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Abstract: In this paper, the efficient methods based on the Sinc approximation with the single exponential 

(SE) and double exponential (DE) transformations are presented to solve nonlinear Fredholm-Volterra 

integral equations with weakly singular kernel. Sinc approximation has considerable advantages. Some of 

them are the exponential convergence of an approximate solution and simply implementation, even in the 

presence of singularities. Properties of the SE-Sinc and DE-Sinc methods are utilized to reduce the problem 

to a set of algebraic equations. Finally, we give some numerical results that confirm efficiency and accuracy 

of the numerical schemes. 
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1. Introduction 

Many problems of engineering, contact problems in the theory of elasticity [1]-[3], mathematical physics 

and chemical reactions, such as heat conduction and crystal growth lead to singular integral equations. In 

this paper, we consider the weakly singular Fredholm-Volterra integral equations (F-VIEs) of the second 

kind of the form  

 

𝑥 𝑡 = 𝑔 𝑡 +  
𝑘1(𝑡,𝑠,𝑥(𝑠))

|𝑡−𝑠|1−𝛼

𝑏

𝑎
𝑑𝑠 +  

𝑘2(𝑡,𝑠,𝑥(𝑠))

(𝑡−𝑠)1−𝛼

𝑡

𝑎
𝑑𝑠,       𝑎 ≤ 𝑡 ≤ 𝑏,                  (1) 

 
where 0 < 𝛼 < 1. 𝑘1, 𝑘2 and 𝑔 are given functions, and 𝑥 is an unknown function to be determined. 

There is an increasing demand for studying singular integral equations and these problems of course 

cannot be solved explicitly. Therefore, it is important to find their approximate solutions by using some 

numerical methods. The product Nystro m method has been devised to find numerical solution of singular 

F-VIEs in [4]. In [5], Fayazzadeh and Lotfi proposed collocation method to solve weakly singular F-VIEs. 

A great deal of interest has been focused on applications of the Sinc methods. These methods have 

considerable advantages over classical methods that use polynomials as bases. For example, in the presence 

of singularities, these methods give an exponential convergence and accuracy than polynomial methods. 

Therefore, this paper describes procedures for solving nonlinear weakly singular F-VIE based on sinc 

approximation. The Sinc methods have been studied by many authors, e.g., Saadatmandi and Razzaghi [6], 

Okayama et al. [7], [8], Rashidinia [9], [10] and Maleknejad [10], [11]. 
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 The paper is organized as follows. In Section 2, we review some basic facts about the sinc approximation. 

Section 3 is devoted to solve (1) by using Sinc-collocation methods. As a result, a set of algebraic equations 

is achieved and the solution of the considered problem is introduced. In Section 4, we report our numerical 

findings and demonstrate validity of the proposed schemes by considering numerical examples. 

2. Sinc Function and Basic Definition 

In this section, we will review Sinc function properties. These are discussed thoroughly in [12], [13]. 

Originally, Sinc approximation for a function 𝑓 is expressed as 

 

   𝑓(𝑥) ≈  𝑓 𝑗𝑕 𝑆 𝑗, 𝑕  𝑥 ,      𝑥 ∈ ℝ.𝑁
𝑗=−𝑁                        (2) 

 
To construct approximation on the interval 𝐿 = (𝑎, 𝑏), which are used in (1), we consider the 𝑡𝑎𝑛𝑕 

transformation (and its inverse) 

 

∅𝑆𝐸 𝑥 =
𝑏 − 𝑎

2
tanh  

𝑥

2
 +

𝑏 + 𝑎

2
, 

 

{∅𝑆𝐸}
−1

 𝑡 = log  
𝑡 − 𝑎

𝑏 − 𝑡
 . 

 

Interpolation formula for 𝑓(𝑡) over (𝑎, 𝑏) is 

 

𝑓(𝑡) ≈  𝑓  ∅𝑆𝐸 𝑗𝑕  𝑆(𝑗, 𝑕)( ∅𝑆𝐸 
−1

(𝑡)).

𝑁

𝑗 =−𝑁

 

 

Sinc approximation can be applied to definite integration based on the function approximation described 

above; it is called the Sinc quadrature. Where 

 

 𝑓(𝑠)𝑑𝑠
𝑏

𝑎

≈ 𝑕  𝑓  ∅𝑆𝐸 𝑗𝑕   ∅𝑆𝐸 
′
(𝑗𝑕).

