On π -nilpotency of Finite Groups

Rongge Yu^{*}, Ruixia Jiang

School of Mathematics and Statistics, Cangzhou Normal University, Cangzhou, China.

* Corresponding author. Tel.: 13383062153; email: yurongge999@163.com. Manuscript submitted January 10, 2016; accepted June 12, 2016. doi: 10.17706/ijapm.2016.6.3.194-199

Abstract: A group G is called π -nilpotent, π a set of primes, if G has a normal π '-subgroup N with G/N a nilpotent π -group. Let H be a nilpotent π -Hall subgroup of G, $1 < Z_1(H) < Z_2(H) < \cdots < Z_n(H) = H$ be the upper central series of H. If every $Z_i(H)$ is weakly closed in H (about G). Then we say that the upper central series of H is weakly closed in H (about G). Let H be a subgroup of a finite group G. We call H weakly s-normal in G if there exists a Sylow p-subgroup S_p which is permutable with H for every prime $p \mid |G|$. In this paper, with the conception above, several determine theorems for G to be a π -nilpotent group are given and some properties about π -nilpotent groups are considered. Several results about nilpotent groups are generalized.

Key words: л—nilpotent groups, minimal normal subgroups, л-normal groups, weakly s-normal subgroups.

1. Introduction

All groups considered in this paper will be finite. We use conventional notions and notations, as in [1]. Let π be any set of primes and π' the complementary set of primes. We denote M < G to indicate that M is a maximal subgroup of G. Also, $|G:M|_{-}$ denotes the π -part of |G:M|.

Definition 1.1 A group G is called π -nilpotent, π a set of primes, if G has a normal π '-subgroup N with G/N a nilpotent π -group.

It is very easy to prove that every subgroup and every image of a π -nilpotent group are likewise π -nilpotent.

Definition 1.2 Let H be a subgroup of a finite group G. We call H weakly s-normal in G if there exists a Sylow p-subgroup S_p which is permutable with H for every prime $p \mid |G|$.

Definition 1.3 Let G be a finite group, H be a π-Hall subgroup of G. We call G π-normal if $Z(H)^g \le H \Longrightarrow$ $Z(H)^g = Z(H)$, for every g \in G.

Definition 1.4 Let H be a nilpotent π -Hall subgroup of G, $1 < Z_1$ (H) $< Z_2$ (H) $< --- < Z_n$ (H)=H be the upper central series of H. If every Z_i (H) is weakly closed in H (about G). Then we say that the upper central series of H is weakly closed in H (about G).

Definition 1.5 Φ_{π} (G)= \cap {M|M \leq G with [G: M]^{π} =1}.

2. Preliminarie

We will give some lemmas that are useful to the proofs of the theorems.

Lemma 2.1 Let H be a nilpotent *π*-Hall subgroup of G, $N \leq G$. Then $N_{G/N}$ (HN/N)= N_G (H)N/N.

Proof (1) $N_{G/N}$ (HN/N)= N_G (HN)/N

Since $HN \leq N_G$ (HN). Hence $HN/N \leq N_G$ (HN)/N. Therefore (HN)/N $\leq N_{G/N}$ (HN/N). Let $N_{G/N}$ (HN/N)=M/N. Then $HN/N \leq N_{G/N}$ (HN/N)=M/N. Hence $HN \leq M$. It implies that $M \leq N_G$ (HN). Hence $M/N \leq N_G$ (HN)/N. Therefore $N_{G/N}$ (HN/N)= N_G (HN)/N.

(2) N_G (HN)= N_G (H)N

Since $N \leq G$. Hence N_G (H) $\leq N_G$ (HN). Again $N \leq N_G$ (HN). Therefore N_G (H) $N \leq N_G$ (HN). Conversely, picking arbitrarily an element x in N_G (HN). Then $H^x N \leq$ HN. It implies that $H^x \leq$ HN. Now both H^x and H are π -Hall subgroups of HN. Again, H is a nilpotent π -Hall subgroup of HN. By [2, Theorem 9.1.10], there exist an element hn in HN, where $h \in$ H and $n \in N$, such that $H^x = H^{hn} = H^n$, It implies that $H = H^{xn^{-1}}$. Hence $x n^{-1} \in N_G$ (H). It implies $x \in N_G$ (H)N. Therefore N_G (HN) $\leq N_G$ (H)N. Since N_G (H)N. Hence N_G (HN)= N_G (H)N.

