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Abstract: The 2011 Fukushima Daiichi nuclear accident in Japan resulted in the release of radioactive 

materials into the atmosphere, the nearby sea, and the surrounding land. Based on the International Atomic 

Energy Agency (IAEA) Convention on Early Notification of a nuclear accident, several radiological data were 

collected on the accident. Among the radioactive materials monitored, are I-131 and Cs-137 which form the 

major contributions to the contamination of drinking water. The radiation dose in the atmosphere was also 

measured. This study focused on how well regression models predict radiation dose from the following 

predictor variables: I-131and Cs-137 concentrations in drinking water, radiation monitoring locations, and 

distance and direction of monitoring points from the accident location. The analysis covered 1) the 

correlations between the radiation dose and the predictor variables, and 2) how well simple regression 

methods could predict the radiation dose. The modeling techniques investigated include linear regression, 

principal component regression (PCR), partial least square regression (PLS), ridge regression, and locally 

weighted regression. The Venetian Blinds method was used to divide the data into training, test, and 

validation datasets. The concentrations ofI-131 and Cs-137 directly determine the output parameter dose, 

and thus have better correlations compared to the other predictor variables. The linear regression model 

with one variable (I-131 concentration in drinking water) was found to be the best with a root mean square 

error of 0.0133. For the other models, the root mean square errors are0.0148 for ridge regression cross 

validation,0.0198 for ridge regression L-curve, 0.0210 for PCR,0.0856 for PLS, 0.0892 for locally weighted 

linear regression, and 0.0993 for locally weighted kernel regression. 

 
Key words: Nuclear accident, partial least square regression, principal component regression, radiation 
dose, radioactive materials, regression models, ridge regression. 

 
 

1. Introduction 

Radioactive materials released during nuclear accidents pose danger to the environment and people. The 

2011 Fukushima Daiichi nuclear accident that happened in Japan resulted in the release of radioactive 

materials into the atmosphere, the nearby sea, and the surrounding land [1]. The major radioactive 

materials include I-131, Cs-137, Cs-134, Te-129m, Sr-90, and Pu isotopes [2]–[5]. While the surrounding 

areas, where people were thought to be at risk, were evacuated, other regions could still be at risk due to 

the dispersion of the radioactive materials released. Radioactive materials are dispersed through air, land 

and water. Based on the International Atomic Energy Agency (IAEA) Convention on Early Notification of a 

nuclear accident, several radiological data were collected, by the Japanese authorities, on the accident.  
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This paper analysis how well regression models predict radiation dose from the following predictor 

variables: I-131 and Cs-137 concentrations in drinking water, radiation monitoring locations, and distance 

and direction of monitoring points from the accident location.The goal of this study focused on investigating 

1) the correlations between the radiation dose and the other parameters, and 2) how well simple 

regression methods could predict the radiation dose. The modeling techniques investigated include linear 

regression, principal component regression (PCR), partial least square regression (PLS), ridge regression, 

and locally weighted regression (kernel regression and local linear regression).  

2. Methodology 

2.1. Dataset and Variables 

The data used in this study were obtained from the Fukushima Monitoring Database in the IAEA website 

[1]. The variables in the dataset are listed in Table 1. Each variable has 103 observations. The first variable 

is the prefecture where the data were recorded. The prefectures from which data were extracted are Chiba 

(Ichihara), Gunma (Maebashi), Ibaraki, Iwate (Morioka), Tochigi (Utsunomiya), Tokyo (Shinjyuku), 

Yamagata (Yamagata), and they were assigned identification numbers 1 – 7, respectively, in this 

investigation. The fifth variable is the direction of the radiation monitoring point from Fukushima (ground 

zero of the accident), and for this investigation they were assign numbers as follow: North (N) = 1, South 

West (SW) = 2, South West West (SWW) = 3, South South West (SSW) = 4, and North West (NW) = 5. 

Variables 2, 3, 4 and 6 are as stated in Table 1 along with their units of measurements. The predictor 

variables are location, I-131 concentration, Cs-137 concentration, distance from Fukushima, and direction 

from Fukushima. The output variable is radiation dose.  

