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Abstract: The nonlinear sine-Gordon equation is used to model many nonlinear phenomena. Numerical 

simulation of the solution to the one-dimensional generalized sine-Gordon equation is considered here. 

Two implicit three time-level difference schemes are developed, by using the exponential spline function 

approximation. We consider both Dirichlet and Neumann boundary conditions. The resulting spline 

difference schemes are analyzed for local truncation error, stability and convergence. It has been shown 

that by suitably choosing the parameters, we can obtain two schemes of 2 2 2 2( )O k k h h  and

2 2 2 4( )O k k h h  . In the end, some numerical examples are provided to demonstrate the effectiveness of the 

proposed schemes. 
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1. Introduction 

This paper is devoted to the numerical computation of the one-dimensional time-dependent nonlinear 

sine-Gordon equation. The initial-value problem of the one-dimensional generalized sine-Gordon equation 

is given by the following equation: 

 

0( , , ), ( , ), ,tt t xxu u u f x t u x a b t t                             (1) 

 
subjected to the initial conditions 

 

0 0( , ) ( ), ( , ) ( ), [ , ],tu x t x u x t x x a b                              (2) 

 
and with following Dirichletboundary conditions: 

 

0 1 0( , ) ( ), ( , ) ( ), ,u a t g t u b t g t t t                              (3) 

 
where the functions ( )x  and ( )x  are wave modes or kinks and velocity, respectively. The parameter   

is the so-called dissipative term, which is assumed to be a real number with 0   [1], [2]. We shall assume 

that ( )x , ( )x , 0 ( )g t  and 1( )g t are continuously differentiable up to order 2. 

Klein-Gordon and sine-Gordon equations have applications in various research areas, such as differential 
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geometry and relativistic field theory [3]-[9]. 

The numerical solutions to the nonlinear sine-Gordon equation have received considerable attention in 

the literature (see [10-16]). Mohammadi [17]-[19] developed different spline schemes to find the numerical 

solution of different type of partial differential equations. 

In this paper we have developed a three time-level implicit method by using the exponential spline 

function for solution of the nonlinear partial differential equation (1). The method involves some 

parameters, and its order can be increased from 2 2 2 2( )O k k h h   to 2 2 2 4( )O k k h h   by an appropriate 

choice of the parameters. 

2. Proposition of the Method 

The domain [ , ] [0, ]a b T  is divided to a n m  mesh with the special step size ( ) /h b a n  in x

direction and time step size /k T m , respectively. Denote 

 

0{ , 0,1,..., }, { , 0,1,..., }.h l k jx a lh l n t t jk j m                        (4) 

 

in which n  and m  are integers. The notation 
j

lu  be a grid function on h k  , which is used for 

the difference approximation of ( , )u lh jk . A function ( , )jS x t of class  2 ,C a b which interpolates 

( , )ju x t  at the mesh points ( , )l jx t , depends on a parameter  , reduces to cubic spline ( , )jS x t , in  ,a b

as 0  , is termed an exponential spline function. For each segment  1,l lx x 
, 0,1,..., 1l n  the 

function ( , )jS x t , can be defined in the following form 

 

            * * * *( , ) ,l li x x i x x

j l j l j l l j l jS x t a t b t x x c t e d t e
   

                   (5) 

 

where  *

l ja t ,  *

l jb t ,  *

l jc t and  *

l jd t are unknown coefficients,   is a free parameter and 

1i   . We first develop the explicit expressions for the four coefficients in (5) in terms of 
j

lu , 1

j

lu  , 

j

lM  and 1

j

lM  . We can determine the four unknown coefficients in (5) as 

 

   
 

 
 

 
 
 

2

1 1 1* * * *1

2 2 2 2 2 2
, , , .

1 1

j j j j i h j i h jj j i h j
l l l l l lj l l l

l j l l j l j l ji h i h

M M u u e M e MM M e M
a t u b t c t d t

h e e

 

 



   

  
   

    
 

 

 

The continuity of the first derivative of ( , )jS x t at ( , )l jx t yields the following consistency relation: 

 

 2

1 1 1 1 2 1 12 2 ,j j j j j j

l l l l l lu u u h M M M                              (6) 

 
where 

 
2 2

1 2( csc 1) / , (1 cot ) / , , ( , ) 0,1,..., 0,1,..., .j

l l jh M S x t l n and j m                 
 

 