By (1) and (2), we have that $N_{G/N}$ (HN/N) = N_G (H)N/N.

Lemma 2.2 Let G be a finite group. Then G is *π*—nilpotent if and only if G/Z(G) is *π*-nilpotent.

Proof By introduction, we need only prove the "if" part. Let G/Z(G) be π -nilpotent. It implies that G is π -solvable. Hence there are π' -Hall subgroups in G. Let N be a π' -Hall subgroup of G. Then NZ(G)/Z(G) is a π' -Hall subgroup of G/Z(G). Hence NZ(G)/Z(G) \trianglelefteq G/Z(G). It yields that NZ(G) \trianglelefteq G. Obviously N \trianglelefteq NZ(G). Since N is a π' -Hall subgroup of NZ(G). Hence N char NZ(G) \trianglelefteq G. It yields that N \bowtie G. Thus G has normal π -complements. Let H be a π -Hall subgroup of G. Then HZ(G)/Z(G) is a π -Hall subgroup of G/Z(G). By assumption, HZ(G)/Z(G) \cong H/H \cap Z(G) is nilpotent. Again H \cap Z(G) \le Z(H). Hence H/Z(H) is nilpotent. By [2], we get that H is nilpotent. Therefore G is π —nilpotent.

Lemma 2.3 Let H be a nilpotent *π*-Hall subgroup of G. Then G is *π*—nilpotent if and only if G is *π*-normal and N_G (Z(H)) is *π*—nilpotent.

Proof By [3, Th 3], we need only prove the "if" part. Let H_1 be a subgroup of H with $Z(H) \le H_1$. We consider $N_G(H_1)$. $\forall x \in N_G(H_1)$. Since $[Z(H)]^x \le H_1 \le H$ and G is π -normal. We have that $[Z(H)]^x = Z(H)$. Hence $Z(H) \le N_G(H_1)$ It implies that $N_G(H_1) \le N_G$ (Z(H)). Since N_G (Z(H)) is π -nilpotent. Hence $N_G(H_1)$ is also π -nilpotent. By [4, Th1], we get that $N_G(H_1) / C_G(H_1)$ is a π -group. Again, By [4, Th2], we have that G is π -nilpotent.

Lemma 2.4 Let N be a π' -nilpotent normal Hall-subgroup of G and let $N \cap \Phi_{\pi}$ (G) be a nilpotent subgroup of G. Then Φ_{π} (N)=N $\cap \Phi_{\pi}$ (G).

Proof The same argument as that of corresponding theorem in [5].

Lemma 2.5 Let G be a soluble group and let $M \triangleleft N \triangleleft G$. Suppose that N is a π' -nilpotent Hall-subgroup of G and $N \cap \Phi_{\pi}$ (G) is a π -nilpotent group. We have that if $N/M(N \cap \Phi_{\pi}$ (G)) is π_1 -closed, then N/M is π_1 -closed, where π_1 is a set of some primes with $\pi \subseteq \pi_1$.

