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Abstract: The nonlinear sine-Gordon equation is used to model many nonlinear phenomena. Numerical
simulation of the solution to the one-dimensional generalized sine-Gordon equation is considered here.
Two implicit three time-level difference schemes are developed, by using the exponential spline function
approximation. We consider both Dirichlet and Neumann boundary conditions. The resulting spline
difference schemes are analyzed for local truncation error, stability and convergence. It has been shown
that by suitably choosing the parameters, we can obtain two schemes of O(k®+k?h?+h?) and

O(k? +k?h? +h*). In the end, some numerical examples are provided to demonstrate the effectiveness of the

proposed schemes.

Key words: Exponential spline, finite difference, generalizedsine-gordon equation, dirichlet and neumann
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1. Introduction

This paper is devoted to the numerical computation of the one-dimensional time-dependent nonlinear
sine-Gordon equation. The initial-value problem of the one-dimensional generalized sine-Gordon equation
is given by the following equation:

u, +pou, =u, — f(x,t,u), xe(ab), t>t,, (1)
subjected to the initial conditions
u(X,t) =#(x), u(x,t,) =w(x), xela,b], (2)
and with following Dirichletboundary conditions:

u(@at)=g,(t), ulb,t)=g,(t), t=t,, (3)

where the functions g(x) and y(x) are wave modes or kinks and velocity, respectively. The parameter p

is the so-called dissipative term, which is assumed to be a real number with >0 [1], [2]. We shall assume

that@d(x), w(x), g,(t) and g,(t) are continuously differentiable up to order 2.

Klein-Gordon and sine-Gordon equations have applications in various research areas, such as differential
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geometry and relativistic field theory [3]-[9].

The numerical solutions to the nonlinear sine-Gordon equation have received considerable attention in
the literature (see [10-16]). Mohammadi [17]-[19] developed different spline schemes to find the numerical
solution of different type of partial differential equations.

In this paper we have developed a three time-level implicit method by using the exponential spline
function for solution of the nonlinear partial differential equation (1). The method involves some
parameters, and its order can be increased fromO(k®+k’h*+h?*) to O(k?+k’h*+h*) by an appropriate

choice of the parameters.

2. Proposition of the Method
The domain [a,b]x[0,T] is divided to a NxM mesh with the special step size h=(b—a)/nin X

direction and time step size K =T / m, respectively. Denote
Q. ={x =a+Inh,1=0,1,...,n}, Q, ={tj =t,+ jk,j=0,1...,m}. (4)

in which N and M are integers. The notation Ulj be a grid function on €, x€2, , which is used for
the difference approximation of u(lh, jk). A function S(X,t;) of class C?[a,b] which interpolates
U(x,t;) atthe mesh points(X;,t;), depends on a parameter 7, reduces to cubic spline S(X,t;),in [a,b]
as 7—0, is termed an exponential spline function. For each segment [X|:X|+1]' 1=0,1...,n=1the

function S(X,t;), can be defined in the following form
S(xt)=ay (t;)+b (t,)(x=x)+c/ (t;)e ) +d; (t;)e ™), (5)

where @, (tj) , by (tj) , C (tj) and d/ (tj) are unknown coefficients, 7 is a free parameter and

I =+/—1. We first develop the explicit expressions for the four coefficients in (5) in terms of Ulj, U|j+l,

M |j and M |j+1. We can determine the four unknown coefficients in (5) as
Ml -M/+7? (u|j+1 -/ )

. oM . MJ —e™M .
a,(tj)zu,‘+r—2',b,(tj)= he? 'Cl(tj)zrlz(ezei—m_llf'dl(tj):

eirh (M |J:,_1 _ eirh M Ij )

T2 (e2i1h _1)

The continuity of the first derivative of S(X,t;)at (X,t;)yields the following consistency relation:

u|j+1_2u|j +u|j-1 = h? (ﬂiMlj-l"'Z/Llej +}‘1M|j+1)a (6)
where

A =(0cscO-1)16, A, =@1-0cotd)/6?, O=rh, M/ =S"(x,t;) 1=0,1,..,n and j=0,1,..,m.