Similar to (6) for the ( 1)j  th and ( 1)j  th time levels we have 
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 1 1 1 2 1 1 1

1 1 1 1 2 1 12 2 .j j j j j j

l l l l l lu u u h M M M       

                               (7) 

 
We develop an approximation for (1) in which the time derivative is replaced by following finite 

difference approximation 

 

1 1 2 2 1 1 2( 2 ) / ( ), ( ) / 2 ( ),
j j

j j j j j j j

tt l l l tt l t l l t ll l
u u u u k u O k u u u k u O k                    (8) 

 
and the space derivative by the non-polynomial spline function approximation 

 
2( , ) ( ).j j

xxl l j lu S x t M O h                                 (9) 

 
To develop a new approximation for (1) the sine-Gordon equation (1) is then replaced by 

 

      1 11 1 2 1 1/ / 2 (1 2 ) ,2 j j j j

l l l l

j j j j j
l l l l l k f M M Mu u u k u u               

   
            (10) 

 

where 0 1  , ( , , )j j

l l j lf f x t u  and 0,1,...,l n , 0j  . 

The addition of (6) multiplied by (1 2 ) to (7) multiplied by   gives 

 

   

   

1 1 1 1

1 1 1 1 2

1 1 2 1 1 2

1 1 1 1

(1 2 ) 2 (1 2 )

(1 2 ) (1 2 ) / ,

j j j j j j

l l l l l l

j j j j j j

l l l x l l l

M M M M M M

M M M u u u h

       

       

   

  

   

  

       

      

            (11) 

 

where x  
is the central difference operator with respect to x  so that 

2

1 12j j j j

x l l l lu u u u     . 

After the elimination of the M ’s in (11) by means of (10) we have 

 

           

     

           

 

2 1 2 1 2 1

1 1 2 1 1

1 1

1 1 1

1 1

2

2 2 2

1 2 1

2 2 2

1 2 1

1 1 2 1 1

2

2

2

0,

1 / 2 1 / 2 1 / 2

2 (1 2 ) 2 (1 2 ) 2 (1 2 )

1 / 2 1 / 2 1 / 2

2

j j j

l l l

j j j

l l l

j j j

l l l

j j j

l l l

u u u

u u u

u u u

k l

k k k

k k k

f f f

       

        

        

  

  

 

 

  

 

 

    

  

  

 

   

     

     

  1, 2,..., 1,n 

         (12) 

 

where /k h  is the mesh ratio, 1  and 2  are parameters defined in (6). 

So by expanding (12) in Taylor series in terms of ( , )l ju x t and it's derivatives, and replacing the 

derivatives involving t by the relation 

 
2 2/ / ,l j l j l j l ju x t u x  

                                    (13) 

 
we obtain the local truncation error. The principal part of the local truncation error of the method is 

 

      

    

2 4 2

1 2 1 1 1 2

6 6 6 2 2 2

1 1 2 1

4 4

8 8

2( ) 1 1/12 (1 30 ) / 360 3 / 3

/ (1/ 20160) 1 56 3360 ( ) 1680 2 ... ,

/

/

j

l xx

j

l

T u h h k

x h k k h u

x

x

       

     

            

          

 

 

      (14) 

 

which tends to zero as h  and k tend to zero simultaneously, so method is consistent with (1). 
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By choosing suitable values of parameters 1  and 2 in (12) we obtain the following classes of 

methods: 

 If we choose 1 2 1/ 2    and 1 1/12   in (12) we obtain various schemes of 2 2 2 2( )O k k h h  . 

 If we choose 1 1/12  and 2 5 /12  , in (12) we obtain a new scheme of 2 2 2 4( )O k k h h  . 

3. Stability and Convergence Analysis 

In this section, we will discuss the stability and convergence of the scheme (12) for numerical solution of 

Dirichlet boundary problem (1)-(3), with homogenous conditions 
0 1( ) ( ) 0g t g t  . First we define the 

following difference operators 

 
1 1 1 1 2

2 2

2

1 1 1 1

, , , ( ) , ( ) ,

, , 2 , ( ) / , ( ) / .

j j j j j j j j j j j j j

t l l l t l l l t l l l t l t t l t l t t l

j j j j j j j j j j j j j j

x l l l x l l l x l l l l t l t l x l x l

u u u u u u u u u u u u u

u u u u u u u u u u u u k u u h

        

    

         

   

   

         

          
 

If 0 1( , ,..., )nv v v v  and 0 1( , ,..., )nw w w w  are two grid functions on h , define the following inner 

product and the discrete 
2

L -norm 

 
1

2 2

0 0

, , , ( ) .
n n

l l l

l l

v w h v w v v v h v
 

     

 

Denote , ( )i perW   the i -periodic Sobolev spaces [20], [21]. 

