-nilpotent group. It follows that N/L is  -closed. By  

lemma 2.5, we have that N/M is  -closed. It implies that N   M/MN/M. Picking arbitrarily q∣|N/ N  

M|. Then we have that q∈л. Let 1 =∪{q}. Since N/N   L /
/

N L
N L L 

 is a nilpotent group. It yield 

that N/ N   L is 1 -closed. Since N   MN G. By lemma 2.5, we have that N/ N   M is 1 -closed. It 

implies that the Sylow q-subgroup of N/ N   M is normal in N/ N   M, By the arbitrariness of q, we obtain 

that N/ N   M  /
/

N M
N M M 

 is a nilpotent group., Therefore N/M is a л-nilpotent group.  
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