Similar to (6) for the (j+1)thand (j—1)th time levels we have
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U|j+i11 - 2u|jil + ulj—ill =h? (/11M |j_i11 +24,M |jil +4M |j+i11)- (7)

We develop an approximation for (1) in which the time derivative is replaced by following finite
difference approximation

g, =@ =20 +ui ™) 7k =u +O(K?), U =(u/"—ui™)/ 2k =uj +O(K?), (8)
and the space derivative by the non-polynomial spline function approximation
uxxlj :S"(thj):'vhj +O(h2)- 9)

To develop a new approximation for (1) the sine-Gordon equation (1) is then replaced by
(U =20) +ui ) 7k2 [+ [ p (Ul —ul ™) 1(2K) [+ £ = oM™ + (1-20)M/ + oM™, (10)

where 0<o <1, f!= f(Xl,tj,u,j) and 1=0,1,..,n, j>0.
The addition of (6) multiplied by (1—20c) to (7) multiplied by o gives

A(oM{T +1A-20)M ), + oM/ )+ 24, (oM + (1-20)M) + oM, ) +

(11)
A(oMif +@-20)M}, +oM/}) =87 (oul ™ + (L-20)u] + oul™ )/ h?,
where O, is the central difference operator with respectto X so that 5)(2U|j = Ulj_l —2U|j +U|j+1.
After the elimination of the M s in (11) by means of (10) we have
(ﬂ.l (1—(kp/2))—0'y2)ulj:11 +2(ﬂ,2 (1—(kp/ 2))+o;uz)u|j_1 +(ﬂ.l (1—(kp/ 2))—ay2)ulj:ll -
(24 +(@-20) 4 )u), - 2(24, + (1—20) 1* Ju) = (24, + (1—20) * Ju/, + (12)
(4 (1+(kpl2))=ou® )ufi +2( 4 (1+(kp/ 2)) = 0w Yu* + (4 (1+ (kp  2)) —ou® Jul) +
K (Afh+24 1 +4f))=0, 1=12..,n-1

where 1 =k / his the mesh ratio, 4, and A, are parameters defined in (6).
So by expanding (12) in Taylor series in terms of u(x,,tj)and it's derivatives, and replacing the

derivatives involving t by the relation
out/ox'at! =—ou't? [ ox"t?, (13)

we obtain the local truncation error. The principal part of the local truncation error of the method is

T = {[2(41 +25) ~1]u,, +h? (=1/12+ 4)8* | &x* —[ 1*(1-304,) /360 —K* (p( 4 + 4, ) —30) /3 ]
8° 1 ox° — (1/ 20160)[ h® (1-56.4,) +3360k” (4, + 4,) +1680k*h? (24,0 — ) |6° / X° +...}u,j,

(14)

which tends to zero as h andK tend to zero simultaneously, so method is consistent with (1).
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By choosing suitable values of parameters A, and A, in (12) we obtain the following classes of

methods:

e Ifwechoose A4 +A4,=1/2 and A, #1/12 in (12) we obtain various schemes of O(k?+k?h?+h?).
e Ifwechoose 4 =1/12and A, =5/12,in (12) we obtain a new scheme of O(k?+k2h? +h*).

3. Stability and Convergence Analysis

In this section, we will discuss the stability and convergence of the scheme (12) for numerical solution of
Dirichlet boundary problem (1)-(3), with homogenous conditions g,(t) =g, (t)=0. First we define the

following difference operators

i it j-1 it j —d — j-1 i =Yy J 2000 — =Yy J
52tul —u|+ U, é‘t+ul _u,+—u,, é‘tul =uy —u 521u| _(é‘t++é‘t)ul’ 5tu| —(5t+_5t )ull

+d — i = d — i 2000y i ] i sty i sty
5xul =Ui; —Uup, 5xu| =Uy —U,, 5xul —u|+1_2u| +U, (ut)l _é‘tul /k, (ux)l _5xul /h.

If v=(V,,V,...,V,) and W= (W,,W,,...,W,) are two grid functions on €2 , define the following inner

product and the discrete L -norm

n n i
(vow) =3 v, V= vy = (3 v~
1=0 1=0
Denote W"P'(Q) the i-periodic Sobolev spaces [20], [21].
Now, as in papers [2], [15], we investigate the stability and convergence analysis of the main scheme (12)

in the following Theorems.
Theorem 1. Let us assume that the function U :Q — Rbe the exact solution of (1)-(3) which

U eW**(0,+o0; L” (A, B)) N L (0, +o0;W ** (A, B)).
Let U be the solution of the difference scheme (12) and there exist constants ,, 1=1,2,3 such that
[Tt u)| < 2, @+ X +[t|+|u]), [of (x,t,u)/0X|< x, and |of (x,t,u)/ du| < z,.