Now, as in papers [2], [15], we investigate the stability and convergence analysis of the main scheme (12) 

in the following Theorems. 

Theorem 1. Let us assume that the function :U R be the exact solution of (1)-(3) which 

 

4, 4,
(0, ; ( , )) (0, ; ( , )).U W L A B L W A B

   
    

 

Let u  be the solution of the difference scheme (12) and there exist constants , 1,2,3l l   such that 

 

1 2
( , , ) (1 ), ( , , ) /f x t u x t u f x t u x       

 
and 

3
( , , ) / .f x t u u     

 

Then, when 

 

     

      
2 1 1

1 1

1 4 / 1 4 , 5 / 1 4 ,

1 4 1 / 4 5 / 4 / 1 4 , 5 / 1 4 ,

if k

k if k


   

    


   


        
 

 

for sufficiently small k there exists a constant 0  , independent of h and k such that 

1 1 .m m m

t xu u u      

Proof. We can rewrite (12) in the following form 

 

       2 2 2 2 2 2 2

2 1 1/ 2 1 1 1 0.j j j

t t x x t xk u u k f                              (15) 
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Multiplying (15) by  2

j

t lh u and summing up for l  from 0 to n , we have 

 

       

 

2 2 2 2 2 2

1 2 2 1 2 2

2 2

1 2

1 , / 2 1 , 1 ,

1 , 0.

j j j j j j

t x t t x t x t t

j j

x t

u u k u u u u

k f u

          

 

     

 

         (16) 

 
By using the preliminary definitions and Lemmas in [2], we have 

 

    
    

       

2 2 2 2 2 2

1 2 1 2

2 2
2 1 1 1 1

2 2 2 2
2 2 2 2 2 2

2 2 1 1 2 3

/ 2

1 2 , ,

1/ 2 4 1 4 .

j j j j j j

t t x t x t t x t

j j j j j j

x x x x x x

j j j j

t x t x

u u u u k u u

u u u u u u

k u u u h b a u

           

       

       

      

         

 

     

    

       

           (17) 

 

By summing up (17) for j  from 1 to m  and using 1j j

t tu u    , we have 

 

         

     

     

2 2 2 2
2 2

1 2 1 2

1 1

2 2 2 2
2 1 2 1 1 0 2 0 1

1

2 2
2 1 0 2 2 2 2 2 2

1 1 1 2 3

1

/ 2 / 2 / 2 / 2

1 2 ,

1 2 , 4 1 4 4

m m
m m j j

t x t t x t

j j

m m m m

x x x x t x t x x

m
j j

x x

j

u u k k u k k u

u u u u u u u u

u u k m u u m h b a

        

             

        

   

 

          

 



     

       

       

 


2

2

1

.
m

j

x

j

u 



  
  

  


  (18) 

 
By using the identity defined in [2], we have 

 

          

       

   

2 2 2
2 2

1 2 1

1

2 2 2 2
2 2 1 1 0

2

1

2 2 2 2 2
1 0 0 2 2 2 2 2 2 2

1 1 1 2 3

1 1

1 2 / 2 / 2 / 2 / 2

/ 2 / 2 1 2 / 2

4 4 4 .

m
m m j

t x t t

j

m
j m m

x t x x t x

j

m m
j j

x x x t x

j j

u u k k u k

k u u u u u

u u u k m u m h b a u

        

        

         

  



     



    

 

      

      

 
        

 





 




    (19) 

 

We know that 1 0

t tu u   , by help of Lemma 2 in [2] the fourth term on the left hand side of (18) can 

be written as 

 

          

      

     

2 2 2
2 2 2 2 1

1 1 2

1

2 2 2 2 2
0 0 1 0 2 0 2 0

2 2 2 2
2 1 0 2 2 2 2 2 2

1 1 1 2 3

1

1 4 1 4 2 1 4 / 2 5 / 2

1 2 / 2 / / /

1 2 / / / 4 4 4

m
m m m

t t x

j

m

x t x x x t x

m
j j

x x x

j j

u k k u u

u u u u u k u k u h

u h u h m u m h b a u

         