Proof Let L= M(N $\cap \Phi_{\pi}$ (G)) and let H/L be Hall π_1 -subgroup of N/L. Since N/L is π_1 -closed. We have that H/L \triangleleft N/L. Since N $\cap \Phi_{\pi}$ (G) is a nilpotent. We have that L/M $\cong \frac{N \cap \Phi_{\pi}(G)}{M \cap \Phi_{\pi}(G)}$ is a nilpotent group. Hence there exists normal Hall π'_1 -subgroup K/M in L/M. It follows that $\frac{L}{M}_{K/M} \cong K/L$ is a π_1 -group. Since K/M char L/M \triangleleft H/M. We have that K/M \triangleleft H/M. Since [H/M : K/M]=[H : K]=[H : L][L : K]. Again [H : L] and [L : K]. are π_1 -numbers. Therefore [H/M : K/M] is a π_1 -number. Since K/M is a π_1' -group. It follows that K/M is a Hall π'_1 -subgroup of H/M. By Schur throrem, we get that H/M has π'_1 -complement A/M. That is H/M=(K/M)(A/M), with K \cap A=M. By the generalized Frattin argument, we have that N/M=($N_{N/M}$ (A/M))(H/M)=(N N (A)H/M. It follows that N=N N (A)AK= N N (A)K= N N (A)L= N N (A)M(N $\cap \Phi_{\pi}$ (G))= N N (A) Φ_{π} (N). We can prove that A/M is a Hall π_1 -subgroup of N/M. In fact, [N/M : A/M]=[N : A]=[N : H][H : A]=[N/L : H/L][H/M : A/M] is a π' -number. Hence [N : N N (A)] $\pi = 1$. By [6, Theorem3.1], we get that N = N N (A). It implies that A \triangleleft N. Hence A/M is a normal Hall π_1 -subgroup of N/M. That is to say that N/M is π_1 -closed.

3. Main Results

Theorem 3.1 Let $|G| = p^{\alpha}q^{\beta}$, P \in syl^{*p*} G. Then G is p-nilpotent if and only if

a) $p^{\alpha}q^{\beta}$ is a p-subgroup.

b) Every maximal subgroup of P is weakly s-normal in G..

Proof First we prove the "only if" part. Let G be a p-nilpotent group. Then G has a normal p-complement Q. By [4, theorem1], we have that a) holds. Since $Q \triangleleft G$. We have that $P_1 Q = Q P_1$ for every maximal subgroup P_1 of P. That is b) holds.

Next we prove the "if" part. Assume that the hypothesis holds. Then we have

Every Sylow p-subgroup P^* of G satisfies the hypothesis a) and b)

In fact, by Sylow's theorem, there exists $y \in G$ such that $P^* = P^y$, This yield that $N_G(P^*) = [N_G(P)]^y$, Hence $|N_G(P^*)/C_G(P^*)| = |N_G(P)/C_G(P)|$ is a power of p. Picking arbitrarily a maximal subgroup P_1^* of P^* . Hence we have that $(P_1^*)^{y^{-1}}$ is a maximal subgroup of P. By assumption, there exists $Q \in Syl^q$ (G) such that $(P_1^*) P_1^* Q = Q(P_1^*)^{y^{-1}}$. This yield that $P_1^* Q^y = Q^y P_1^*$.

4. The Final Conclusion

We can easily prove that every quotient group of G satisfies the hypothesis. Assume N is a minimal normal subgroup in G.. By induction on |G|, we can assume that G/N has a normal p-complement H/N. If N is a q-subgroup, then H is a normal p-complement of G. Since G is solvable, next we can assume that N is a

p-subgroup . Furthermore we can assume that only p-subgroup can be the minimal normal subgroup in G. If $\Phi(G) \neq 1$, then $G/\Phi(G)$ is a p-nilpotent group by induction on |G|. Therefore G is a p-nilpotent group. Next we assume that $\Phi(G)=1$ and A is a maximal subgroup of G such that $N \ll A$. It yield that G=AN and $A \cap N=1$. Let P^* be a Sylow p-subgroup of A. This yield that P^*A is a Sylow p-subgroup of G. By (1), with no loss, we can assume that $P=P^*A$. Picking P_1 is a maximal subgroup of P such that $P^* \angle P_1$. By assumption, there

exists $Q \in Syl^q$ (G) such that $P_1 Q=0 P_1$. It is easy to show that $|N: P_1 \cap N|=p$. Let $P_1 Q \cap N=P_1 \cap N=D$. We have that $D \triangleleft G$. By the minimal characteristics of N. We have that D=1. This yield that |N|=p. This implies

