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Abstract: In this paper, we proposed an advanced numerical model in solving the Fredholm integral 

equations of the first kind, by using Sinc basis functions. This method has been shown to be a powerful 

numerical solution for finding accurate solutions. So, in this paper, some properties of the Sinc-collocation 

method are used to reduce integral equation of the first kind to some algebraic equations. Numerical results 

are included to verify the accuracy of this method. 2010 Mathematics Subject Classification: 45B05; 65R20. 
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1. Introduction 

The Integral equations play an important role in many fields of science and engineering. The most useful 

integral equations are Fredholm equation. This equations have been used in many fields [1], such as control, 

economics, electrical engineering, medicine, etc. In recent years, many diferent orthonormal basis functions, 

such as Fourier functions ,wavelets [2], sinc functions [3], [4], etc have been used to estimate the solution of 

these integral equations. However, the most attractive one among them especially for solving linear and 

nonlinear integral equations may be the sinc functions as basis [5], [6]. Sinc functions were used for solving 

integral equations which they produced some good approximations [7],[8]. 

In some papers such as integral equation of first kind (FK1) have been discussed by some authors, but in 

these papers the method of regularization is not mentioned. In the present article, we are concerned the 

application of sinc-collocations method (SC) to find the approximate solution of Fredholm integral equation 

of first kind: 

 

( , ) ( ) = ( ), < < ,

b

a

k x s s ds f x a x b                               (1) 

 

where ),( sxk , )(xf are given functions and )(s is an unknown function to be determined. 

This type of equations have seen in many science and engineering fields, and in many cases, we can not 

solve this equation analytically [9], [10]. There are several advantages to using approximations with sinc 

functions as basis. Because of their rapid convergence, Sinc numerical methods do not suffer from the 

common instability problems which have been observed in other numerical methods [11]-[13]. 
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This paper is organized as follows. In Section 2, we introduce the cardinal function of sinc method. 

Section 3 (SC) method are obtained by means of the Sinc approximation. In Section 4, we discuss the 

convergence of numerical method applied for (1) . In Section 5, numerical results will be given to examine 

the efficient of the proposed methods. Finally in Section 6 we conclude this paper. 

2. Sinc Function and Basic Definition 
 

2.1. Sinc Interpolation 
 

The Sinc function is defined on the whole real line by [14]  
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Now, for 0>h and integer k , we define kth Sinc function with step size h by  

 

sin( ( ) / )
( , )( ) = .

( ) /

x kh h
S k h x

x kh h







  
 

2.2. Sinc Approximation on Real Line 

  is approximated by using the finite number of terms in (2). For positive integer N , we defined  

 

=

( ) ( ) ( , )( ).
N

k N

x kh S k h x 


                                 (3) 

 

For purpose of explanation of the procedure, we consider the following definitions in [8]. 
 

2.2.1. Definition 

Let D  be a simply-connected domain in the complex plane having boundary D and )(1

dDH denote 

the family of all functions F  that are analytic in dD , such that dD defined by  

 

= { : ( ) < },IdD z C z dm
 

 

such that for 1<<0  , dD  is defined by  

 

1
( ) = { : ( ) < (1 ), ( ) < },IdD z C z d Re zm 


 

 
 

then  

0

( , ) = | ( ) | < .limd
D

d

N F D F z dz
 

 
 

 


 

2.3. Sinc Approximation on Interval [ , ]a b   
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Let )(z  denote a conformal map which maps the simply connected domain D with boundary D  

onto a strip region dD So that on ],[= ba  are map to ),(   and we denote aa =  and bb =  

then approximate solution (3) associated with the conditions [4]. 