 
Table 1. Data and Variables 

 Variable Type 

1. Location – monitoring point (Prefecture) Predictor 

2. I-131 concentration in drinking water (Bq/kg) Predictor 

3. Cs-137 concentration in drinking water (Bq/kg) Predictor 

4. Distance from Fukushima (km) Predictor 

5. Direction from Fukushima Predictor 

6. Radiation dose (µSv/h) Output 

 

2.2. Training, Test, and Validation Sets 

The Venetian Blinds method was use to divide the data into training, test, and validation sets. The 103 

observations were grouped into nine sets of twelve observations each except the last set which has seven. 

The allocations of the groups of observations to the training, test, and validation sets are shown in Table 2. 

The training set is assigned 53.4% of the data while the test and validation sets have 24.3% each. 

 

Table 2. Training, Test, and Validation Datasets 

Observations Dataset 

1 – 12  Training 
13 – 24  Test 

25 – 36  Training 

37 – 48  Validation 

49 – 60  Training 

61 – 72  Test 

73 – 84  Training 

85 – 96  Validation 

97 – 103  Training 

International Journal of Applied Physics and Mathematics

151 Volume 6, Number 4, October 2016



  

2.3. Regression Models 

While there are complex computer models for estimating radiation dose, such as RESRAD [6], this study 

focused on basic regression models and how well they predict radiation dose from concentrations of 

released radioactive materials. The modeling techniques used in this investigation include simple linear 

regression, principal component regression (PCR), partial least square regression (PLS), ridge regression, 

and locally weighted regression (LWR). These models have different advantages in terms of their abilities to 

model the set of data [7]. 

2.4. Simple Linear Regression 

In simple linear regression model, using matrix notation [8], we have 

 

 Xwy                                           (1) 

 
where y is a vector (nx1) of the samples of the response variables, X is a matrix (nxp) of predictor variables 

of n observations (the rows) and p variables (the columns), w is the weight matrix (px1) that linearly 

combines the predictors to form the response, and  is a vector (nx1) of the predictor errors. The least 

square approach for solution solves for an optimum weight, w, with the assumptions that 1) the system is 

actually linear, 2) there are no errors in the measured values of the predictors, 3) all inputs are independent, 

4) all inputs are available, and 5) the errors are homoscedastic, independent and normally distributed. 

2.5. Principal Component Regression (PCR) 

In PCR, we first transform the data, through principal component analysis (PCA), into a new coordinate 

system with orthogonal axes that form the principal components (PC) or loadings p, which are then used in 

the regression process. See Fig. 1. The first PC contains the maximum variance of the dataset. The second PC 

contains the second most variance of the dataset, and so on. The concept and computational technique for 

PCR are discussed in more details by Fekedulegn et al. [8].The PCA involves the following steps: 

1) Collect and standardize the data.  

2) Find the covariance matrix for the processed data. 

3) Calculate the eigenvalues and eigenvectors of the covariance matrix. The eigenvectors are the PCs. 

 

 
Fig. 1. Block diagram illustrating principal component regression. In PCA, the data is transformed into a new 

coordinate system with new components that are used in the regression. 

 

The problems that are inherent in simple linear regression with collinear data are avoided in PCR. The 

PCR process uses a set of orthogonal, i.e. uncorrelated, inputs (the PC scores). Another advantage of the PCR 

is that the inputs in the model may be a subset of the PCs. Also, PCS could improve stability issues. When 
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choosing the PCs to use in the regression, we take PCs that contain most of the information either by 

selecting those that explain up to a certain percentage (about 80% to 90%) of the data or by finding the PCs 

with eigenvalues that are greater than 1. We choose PCs that are well correlated with the response variable. 

2.6. Partial Least Square (PLS) Regression 

Partial least square regression is a factor based technique used to perform multi-linear regression. The 

inputs and outputs are transformed into uncorrelated factors called latent variable. As illustrated in Fig. 2, a 

linear mapping b is performed between the score vectors t and u on the latent variables p (of the inputs) 

and q (of the outputs).  