that every minimal normal subgroup of G. is a cyclic group of order p. If q>p. Since $N \in syl^p$ H and N is cyclic. We get that H has a normal p-complement L. It is easy to show that L is also a normal p-complement of G. If q<p. Picking arbitrarily a maximal subgroup M of G. If $M \Rightarrow F(G)$. Since F(G) is a products of all minimal normal subgroup of G. Then there exists a minimal normal subgroup N_1 of G such that $M N_1 = G$ and $M \cap N_1 = 1$. Since $G/N_1 \cong M/M \cap N_1$. We have that $|G:M| = |N_1| = p$. By theorem 3.3 in [7], We get that G is supersoluble. It implies that $P \triangleleft G$. By hypothesis a), we get that $Q \leq C_G$ (P). Hence we have that $Q \triangleleft G$. Therefore G is a p-nilpotent group.

Theorem 3.2 Suppose that G is a *π*-nilpotent group, H is a nilpotent *π*-Hall subgroup of G. Suppose further that N is normal in H. Then N is weakly closed in H (about G).

Proof Since G is π -nilpotent and H is a nilpotent π -Hall subgroup of G. So we can assume that G=HM, where $M \leq G$ and $H \cap M=1$. Suppose that $N^g \leq H$, where $g \in G$. We prove that $N^g = N$. Since G=HM. So we can assume that g=hm, where $h \in H$ and $m \in M$. Hence $N^g = N^{hm} = N^m$. $\forall n \in N$, we have that $n^m = m^{-1}$ nm=n $n^{-1}m^{-1}$ nm \in NM. Hence $n^m \in H \cap NM=N(M \cap H)=N$. It implies that $N^m \leq N$. Therefore $N^m = N$. Thus completes the proof.

Theorem 3.3 Let H be a nilpotent *π*-Hall subgroup of G. Then G is *π*-nilpotent if and only if the upper central series of H is weakly closed in H (about G) and N_G (H) is *π*-nilpotent.

Proof By Theorem 3.2, we need only prove the "if" part. By induction on |G|, we prove that G is π -nilpotent. We consider the following cases.

(1) $N_G(Z(H)) = G$

Since $C_G(Z(H)) \le N_G(Z(H)) = G$. We distinguish two cases again.

Case 1
$$C_G$$
 (Z(H))= N_G (Z(H))= G

 C_G (Z(H))=G implies that Z(H)≤Z(G). Let \overline{G} =G/Z(H) and \overline{H} be a π -Hall subgroup of \overline{G} . If Z(H)=H. Then H≤Z(G). By Schur Theorem, G is π -nilpotent. If Z(H)≠H. Then we can prove easily that $Z_i(\overline{H}) = \overline{Z_{i+1}(H)}$. $\forall g \in G$, if $\overline{g}^{-1}Z_i(\overline{H})\overline{g} \leq \overline{H}$, then $\overline{g}^{-1}Z_{i+1}(H)g \leq \overline{H}$. It implies that $g^{-1}Z_{i+1}(H)g \leq H$. Since $Z_{i+1}(H)$ is weakly closed in H (about G). We have that $g^{-1}Z_{i+1}(H)g = Z_{i+1}(H)$. It follows that $Z_i(\overline{H}) = \overline{Z_{i+1}(H)} = \overline{g}^{-1}Z_i(\overline{H})\overline{g} = \overline{g}^{-1}Z_i(\overline{H})\overline{g}$. That is that the upper central series of \overline{H} is weakly closed in \overline{H} (about \overline{G}). Moreover, by Lemma 2.1, we have that $N_{\overline{G}}(\overline{H}) = \overline{N_G(H)}$. We obtain that $N_{\overline{G}}(\overline{H})$ is π -nilpotent. Now we conclude that $\overline{G} = G/Z(H)$ is π -nilpotent by induction on |G|. Since Z(H) ≤Z(G). By lemma 2.2, we obtain that G is π -nilpotent.