𝑛

𝑗=−𝑚

 

 

The following theorems give us an error bound for the SE-Sinc approximation and quadrature. 

Theorem 1 ([12]): Let 𝑓 ∈  𝐿𝛼 (𝜙𝑆𝐸(𝐷𝑑)) for 𝑑 with 0 <  𝑑 <  𝜋. Let also 𝑁 be a positive integer, and 

𝑕 be given by the formula 

 

𝑕 =  
𝜋𝑑

𝛼𝑁
                                          (3) 

 

Then there exists a constant 𝐶 independent of 𝑁, such that 

 

 𝑓 𝑡 −  𝑓 ∅𝑆𝐸 𝑗𝑕  𝑆 𝑗, 𝑕   ∅𝑆𝐸 −1 𝑡  𝑁
𝑗 =−𝑁  ≤ 𝐶 𝑁 exp − 𝜋𝑑𝛼𝑁 .           (4) 

 

Theorem 2 ([12]): Let (𝑓𝑄)  ∈  𝐿𝛼 (𝜙𝑆𝐸(𝐷𝑑)) for 𝑑 with 0 <  𝑑 <  𝜋. Suppose that 𝑁 is a positive 

integer and 𝑕 is selected by (3). Then there exists a constant 𝐶 independent of 𝑁, such that 
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  𝑓 𝑠 𝑑𝑠
𝑏

𝑎
− 𝑕 𝑓 ∅𝑆𝐸 𝑗𝑕   ∅𝑆𝐸 ′ 𝑗𝑕 𝑛

𝑗=−𝑚  ≤ C exp − 𝜋𝑑𝛼𝑁 .                 (5) 

 

Also, double exponential transformation can be used 

 

∅𝐷𝐸 𝑥 =
𝑏 − 𝑎

2
tanh  

𝜋

2
sinh⁡(𝑥) +

𝑏 + 𝑎

2
, 

 

{∅𝐷𝐸}
−1

 𝑡 = log  
1

𝜋
log  

𝑡 − 𝑎

𝑏 − 𝑡
 +  1 +  

1

𝜋
log  

𝑡 − 𝑎

𝑏 − 𝑡
  

2

 . 

 

The following theorems describe the accuracy of DE-Sinc method. 

        

  

 

𝑕 =
log ⁡(2𝑑𝑁/𝛼)

𝑁
                                           (6) 

 

Then there exists a constant 𝐶 which is independent of 𝑁, such that 

 

 𝑓 𝑡 −  𝑓 ∅𝐷𝐸 𝑗𝑕  𝑆 𝑗, 𝑕   ∅𝐷𝐸 −1 𝑡  𝑁
𝑗 =−𝑁  ≤ 𝐶 exp  

−𝜋𝑑𝑁

log  
2𝑑𝑁

𝛼
 
 .                  (7) 

 

Such a function is required to be zero at the endpoints, 𝑡 =  𝑎 and 𝑡 =  𝑏, which seems to be an 

impractical assumption. In order to handle more general cases, we introduce the translated function 

 

Γ 𝑓  𝑡 = 𝑓 𝑡 −   
𝑏−𝑡

𝑏−𝑎
 𝑓 𝑎 +  

𝑡−𝑎

𝑏−𝑎
 𝑓 𝑏  .                            (8) 

 

Theorem 4 ([8]): Assume that (𝑓𝑄)  ∈  𝐿𝛼 (∅𝐷𝐸(𝐷𝑑)) for 𝑑 with 0 <  𝑑 <
𝜋

2
. Suppose that 𝑁 is a 

positive integer and 𝑕 is selected by (6). Then there exists a constant 𝐶 independent of 𝑁, such that 

 

  𝑓 𝑠 𝑑𝑠
𝑏

𝑎
− 𝑕 𝑓 ∅𝐷𝐸 𝑗𝑕   ∅𝐷𝐸 ′ 𝑗𝑕 𝑛

𝑗=−𝑚  ≤ C exp  
−2𝜋𝑑𝑁

log ⁡(
2𝑑𝑁

𝛼
)
 .                      (9) 

 

3. Sinc-Collocation Methods 

In this Section, illustrate how the Sinc methods may be used to replace (𝟏) by a system of nonlinear 

algebraic equations. Equation (𝟏) can be written in the operator form 𝒙 =  𝜿[𝒙] +  𝒈 where 

 

𝜅 𝑥  𝑡 =  
𝑘1(𝑡, 𝑠, 𝑥(𝑠))

|𝑡 − 𝑠|1−𝛼

𝑏

𝑎

𝑑𝑠 +  
𝑘2(𝑡, 𝑠, 𝑥(𝑠))

(𝑡 − 𝑠)1−𝛼

𝑡

𝑎

𝑑𝑠. 