 

( ) = ( ) = 0.lim lim
x x

a b

x x
 

 
 

 
 

Let 
1=   denote the inverse map, now on a finite interval ],[ ba  sinc approximation is defined as 

follow:  

 

( ) = ln( ).
x a

x
b x




  
 

which carries the eye-shaped complex domain  

 

= : arg( ) < ,
2

z a
z x iy d

b z
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onto the infinite strip  

 

= { = : < < },
2

dD i d

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On finite interval ],[ ba  the basis functions are given by  
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now at points khxk =  Sinc function for interpolationx is followed by 
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So, )(),( xhkS   shows Kronecker delta behavior on the grid points  

= ( ) = ,
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and also approximation with sinc function for )(x  over interval ],[ ba  are  
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3. Sinc-Collocation Method 
 

3.1. The Method of Regularization 
 

Phillips (1962) develops a method for solving FKl by using the quadrature rule together with a 

regularization technique; later Twomey (1963) improved this method. It was Tikhonov (1963) who initially 

put forward a generalized theory. Assuming that a solution exists to the linear ill-posed problem FK1 (1) 

which can always be written in the generic form fK = . If in (1) both 2)(),( Lxfx  , and the kernel 

),( sxk  is square-integrable, symmetric, and positive-definite, under these conditions we modify (1) and 

consider  

 

( , ) ( ) ( ) = ( ) ,
b

a
k x s s ds x f x                               (5) 

 
where   is known as the regularization parameter and (5) is an Fredholm integral equation of second 

kind (FK2) whose solution, denoted by )(x , can be found. These equations may be written as 

fIK =)(   . 

Substituting )(x  for )(x  in (1), we get  

 

( , ) ( ) = ( ).
b

a
k x s s ds f x                                   (6) 

 

If   )()( xfxf  where   is a preassigned quantity representing the tolerance of error, then the 

function )(x  is considered an acceptable approximate solution to (1).  

3.2. Approximation with Sinc Function 
 

In this section, we introduce the numerical solution for solving FK1 and to evaluate the unknown 

coefficients the properties of the Sinc function are used [12]-[13]. then we have (1). With (SC) method we 

can approximate unknown coefficients in expansion. If we let N  be a positive integer, then )(x  which 

defined over the interval ],[ ba , is approximated by using the sinc function as:  

 

1

=

( ) = ( ( ) ( , ) ( )).
N

k N

x kh S k h s   



                                (7) 

 
We rewrite the (1) By substituting Sinc approximation expansion (7) of unknown function )(s , we 

have:  

1 1

= =

( , ) ( ( ) ( , ) ( )) ( ( ) ( , ) ( )) = ( ).

b N N

k N k Na

k x s kh S k h s ds kh S k h x f x       

 

 
 

 
   

 

now to use Collocation method methods we need to find residual function as follow  

1 1

= =

( ) = ( , ) ( ( ) ( , ) ( )) ( ( ) ( , ) ( )) ( ).

b N N

N i

k N k Na

r x k x s kh S k h s ds kh S k h x f x       

 

 
  

 
   
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By collocating residual function at n = 2N + 1 distinct collocation points in interval ],[ ba  for 

0=)( iN xr  we have:  

 

.1,1,...,,=;
1

=)(= 1 NNNNi
e

bea
ihx

ih

ih

i 



 

 
now integral equation converted to algebric system. also for evaluating matrix elements of this system we 

have  

 

=

( , ) ( , ) ( )

( , ) ( , ) ( ) .
( )

b

i jb N
a

i
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where  

 

1= ( ) = ; = , 1,..., 1, .
1

jh

j jh

a be
s jh j N N N N

e
  

   
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4. Convergence Analysis 
 

The convergence of the (SC) methods which are introduced in the previous sections is discussed in this 

section.  

4.1. Theorem1 

Let  ,   and d  as positive constants, that   

)(1. 1

dDH
 

2.  decays exponentially on the real line by  

 

( ) exp( ), ,x x x       

 

then we have  

 

( ) 1/2

=

sup ( ) ( ) ( , )( ) ( ) ,
N

d N

k N

x kh S k h x C Ne    



 
 

 

for some constant C  and step size h  is taken as  

 

1/2

= .
d

h
N





 
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   

 
proof [14].  
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4.2. Theorem2 

Let N  be a positive integer, and let h  be selected by the  

 

1/2

= .
d

h
N





 
 
   

 

Then if transformation function )(1  
 satisfies assumptions 1 and 2  in Theorem 1  with some 

,  and d  we have  

 

1 1/2

< < =

( ) ( ( )) ( , ) ( ) ( exp ( )) .sup
N

a x b k N

x kh S k h x C N d N     



   
 

 
Proof [12]. 