Case 2 C_G (Z(H)) $\leq N_G$ (Z(H))= G

Let $G_1 = C_G$ (Z(H)). Then $G_1 \leq N_G$ (Z(H))= G. Since $H \leq G_1$. Hence the upper central series of H is weakly closed in H (about G_1). Since $N_{G_i}(H)$ is a subgroup of $N_G(H)$ which is π -nilpotent. So $N_{G_i}(H)$ is also π -nilpotent. By induction on |G|, we get that G_1 is π -nilpotent. So we can assume that G_1 =HK, where $K \leq G_1$ and K is a normal π -complement of G_1 . If K=1. Then $H=G_1 \leq G$. It follows that $G=N_G(H)$. By assumption, G is π -nilpotent. If $K \neq 1$. Then K char $G_1 \leq G$. It follows that $K \leq G$. Since K is a π' -group. Hence $\overline{H} \cong H$. Therefore $Z_i(\overline{H}) = \overline{Z_i(H)}$. $\forall g \in G$, if $\overline{g}^{-1}Z_i(\overline{H})\overline{g} \leq \overline{H}$, then $\overline{g}^{-1}Z_i(H)\overline{g} \leq \overline{H}$. It implies that $g^{-1}Z_i(H)g \leq HK = G$. By [3, Theorem 9.1.10], there exist some element k of K such that $g^{-1}Z_i(H)g \leq H^k$. Hence k $g^{-1}Z_i(H)g k^{-1} \leq H$. Since $Z_i(H)$ is weakly closed in H (about G). Therefore k $\overline{g}^{-1}Z_i(\overline{H})\overline{g} = \overline{g}^{-1}Z_i(H)\overline{g} = \overline{k}^{-1}Z_i(H)k = \overline{Z_i(H)} = Z_i(\overline{H})$. It implies $g^{-1}Z_i(H)g = k^{-1}Z_i(H)k$. Hence we have $\overline{g}^{-1}Z_i(\overline{H})\overline{g} = \overline{g}^{-1}Z_i(H)g = \overline{k}^{-1}Z_i(H)k = \overline{Z_i(H)} = Z_i(\overline{H})$. It shows that the upper central series of \overline{H} is weakly closed in \overline{H} (about \overline{G}). Since $N_{\overline{G}}(\overline{H}) = N_{G/K}(HK/K) = N_G(H)K/K = \overline{N_G(H)}$. By assumption, we obtain that $N_{\overline{G}}(\overline{H})$ is π -nilpotent. So, by induction on |G|, we get that $\overline{G} = G/K$ is π -nilpotent. Therefore G is π -nilpotent.

(2) $N_G(Z(H)) \le G$

Let $G_1 = N_G(Z(H))$. Since $N_G(H) \le N_G(Z(H))$. We can conclude that $N_{G_1}(H) = N_G(H)$. By assumption, we obtain that $N_{G_1}(H)$ is π -nilpotent. Since $H \le G_1$. The assumption in Theorem 3.2 implies that the upper central series of H is also weakly closed in H (about G_1). That is that G_1 satisfies the conditions of Theorem 3.2. By induction on |G|, $G_1 = N_G(Z(H))$ is π -nilpotent. By Lemma 2.3, we get that G is π -nilpotent.

Theorem 3.4 Let G be a π -soluble group. Suppose that H is a Hall π -subgroup of G and H is a cyclic group. If $H \leq G'$. Then G' is a π -nilpotent group.

Proof If $O_{\pi'}$ (G)=1. Since G is a π -soluble group. By [8, Theorem 6.12], we have that $C_G (O_{\pi}(G)) \le O_{\pi}$ (G). Since H is a Hall π -subgroup of G. Hence $O_{\pi}(G) \le H$. It follows that $H \le C_G (O_{\pi}(G)) \le O_{\pi}(G)$. This implies that $H = O_{\pi}(G)$. Applying N/C theorem to $O_{\pi}(G)$, we conclude that $G/C_G (O_{\pi}(G)) \le Aut(H)$. Since H is a cyclic group . We obtain that $G/C_G (O_{\pi}(G))$ is an abelian group. It yield that $G' \le C_G (O_{\pi}(G)) = H$. By the assumption that $H \le G'$. We get that G' = H. Therefore G' is a π -nilpotent group.