Then, when

((1-44)/(1-40), if p>5k/(1-44,),
“<{[(1—44><1+kp/4>—5/41/<1—46>, T peskifi-dA)

for sufficiently small K there exists a constant y >0, independent of hand K such that

Hu””1 +Hu{“ H +HuM < g
Proof. We can rewrite (12) in the following form
(82 +(kp/2)8, )(1+ 487 )0’ — 87 (1+ 087 )ul +K* (1+ 4,82 ) £/ =0. (15)
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Multiplying (15) by (h§2tu|j)and summing up for | from Oto N, we have
(82 (14 487 )uT, 8,07 )+ (kp 1 2) (S, (14 487 YuT, S0 )= 42 (57 (L+ 057 Yu! S0 )+ (16)
k2<(1+1153)f1,52tu >=

By using the preliminary definitions and Lemmas in [2], we have

siou)

‘ 2

2 5;ujf1H2)+(1_20_)(<5;ruj+1,é‘:uj>_<5:uj'5:uj’1>)§

sru [ =Jou’ -

ou? (

i [(r2)(|su[ +

siou[ )+ (ko r2) |60’ oo, )+

)

siul*t (17)

oul

5:8,01 )+ 42 (1 o)+ 422 (2307 (b-2)+ 22

By summing up (17) for j from 1 to M andusing & U’ =8 u'™?, we have
y gup J g o t

2
éTumH _/11

ou’ (

+(1-20) 2 (S;U, 87U °>+k{4m;(1 (Lol )+4;(12HUJH YK (m;gfhz(b a)+;(32

2
+ J
sroul| +

|+

5*u’

sy +((kpt2)—(k?1 2))%52#12 ~((kp 12)+(k? /2))122

2
6:u m+1 +

0 ol st L8
8,6, u S.u S.u

)+

)

[ rout(

s )+@-20) w2 (sum sum) < o[ - 4

By using the identity defined in [2], we have

srum (A +((1-20) 42 12))

(k2/2))jzml:

| gl

We know that é't_ul = é?uo, by help of Lemma 2 in [2] the fourth term on the left hand side of (18) can

srsnun| +((kpl2)~ (K2 /2))2“52tuiH2 —((kpa12)+

(19)
|+((1-20)/2)x

5+ m+1

5;52tuiH2+(ﬂ2/2)( U

‘ 2

oru®

2 2 2
+[oun| )sHé’[ulH s

2
siut| +[sue| - |orsrue Siu

2)+k{4m;{12+4;(fiuj2+4/11 [mxzh (b a)+Z3Z
=

be written as

2
5;-um+l +

[(1-44)-(1-40) 1* — 2517 |

sum | +((kp(1-44,)/2)— (5K / 2))i\\52tum |+ e (

2 2 2 2 2 (20)
s )s 5u|+o 5;u°\+((1—2a)/2)( it + 5w )+k2{ S Ik + (ot 422 |5;u0 17 +
((1—20)/ﬂ2)( s;ut/h| + 5:u°/h2)+{4m;(f+4zfiuj2+4/11 [mlzhz(b a)+;(3z sulff ﬂ}

=

where € is a sufficiently small coefficient. In the case (p (1-44)- 5k) /2>0,ie, p>5k/ (1— 4/11) ,as

& can be sufficiently small, we need that ,uz < (1— 4/?1) / (1— 40‘) . In other case, as
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2 : 12 2 12
|oaum || =[ut + 570’ <o’ + o[

holds, we require that  satisfy the following condition (for j=m)

(1-44)-(1-40) u* +| kp(1-44)-5k* |/ 2>0.

Then we have u°< [(1—4/11)(1+ kp/4)—5k2 /4]/(1—40) . Therefore we proved the stability

condition. Now we can easily prove that ‘

sl kH ,

5X+u0/hH and ‘

5X+u1/hH are all bounded,

consequently, all the terms on the right hand side of (20) have upper bound.