 

3.1. SE-Sinc Scheme 

A Sinc approximation 𝑥𝑁
𝑆𝐸  to the solution 𝑥 ∈  𝑀𝛼(𝜙𝑆𝐸(𝐷𝑑)) of above equation is described in this part. 
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Theorem 3 ([14]): Let 𝑓 ∈ 𝐿𝛼(𝜙𝐷𝐸(𝐷𝑑)) for 𝑑 with 0 < 𝑑 <
𝜋

2
. Let also 𝑁 be a positive integer, and 

𝑕 be given by the formula



  

The function can be accurately approximated as 

 

Γ[𝑥](𝑡) ≈  Γ 𝑥  𝜙𝑆𝐸 𝑗𝑕  𝑆 𝑗, 𝑕   𝜙𝑆𝐸 −1 𝑡  .

𝑁

𝑗=−𝑁

 

 

So, the approximate solution 𝑥 is considered that has the form 

 

𝑃𝑁
𝑆𝐸 𝑥  𝑡 = 𝑥 𝑎 

𝑏−𝑡

𝑏−𝑎
+  Γ[𝑥](𝜙𝑆𝐸(𝑗𝑕))𝑆(𝑗, 𝑕)({𝜙𝑆𝐸}−1 𝑡 )𝑁

𝑗 =−𝑁 + 𝑥 𝑏 
𝑡−𝑎

𝑏−𝑎
,           (10) 

 
where 𝑕 is given by (3). Now, we can obtain the convergence theorem corresponding to Theorem 1. 

Theorem 5: Let 𝑓 ∈  𝑀𝛼(𝜙𝑆𝐸(𝐷𝑑)) for d with 0 <  𝑑 <  𝜋. Let also 𝑁 be a positive integer, and 𝑕 be 

given by (3). Then there exists a constant 𝐶𝑆𝐸  independent of 𝑁, such that 
 

max𝑎≤𝑡≤𝑏 𝑓 𝑡 − 𝑃𝑁
𝑆𝐸 𝑓  ≤ 𝐶𝑆𝐸 𝑁 exp − 𝜋𝑑𝛼𝑁 .                      (11) 

 
There are (2𝑁 +  3) unknown coefficients on the right-hand side of (10) that should be determined. 

So, the approximate solution 𝑥𝑁
𝑆𝐸  has a form like 

 

𝑥𝑁
𝑆𝐸 = 𝑐−𝑁−1

𝑏−𝑡

𝑏−𝑎
+  𝑐𝑁𝑆(𝑗, 𝑕)( 𝜙𝑆𝐸 

−1
(𝑡))𝑁

𝑗=−𝑁 + 𝑐𝑁+1
𝑡−𝑎

𝑏−𝑎
,                     (12) 

 

In order to determine unknowns, we apply the collocation method. Summarily, by setting 𝑡 = 𝑡𝑗
𝑆𝐸  where 

 

𝑡𝑗
𝑆𝐸 =  

𝑎                   𝑗 = −𝑁 − 1,

𝜙𝑆𝐸 𝑗𝑕              𝑗 = −𝑁, … , 𝑁,          
𝑏                      𝑗 = 𝑁 + 1,

 
 

 

in (12) and then by substituting 𝑥𝑁
𝑆𝐸  into (1) and applying the collocation method to it, we obtain the 

following system of nonlinear equations with (2𝑁 +  3) unknowns 𝑐𝑗 , 𝑗 =  −𝑁 −  1, . . . , 𝑁 +  1: 