The latent variables in the PLS algorithm give the maximal reduction in the covariance XTY of the data. 

The PLS algorithm decomposes the input and output data into latent variables p and q respectively. Cassel et 

al. [9] discussed the PLS algorithm and the data generation in more details. 

 

 
Fig. 2. Block diagram illustrating partial least square regression. A linear mapping b, is performed between 

the score vectors t and u on the latent variables p (of the inputs) and q (of the outputs). 

 

Like in PCA, the coefficient vector to transform the measured variables to a latent variable is called the 

loading. The values of an observation in the latent variable space form the score vector. In PCR, the PCA 

focuses on the variance of the input data while PLS focuses on the correlation matrix between the inputs 

and the outputs. PLS transforms the inputs to explain both the variance in the input space and the 

covariance of the inputs with the output. PCA is an unsupervised method (it is only concerned with the 

inputs) while PLS is a supervised algorithm (its transformation is governed by the output). 

2.7. Ridge Regression 

Ridge regression is used in ill-conditioned problems to ensure that models give a better representation of 

the underlying process instead of noise in the training data. It balances fidelity to the data and fidelity for a 

priori knowledge that the process should be smooth. The cost function of the initial ill-conditioned problem 

can be represented by 

 

 bbXbXbYXbYYQ TTTTTT 22                                 (2) 

 

where X is an nxp matrix of p predictors at each of n observations, Y is an nx1 vector of observed responses, 

b is vector of parameters (coefficients) and  is the ridge parameter. After simplification and differentiation 

we get the normal equations for regularized cost function: 

 

YXbIXX TT  )( 2                                      (3) 

 Inputs 

X 

b 

Y 

Outputs 

t, p u, q 
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2.8. Locally Weighted Regression (LWR) 

Locally weighted regression (LWR) is a non-parametric memory-based method of performing regression 

around a point using training data that are in the immediate region of that point [13]–[15]. The key features 

include 1) the storage of past data exemplars in memory for use in future queries, and 2) construction of a 

local model in the region of interest using appropriate method to determine the distance between the query 

and the training observation. The LWR algorithm has two steps for each new query: 

Step 1: Locate training observations (exemplars) in the vicinity of the query. 

Step 2: Perform a weighted regression with these nearby observations. 

In step 1, the exemplars are weighted with respect to their proximity to the query point. This process 

involves 1) quantifying the distance between a training observation and the query, and 2) converting the 

distance to a similarity metric. Some of the methods used for this step are nearest neighbor, weighted 

averaging, kernel regression, and locally weighted regression. An example of nearest neighbor method is the 

use of Euclidian distance d: 

 

 
j

jj qxqxd 2)(),(                                    (5) 

 

where q the query and x is the observation. 

In the weighted average, each training data point is weighted by the inverse of the distance to the query 

point: 
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In this analysis, we used Kernel regression. Kernel regression is the generalization of the weighted 

average method: 
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where the weight is given by a kernel operator K of the distance measure: 
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In (3), I is the identity matrix. Solving for b gives

YXIXXb TT 12 )(                                       (4)

This least square solution for the regularized cost function includes the cost for a small norm which 

makes the solution smooth. While there are several methods for the selection of the ridge regularization 

parameter, two methods are used here: the L-curve [10] and cross-validation [11], [12].



  

)(dKwi                                             (9) 

 

Finding the kernel bandwidth involves the following steps: 

Step1: Standardize the data.  

Step 2: Select exemplars from the training data.  

Step 3: Evaluate performance of a variety of bandwidths on the test data.  

Standardizing the data makes all variables equally important in the distance measure. We can bound the 

expected range of distances, so we can bound our kernel bandwidth. 