Therefore we confirm that all the terms on the right hand side of (20) are bounded. From the above
notations we conclude that all the coefficients on the left hand side of (20) are positive when
5X+um+1

p >5k /(1_ 4}1) . Hence from Lemma 2 in [2] in both cases we obtain that ‘ < k;( ,1.e,

é‘t+umH+ﬂ

m+1

l"IX

m
"+

n _
< 7, under the stability condition. The relation um+1:uo+zj_15t+uj , gives that

m+1

o

< “UOH + mK y . The proof is completed.

Theorem 2. Suppose that the solution u(X,t) of (1)-(3) is sufficiently regular and the assumptions of
Theorem (1) are valid. For K sufficiently small, the solution of the spline difference scheme (12) converges

to the solution of (1)-(3) in the discrete L’ -norm and we have

H(U _ |»I)m+1

+|U -w)p]+|U —ur

- 7(K*+K*h? +h%), if 2(4+4,)=1 A =#1/12
| 2(K*+K°h* +h*), if A4 =1/12, A,=5/12.

4. Numerical Illustrations

We applied the presented schemes to the following nonlinear generalized Sine-Gordon equation. We solve
following example by our O(k*+k’h*+h*) method with (4,4,)=(1/6,1/3) and our O(k’+k’h’+h")

method with (,24)=(1/12,5/12). We tabulate the computed errors in solution in our Tables and compare

our results with the results in [2].
Example. Consider the nonlinear Sine-Gordon equation:

un+put:uxx—Zsinu—nze“cos;zx+25in(e‘t(1—cos;zx)), xe(0,2), t>0,

subjected to the initial conditions

u(x,0) =1-cos zx, u, (x,0) = —1+cos X, x €[0,2],

and with Dirichlet boundary conditions
u(o,t) =u(2,t) =0, t>0.

The exact solution for this problem isu(x,t) =e™' (1— cos 7ZX) .
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We solve this problem with h=0.1,0.05, k=0.0,0.005, o=p/6 and different values of the

parameters 4 and A4,.Observed L, and RMS errors in the computed solution are tabulated in Tables

1-2 for different times. The results in Tables show that our O(k® +k’h®+h*) method is more accurate than

the methods in [2].

Table 1. Observed L, and RMS Errors in Our O(k” +k*h? +h*) Method

h=01 k=001 | h=005 k=001 | h=0.05 k=0.05

t L, RMS L, RMS L, RMS
1.0 | 2.13(-2) | 4.66(-3) | 7.61(-3) | 1.18(-3) | 7.54(-3) | 1.17(-3)
20 | 871(-3) | 1.90(-3) | 3.13(-3) | 4.89(-4) | 3.13(-3) | 4.89(-4)
30 | 579(-3) | 1.26(-3) | 2.05(-3) | 3.20(-4) | 2.03(-3) | 3.17(-4)
40 | 2.63(-3) | 5.74(-4) | 9.41(-4) | 1.47(-4) | 9.30(-4) | 1.45(-4)
50 | 1.55(-3) | 3.40(-4) | 5.53(—4) | 8.64(-5) | 5.52(-4) | 8.63(-5)

Table 2. Observed L, and RMS Errors in Our O(k* +k*h* +h*) Method

h=01 k=001 | h=005 k=001 | h=0.05 k=0.05

t L RMS L RMS L RMS
1.0 | 7.12(-5) | 1.55(-5) | 3.99(-5) | 6.24(-6) | 2.98(-6) | 4.65(-7)
2.0 | 2.88(-5) | 6.29(-6) | 1.74(-5) | 2.71(-6) | 1.50(-6) | 2.35(-7)
30 | 1.90(-5) | 4.14(-6) | 1.09(-5) | 1.71(-6) | 8.72(-7) | 1.36(-7)
40 | 8.77(-6) | 1.91(-6) | 5.04(-6) | 7.87(-7) | 3.98(-7) | 6.21(-8)
50 | 5.10(-6) | 1.11(-6) | 2.99(-6) | 4.67(-7) | 2.44(-7) | 3.81(-8)

5. Conclusion

In this article, we constructed a three time-level spline-difference scheme for the one-dimensional
generalized sine-Gordon equation. We proved the stability and convergence of the developed schemes by
energy method for our scheme. We prove that our presented schemes are unconditionally stable. To
examine the accuracy and efficiency of the proposed algorithm, we give one numerical examples. These
computational results show that our proposed algorithm is effective and accurate in comparison with [2].
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