If $O_{\pi'}(G) \neq 1$. Then we consider $G/O_{\pi'}(G)$. It is easy to show that $HO_{\pi'}(G)/O_{\pi'}(G)$ is a Hall π -subgroup of $G/O_{\pi'}(G)$ and $HO_{\pi'}(G)/O_{\pi'}(G) \cong H/H \cap O_{\pi'}(G)$ is a cyclic group. It is easy to prove that $G/O_{\pi'}(G)$ satisfies the hypothesis of the theorem. By induction on |G|, we get that $G'O_{\pi'}(G)/O_{\pi'}(G)$ is a π -nilpotent group. Assume that $N/O_{\pi'}(G)$ is a normal π -complement of $G'O_{\pi'}(G)/O_{\pi'}(G)$. Then we have that $G'O_{\pi'}(G)=HN$. Hence $G'=G'\cap HN=H(N\cap G')$. Since $N\cap G'$ is a normal π -complement of G'. It follows that G' is a π -nilpotent group.

Theorem 3.5 Let G be a soluble group and let M ⊲ N ⊲ G. Suppose that N is a л-nilpotent Hall-subgroup of

G and N ∩ Φ_{π} (G) is a nilpotent group. If N/ M(N ∩ $\Phi_{\pi'}$ (G)) is a *π*-nilpotent group, then N/M is also a *π*-nilpotent group.

Proof Let L= M(N $\cap \Phi_{\pi'}$ (G)). Since N/M is a π -nilpotent group. It follows that N/L is π' -closed. By lemma 2.5, we have that N/M is π' -closed. It implies that N $^{\pi'}$ M/M \triangleleft N/M. Picking arbitrarily q | |N/N $^{\pi'}$ M|. Then we have that q $\in \pi$. Let $\pi_1 = \pi' \cup \{q\}$. Since N/N $^{\pi'}$ L $\cong \frac{N/L}{N_{\pi'}L/L}$ is a nilpotent group. It yield

that N/ N^{π'} L is π_1 -closed. Since N^{π'} M \triangleleft N \triangleleft G. By lemma 2.5, we have that N/ N^{π'} M is π_1 -closed. It

implies that the Sylow q-subgroup of N/ N^{π'} M is normal in N/ N^{π'} M, By the arbitrariness of q, we obtain that N/ N^{π'} M $\cong \frac{N/M}{N_{\pi'}M/M}$ is a nilpotent group., Therefore N/M is a π -nilpotent group.

References

- [1] Xu, M. Y. (1999). Introduction to the Theory of Finite Groups. Science Press, Beijing.
- [2] Robinson, D. J. S. (1982). A Course in the Theory of Groups. Springer-Verlag, New York,
- [3] Yang, Z. X. (1993). On л-nilpotent group. Journal of Huang Huai, 9(3), 41-43.
- [4] Zhang, Y.-Z., & Wang, C. Y. (1992). On л-nilpotent group. *Journal of Shanxi University*, 15(1), 15-17.
- [5] Srinivasan, S. (1987). Finite *p*'-nilpotent groups. *Internat. J. Math*, *10*(*1*),135-146.
- [6] Wang, Y. (1992). A class of Frattini-like subgroups of a finite group. Pure Appl. Algebra, 78,101-108.
- [7] Weinstein, M. (1982). Between Nilpotent and Solvable. Polygonal Publishing House, NJ.
- [8] Gorenstein, D. (1980). *Finite Groups*. Chelsea Publishing House, New York.

Rongge Yu was born on July 29, 1965 in Dongguang, Hebei, China. She obtained the MS_c (mathematics) from Qufu Normal University, Qufu in 1997. She is an associate professor in mathematics.

She had published papers such as: "The properties of π' -fitting subgroup of a group G", Journal of Cangzhou Normal University, vol. 26, no. 4, Dec. 2010. "On factorizable groups" Journal of Cangzhou Normal University, vol. 27, no. 1, March 2011. "Several

results about π -nilpotent groups", *Advanced Science Letters*. *APRIL 2013*. Her research area is groups theory and coding theory.