𝑥𝑁
𝑆𝐸 𝑡𝑖

𝑆𝐸 −  𝑘1  𝑡𝑖
𝑆𝐸 , 𝑠, 𝑥𝑁

𝑆𝐸 𝑠   𝑡𝑖
𝑆𝐸 − 𝑠 

𝛼−1
𝑑𝑠 −  𝑘2  𝑡𝑖

𝑆𝐸 , 𝑠, 𝑥𝑁
𝑆𝐸 𝑠   𝑡𝑖

𝑆𝐸 − 𝑠 
𝛼−1

𝑑𝑠
𝑡

𝑎

𝑏

𝑎

= 

𝑔 𝑡𝑖
𝑆𝐸 .                                                     (13) 

Since the SE-Sinc quadrature does not allow any singularity in the target interval, we split the first 

integral into two parts at 𝑠 =  𝑡𝑗
𝑆𝐸 . In order to approximate (13) we employ (5) and then 

𝑔 𝑡𝑖
𝑆𝐸 = 𝑥𝑁

𝑆𝐸 𝑡𝑖
𝑆𝐸 − 𝜅𝑁

𝑆𝐸[𝑥𝑁
𝑆𝐸] 𝑡𝑖

𝑆𝐸 ,                              (14) 

 

where 𝜅𝑁
𝑆𝐸  is defined by 

𝜅𝑁
𝑆𝐸[𝑥] 𝑡 = 𝑕   𝑡 − 𝜙

𝑎,𝑡
𝑆𝐸 𝑗𝑕  

𝛼−1

𝑘1  𝑡, 𝜙
𝑎,𝑡
𝑆𝐸 𝑗𝑕 , 𝑥  𝜙

𝑎,𝑡
𝑆𝐸 𝑗𝑕    𝜙𝑎,𝑡

𝑆𝐸 
′
 𝑗𝑕 

𝑁

𝑗=−𝑀

+ 𝑕   𝜙𝑡,𝑏
𝑆𝐸 𝑗𝑕 − 𝑡 

𝛼−1
𝑘1  𝑡, 𝜙

𝑡,𝑏
𝑆𝐸 𝑗𝑕 , 𝑥  𝜙

𝑡,𝑏
𝑆𝐸 𝑗𝑕    𝜙𝑡,𝑏

𝑆𝐸 
′
 𝑗𝑕 

𝑀

𝑗=−𝑁

+ 𝑕   𝑡 − 𝜙
𝑎,𝑡
𝑆𝐸 𝑗𝑕  

𝛼−1

𝑘2  𝑡, 𝜙
𝑎,𝑡
𝑆𝐸 𝑗𝑕 , 𝑥  𝜙

𝑎,𝑡
𝑆𝐸 𝑗𝑕    𝜙𝑎,𝑡

𝑆𝐸 
′
 𝑗𝑕 

𝑁

𝑗=−𝑀
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It should be pointed out that 𝑀 is set by 𝑀 =  [𝛼𝑁]. The above nonlinear system consists of 2𝑁 +  3 

equations with 2𝑁 +  3 unknown {𝑐𝑗 }−𝑁−1
𝑁+1 . This system can be rewritten as ℱ𝑆𝐸 𝑥𝑁

𝑆𝐸 = 0, where 

ℱ𝑆𝐸 : ℝ2𝑁+3 ⟶ ℝ2𝑁+3 with ℱ𝑆𝐸 𝑥𝑁
𝑆𝐸 = 𝑥𝑁

𝑆𝐸 − 𝜅𝑁
𝑆𝐸[𝑥𝑁

𝑆𝐸] − 𝑔. By solving this nonlinear system by 
Newton’s method, we can obtain the approximate solution 𝑥𝑁

𝑆𝐸 . 

3.2. DE-Sinc Scheme 

In this case, we assume that the solution of (1) belongs to 𝑀𝛼 (𝜙𝐷𝐸(𝐷𝑑)). Similar to the SE-Sinc method, 

by Theorem 3, the following theorem can be inferred. 