The weighted least squares regression equation can be solved for the optimal estimates of the regression 

coefficients. We also used the local linear regression in this analysis. Consider the following linear model: 

 

  Xy                                             (10) 

 

where y is a vector (column matrix nx 1) of samples of the response variable, X is a matrix (nxp) of predictor 

variables (the columns are the variables and the rows are the observations),  is the vector of regression 

coefficients (px1) that linearly combines the predictors to form the response, and  is a vector (nx1) of the 

prediction errors. In LWR, we minimize a weighted sum square error (SSE) where the weighting factor 

considers the distance between the training exemplar and the query observation. The optimization function 

around the query is 
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We can solve for the optimal estimates of the regression coefficients: 
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where Z = WX, v = WY, and W is a diagonal matrix with the diagonal equal to the square roots of the kernel 

function: 

 

)),(( qxdKw iii                                           (13) 

 

2.9. Qualitative Comparison of the Algorithms 

In the ordinary least square (OLS) model, if the input matrix has near linear dependent columns 

(co-linear inputs), the least square solution is not unique and is unstable under small perturbations of the 

data. Every time we run the model we always have a different solution. The solutions may be close but they 

are never the same. These problems could lead to large regression coefficients that in theory may be giving 

the same result, but in practice adds to noise in the data. We however would like to minimize the effect of 

noise as much as possible; that is, we want to get small regression coefficients. One may suggest using 

principal component regression (PCR) for dealing with ill-conditioned regression problems, but it is a hard 

threshold method. The principal components (PCs) associated with the eigenvalues smaller than a 

predetermined certain tolerance are dropped by making them equal to zero. While PCR is appropriate for 
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problems with a clear gap between two eigenvalues, ridge regression is more appropriate for problems 

without a clear gap. Unlike PCR, ridge regression dampens the minor components instead of completely 

removing them. 

The major advantage of LWR is that it does not require a particular function to model the entire data set, 

unlike ordinary least square (OLS) that requires modeling the whole input space with a parametric model. 

Thus, LWR is more flexible and models are constructed as needed. Due to its features, LWR is more ideal for 

modeling complex systems that require more than one function to model. One disadvantage of LWR over 

OLS is that it makes less efficient use of the entire data input space. Also, unlike OLS, LWR does not produce 

any reusable regression function. 

3. Results 

3.1. Data Statistics 

The data statistics is summarized in Table 3. The normal probability plots of the variables are shown in 

Fig. 3. The result to check for outliers is shown in Fig. 4. The significant outlier in the distance corresponds 

to Tokyo, which is a far distance from Fukushima compared to the other data collection points. 

 
Table 3. Analysis of the Data 

 
Variable Maximum Minimum Mean Median Variance 

Standard 

Deviation 

1. Location – monitoring point 7.0 1.0 3.8 5.0 3.6 1.9 

2. I-131 concentration in drinking water(Bq/kg) 110.0 0.2 9.4 4.6 260.8 16.1 

3. Cs-137 concentration in drinking water(Bq/kg) 18.0 0.1 1.9 0.6 7.9 2.8 

4. Distance from Fukushima (km) 250.0 110.0 187.2 206.0 1880.5 43.4 

5. Direction from Fukushima 5.0 1.0 2.8 2.0 00.8 0.9 

6. Radiation dose (µSv/h) 0.3 0.0 0.1 0.1 0.0 0.1 

 

 
Fig. 3. The normal probability plots of the variables. 

 

3.2. Simple Linear Regression 

The training data were checked to see if it includes the maximum and minimum values in each of the 
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predictor variables. Any missing maximum and minimum values were then included in the training dataset. 

This is to avoid extrapolating when data values are out of range. The correlation coefficients between the 

output variable and the predictor variables are shown in Table 4. The most correlated predictor variables, 

having correlation coefficients greater than |0.5|, are I-131 concentration in drinking water, Cs-137 

concentration in drinking water, and the distance of monitoring point from Fukushima. The positive 

correlation values for I-131 and Cs-137 means an increase in radiation dose is associated with increase in 

their concentrations in drinking water. The negative correlation value for distance(see Table 4) means that 

as the distance of the monitoring point from Fukushima increase, the radiation dose decreases. 

 

 
Fig. 4. Outliers. The significant outlier in the distance corresponds to Tokyo, which is a far distance from 

Fukushima compared to the other radiation data collection points. 