The convergence rate of the method is ))(exp( NcO   with some c  . For the solution of fk =  

choose the regularization parameter so that the size of the residual fkr  =)(  is the same as the 

error level in the data and the vector   of minimum norm satisfying the requirement  

 

,k f  
 

 

where P  is the projector of Hilbert space  

 

( ) = ( ) ( ) = = = = ,P k I PfP P k Pfk f k f Pf Pk                     

 

if 0   given:  

 

0

( ) = ,lim r Pf Pk 


  


 

 
 

and  

( ) = .limr f


 



 

 

5. Numerical Examples 

In order to discuss the performance of the (SC) as done on Matlab. Our achieved results are tabulated in 

Tables 1-3 , in these tables the error on the Sinc grid points is defined as  

 

( ) = max ( ) ( ) .j je N s P s 
 

 
The solutions of the given examples are obtained for regular parametr 0.01=  and 0.001=  and 

for different values of N . 

Example 1. Consider the Fredholm first kind integral equation  
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1 3
1

2 2 2 32 2

0

1
( ) ( ) = [(1 ) ],

3
x s s ds x x  

 
 

with exact solution xx =)( . The solution for )(x  is obtained by the methods in Section 3 . The 

approximate solution is evaluated for 0.01=  , and 0.001=  and different values of N . The 

maximum absolute errors in numerical solution of Example 1 are tabulated in Table 1. These results are 

compared by the method which has been prepared in [8]. 

 
Table 1. Error values for Example 1 

N  0.01=  0.001=  method of [8] 

5 

10 

15 

20 

25 

30 

35 

2103.9   
3107.5   
3102.0   
4103.2   
5104.4   
6108.7   
6102.3    

2101.4   
3103.8   
4107.6   
5109.3   
5102.1   
6103.9   
7107.8    

4103.8   
4101.5   
5108.4   
5105.8 
5104.7   
5104.3   
5103.1    

 
Table 2. Error values for Example 2 

N  0.01=  0.001=  method of [15] 

2 

3 

4 

5 

6 

7 

8 

2104.1   
2105.3   
3106.4   
4105.6   
4104.6   
5103.1   
5103.7   

2102.1   
3106.3   
3103.1   
4102.7   
4102.2   
5101.4   
5101.9   

1105.1   
2105.8   
1108.4   
3109.6   
4103.3   
4101.7   
4104.7   

 
Table 3. Error values for Example 3  

N  0.01=  0.001=  method of [7] 

2 

3 

4 

5 

6 

7 

8 

2102.5   
3105.4   
3101.4   
4102.8   
5103.2   
6104.3   
7108.5   

3103.4   
4106.2   
4104.9   
5104.7   
6108.7   
6101.1   
7104.2   

9102.0   
5105.3   
4101.3   
4102.2   
4103.0   
4105.9   
4103.8   

 

Example 2. Consider the Fk1 integral equation  

 

 
1

1

0

e 1
e = ,

1

x
xs s ds

x

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tabulated in Table 2. These results are compared by the method which has been prepared in [15].



  

Example 3. Consider the Fk1 integral equation with exact solution xx =)( .  

 

   
1

20
sin = .

sinx xcosx
xs s ds

x





 
 

The maximum absolute errors in numerical solution of Example 3 are tabulated in Table 3. these results 

are compared by the method which has been prepared in [7]. 

6. Conclusion 
 

This paper has introduced Sinc-collocation method for fredholm integral equations of first kind. By use of 

Sinc basis and Sinc grid points in collocation method we convert these kind of integral equations to a 

system of algebraic equations. Our numerical experiments shows the accuracy and reliability of the 

proposed method. Tables 31  shows that as N increases the errors are decreased more rapidly, then for 

obtaining the better results using large number N  is recommended. 
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