Theorem 6: Let 𝑓 ∈  𝑀𝛼(𝜙𝐷𝐸(𝐷𝑑)) for 𝑑 with 0 <  𝑑 <
𝜋

2
 . Let also 𝑁 be a positive integer, and 𝑕 

be given by (6). Then there exists a constant 𝐶𝐷𝐸  which is independent of 𝑁, such that 

 

max𝑎≤𝑡≤𝑏 𝑓 𝑡 − 𝑃𝑁
𝐷𝐸 𝑓  ≤ 𝐶𝐷𝐸 exp  

−𝜋𝑑𝑁

log 
2𝑑𝑁

𝛼
 
 .                           (15) 

 

To apply the collocation method, set 𝑡 =  𝑡𝑗
𝐷𝐸 , 𝑗 =  −𝑁 −  1, . . . , 𝑁 +  1 are Sinc grid points 

 

𝑡𝑗
𝐷𝐸 =  

𝑎                   𝑗 = −𝑁 − 1,

𝜙𝐷𝐸 𝑗𝑕              𝑗 = −𝑁, … , 𝑁,          
𝑏                      𝑗 = 𝑁 + 1,

 
 

 

It should be noted that in DE case 𝑀 is set by 𝑀 =  𝑁 + [
𝑙𝑜𝑔(𝛼)

𝑕
]. 

4. Numerical Examples 

In order to illustrate the performance of the Sinc methods in solving weakly singular F-VIE and justify the 

accuracy and efficiency of the presented methods, we consider the following examples.  

Example 1: Consider the following weakly singular F-VIE  

 

𝑥 𝑡 =  𝑡 −
𝜋𝑡3/2

2 𝑡
−

2

3
  1 − 𝑡 + 2𝑡 1 − 𝑡 + 2𝑡

3

2 +  
 𝑠 𝑠  

2

 𝑡−𝑠 
1
2

1

0
𝑑𝑠 +  

𝑥(𝑠)

(𝑡−𝑠)1/2 𝑑𝑠,      𝑡𝜖 0,1 .  
𝑡

0
       (16) 

 

 

 
Fig. 1. The SE and DE-Sinc results for example 1. 

 

Example 2: Consider the problem 

SE SE

SE
SE SE SE

SE
SE SE SE SE SE SE SE SE SE SE SE

DE DE

DE

DE
DE

DE

DE

DE
DE

DE

DE
DE

DE
DE

DE

DE

DE

DE

0 5 10 15 20 25 30 35

10  12

10  10

10  8

10  6

10  4

0.01

1

N

e m
ax
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where the exact solution is 𝑥 𝑡 =  𝑡 . Fig. 1 show maximum absolute errors corresponding to SE and

DE-Sins methods. It shows that DE-Sinc method is more accurate than SE-Sinc method.



  

𝑥 𝑡 = 𝑔 𝑡 +  
 𝑠 𝑠  

2

 𝑡−𝑠 
1
4

1

0
𝑑𝑠 +  

sin ⁡(𝑥 𝑠 )

(𝑡−𝑠)1/4
𝑑𝑠,      𝑡𝜖 0,1 .

𝑡

0
                   (17) 

where 𝑔(𝑡) is obtained so that 𝑥 𝑡 =  𝑡 is the solution. We list the absolute errors for several selected 

values of 𝑁 for SE and DE-Sinc methods in Tables 1 and 2. Tables show that the convergence rate of the 

DE-Sinc method is much faster than the SE-Sinc scheme. Moreover, Fig. 2 shows maximum absolute errors 

for each method. This figure shows that DE-Sinc method is more accurate than SE-Sinc method. 

 
Table 1. Absolute Errors of the SE-Sinc Method for Example 2 

t N=5 N=15 N=25 N=35 

0.1 1.66E-3 4.86E-6 4.73E-7 1.91E-8 

0.3 6.94E-4 1.07E-5 9.22E-7 6.81E-8 

0.5 5.16E-4 1.07E-5 6.08E-7 5.79E-8 

0.7 2.49E-3 1.91E-5 4.74E-7 3.25E-8 

0.9 7.15E-4 1.70E-5 7.19E-7 3.77E-8 

 
Table 2. Absolute Errors of the DE-Sinc Method for Example 2 

t N=5 N=15 N=25 N=35 

0.1 5.81E-3 2.69E-7 7.20E-11 2.79E-14 

0.3 7.83E-3 4.38E-9 8.10E-11 1.09E-14 

0.5 3.58E-3 4.72E-8 8.22E-12 2.78E-15 

0.7 1.40E-2 7.24E-8 7.33E-11 1.41E-14 

0.9 1.15E-3 2.18E-7 6.55E-11 2.61E-14 

 

 
Fig. 2. The SE and DE-Sinc results for example 2. 
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