 
Table 4. Data and Variables 

 Variable Correlation Coefficient 

1. Location – monitoring point (Prefecture) 0.4645 

2. I-131 concentration in drinking water (Bq/kg) 0.6962 

3. Cs-137 concentration in drinking water (Bq/kg) 0.6215 

4. Distance from Fukushima (km) -0.5090 

5. Direction from Fukushima 0.1157 

6. Radiation dose (µSv/h) 1.0000 

 

The root mean square error (RMSE) for each predictor variable in predicting the response variable 

(gamma dose) is shown in Table 5, along with those of using 1) all input variables, 2) a combination of input 

variables, and 3) the square and log of input variables. The regression with I-131 concentration (variable 2) 

as input gave the best result with a RMSE of 0.0133. 

 
Table 5. RMSE for Each Variable in Predicting Gamma Dose 

Variable Correlation Coefficient 

All impute variables 0.0201 

Highly correlated variables (correlation  0.6) 0.0141 

Well correlated variables (correlation 0.5) 0.0196 
Variable 1 (Location – monitoring point) 0.0171 
Variable 2 (I-131 concentration in drinking water) 0.0133 
Variable 3 (Cs-137 concentration in drinking water) 0.0215 
Variable 4 (Distance from Fukushima) 0.0238 
Variable 5 (Direction from Fukushima) 0.0157 
Quadratic of all variables 0.0240 

Log of well correlated variables (correlation 0.5) 0.0160 
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The next best linear regression, with RMSE of 0.0141, is that with the input of the highly correlated 

variables (correlation  0.6) which are I-131 and Cs-137 concentrations in drinking water. The actual and 

predicted values for the best model (simple regression with one variable, the I-131 concentration) are 

shown in Fig. 5. 

 

 
Fig. 5. The best model to predict Gamma dose, which has the lowest RMSE (0.0133), is the simple regression 

with one variable, the I-131 concentration in drinking water. 

 

3.3. Principal Component Regression (PCR) 

Table 6 shows the eigenvalue (latent) of each PC and the cumulative percentage of data (information) 

explained. The results of the PCR for several combinations of PCs are summarized in Table 7. This shows 

that PCR3, with PCs 1, 2 and 3 has the smallest RMSE (0.0210). The model and the validation result are 

shown in Fig. 6. 

 
Table 6. Principal Components 

 Eigenvalues (Latent) Cumulative % Explained 

PC1 2.3379 46.7576 

PC2 1.4164 75.0863 

PC3 0.7166 89.4184 

PC4 0.3382 96.1833 

PC5 0.1908 100.0000 

 
Table 7. RMSEs of PCR for Several Combinations of PCs 

 PCs RMSE 

PCR1 1, 2, 3, 4 0.0213 

PCR2 1, 2 0.0242 

PCR3 1, 2, 3 0.0210 

PCR4 1, 2 0.0242 

PCR5 1, 2, 5 0.0226 
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(a) The model. 

 
(b) The validation results. 

Fig. 6. The PCR model with the smallest RMSE of 0.0210. 

 

3.4. Partial Least Square (PLS) Regression 

The cross validation method used in the PLS regression involved testing every possible latent variable. 

The variables were trained and the best latent variables were picked. The correlation coefficients of the PCs 

and LVs with the output are shown in Table 8. 

 
Table 8. Correlation Coefficients of the PCs and LVs with the Output 

PC/LV Number PC Correlation Coefficient LV Correlation Coefficient 

1 0.7157 0.7830 

2 0.3180 0.1653 

3 0.1385 0.1033 

4 0.0138 0.0736 

5 -0.1540 0.0037 

6 1.0000 1.0000 

 

The cumulative output variable explained, the PLS regression, and the training and test errors of the cross 

validation LVs are shown in Fig. 7. As expected, the training error is always decreasing. We can see from Fig. 
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7 that the test error continue to decrease up to LV3 and then continue to increase after that. Thus, the 

number of useful latent variables is 3. The RMSE for the PLS regression is 0.0856. 

 

 
(a) How much information is explained by successive LVs 

 
(b) PLS regression.      (c) Training and test errors of the LVs. 

Fig. 7. Results of the PLS model. 

 

3.5. Ridge Regression 

Prior to determining the regularization coefficient, the data were standardized. We test regularization 

parameters that cover the range of singular values. In this case, for convenience, we used ridge parameter  

in the range of 0.01 – 100. For the L-Curve method, the plot of the RMSE vs norm of b is shown in Fig. 8. 

From the solution norm vs mean square error plot, we can determine that the best solution appear around 

||b|| = 0.55. The regularization coefficients obtained with the L-curve method are: optimum  = 2.9151 and 

condition number = 7.2173.The RMSE of the L-Curve method is 0.0198.  

For the cross-validation method, the plots of root mean square error vs alpha for the training data and the 

test data are shown in Fig. 9a. Here, we have optimum  = 20.5651 (corresponding to the minimum root 

mean square error) and condition number = 1.2725. The RMSE of the CV method is 0.0145. The comparison 

of the L-Curve, CV and linear regression are shown in Fig. 9b. The L-Curve, CV and linear regression (using 

all variables) have RMSEs of 0.0198, 0.0145 and 0.0201 respectively. Thus, the CV method (having the 

smallest RMSE) performs best in ridge regression for this dataset. 
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Fig. 8. L-curve method: The solution norm vs mean square error plot shows that the best solution appear 

around ||b|| = 0.55. 

 

 
(a) Plots of root mean square error vs alpha.  (b) Ridge regressions: L-Curve, CV and linear. 

Fig. 9. Ridge regression results: L-Curve, CV and linear (using all variables) methods have RMSEs of 0.0198, 

0.0145 and 0.0201 respectively. 

 

 
Fig. 10. Locally weighted regression using kernel regression and linear regression. 

 

3.6. Locally Weighted Regression 

The results of the locally weighted regression using kernel regression and linear regression are shown in 
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Fig. 10. The two locally weighted regression methods investigated are kernel and linear techniques. A visual 

observation of Fig. 10 shows that the shape of the predicted dose by the locally weighted linear regression 

resembles that of the actual gamma dose when compared to the prediction by locally weighted kernel 

regression. The RMSE for the local kernel regression is 0.0993 and that for the local linear regression is 

0.0892. This implies that the local linear weighted method performs better than the kernel method for 

predicting radiation dose from the set of predictor variables. 

 

Table 9. Comparison of the Regression Models 

Model RMSE 

Linear Regression: One variable (I-131) 0.0133 

Linear Regression: Two variables (I-131 and Cs-137) 0.0141 

Linear Regression: All variables 0.0201 

Principal Component Regression (PCR) 0.0210 

Partial Least Square (PLS) Regression 0.0856 

Ridge Regression: L-Curve 0.0198 

Ridge Regression: Cross-validation 0.0145 

Locally Weighted Regression: Kernel 0.0993 

Locally Weighted Regression: Linear 0.0892 

 

4. Conclusion 

The performance summary of all the regression methods investigated are shown by the RMSEs listed in 

Table 9. For the set of data investigated in this study, the linear regression model with one variable (I-131 

concentration in drinking water)was found to be the best with a root mean square error of 0.0133. Adding 

the Cs-137 concentration to the linear regression gave a RMSE of 0.0141. The Cs-137 concentration could 

have an added value to the linear regression model, and it increased the RMSE only by 0.0008. For the other 

models, we have from best to worst as follow: ridge regression, principal component regression, partial 

least square regression, and locally weighted regression. In ridge regression, the cross-validation method 

performed better that the L-curve. In locally weighted regression, the locally weighted linear method 

performed better than the kernel technique. 

Our analysis has shown the limitations of these regression techniques in predicting the radiation dose 

from I-131and Cs-137 concentrations in drinking water, radiation monitoring locations, and distance and 

direction of monitoring points from the accident location. The use of a more complex model, such as neural 

network, could give a better prediction. 
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