          

         

  



      

  

 

          

       

      




1

.
m    

  
    



 (20) 

 

where  is a sufficiently small coefficient. In the case   11 4 5 / 2 0k    , i.e.,  15 / 1 4k   , as 

 can be sufficiently small, we need that    2

11 4 / 1 4     . In other case, as 
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2 2 2 2

2 ,m j j j j

t t t t tu u u u u            

 

holds, we require that  satisfy the following condition (for j m ) 

 

     2 2

1 11 4 1 4 1 4 5 / 2 0.k k              

 

Then we have     2 2

11 4 1 / 4 5 / 4 / 1 4k k          . Therefore we proved the stability 

condition. Now we can easily prove that 0 /t u k  , 0 /x u h   and 1 /x u h   are all bounded, 

consequently, all the terms on the right hand side of (20) have upper bound. 

Therefore we confirm that all the terms on the right hand side of (20) are bounded. From the above 

notations we conclude that all the coefficients on the left hand side of (20) are positive when 

 15 / 1 4k   . Hence from Lemma 2 in [2] in both cases we obtain that 1m m

t xu u k       , i.e, 

1m m

t xu u   , under the stability condition. The relation 1 0

1

mm j

tj
u u u 


  , gives that

1 0mu u mk   . The proof is completed. 

Theorem 2. Suppose that the solution ( , )u x t of (1)-(3) is sufficiently regular and the assumptions of 

Theorem (1) are valid. For k sufficiently small, the solution of the spline difference scheme (12) converges 

to the solution of (1)-(3) in the discrete 2
L -norm and we have 

 

2 2 2 2

1 2 1

2 2 2 4

1 2

1 1 ( ), 2( ) 1, 1 12

( ), 1 12, 5 12.

/
( ) ( ) ( )

/ /

m m m

t x

k k h h if

k k h h if
U u U u U u

   

  

      

   


      


 

 

4. Numerical Illustrations 

We applied the presented schemes to the following nonlinear generalized Sine-Gordon equation. We solve 

following example by our 2 2 2 2
( )O k k h h   method with 

1 2
( , ) ( , )1/ 6 1/ 3    and our 2 2 2 4

( )O k k h h   

method with 
1 2

( , ) ( , )1/12 5 /12   . We tabulate the computed errors in solution in our Tables and compare 

our results with the results in [2]. 

Example. Consider the nonlinear Sine-Gordon equation: 

 

  22sin cos 2sin 1 cos , (0,2), 0,t t

tt t xxu u u u e x e x x t             

 

subjected to the initial conditions 

 ( ,0) , ( ,0)1 cos 1 cos , 0,2 ,tu x u xx x x       

 

and with Dirichlet boundary conditions 

(0, ) (2, ) , 0.0u t u t t    

The exact solution for this problem is  ( , ) 1 cost
u x t e x

  . 

International Journal of Applied Physics and Mathematics

264 Volume 5, Number 4, October 2015



  

We solve this problem with 0.1,0.05h  , 0.01,0.005k  , / 6   and different values of the 

parameters 
1
  and 

2
 . Observed 

2
L  and RMS errors in the computed solution are tabulated in Tables 

1-2 for different times. The results in Tables show that our 2 2 2 4
( )O k k h h   method is more accurate than 

the methods in [2]. 

 

Table 1. Observed 
2

L  and RMS Errors in Our 
2 2 2 2

( )O k k h h   Method 

 

t  

0.1, 0.01h k   0.05, 0.01h k   0.05, 0.005h k   

2
L  RMS 

2
L  RMS 

2
L  RMS 

1.0   2.13 2   4.66 3   7.61 3   1.18 3   7.54 3   1.17 3  

2.0   8.71 3   1.90 3   3.13 3   4.89 4   3.13 3   4.89 4  

3.0   5.79 3   1.26 3   2.05 3   3.20 4   2.03 3   3.17 4  

4.0   2.63 3   5.74 4   9.41 4   1.47 4   9.30 4   1.45 4  

5.0   1.55 3   3.40 4   5.53 4   8.64 5   5.52 4   8.63 5  

 

Table 2. Observed 
2

L  and RMS Errors in Our 
2 2 2 4

( )O k k h h   Method 

 

t  

0.1, 0.01h k   0.05, 0.01h k   0.05, 0.005h k   

2
L  RMS 

2
L  RMS 

2
L  RMS 

1.0   7.12 5   1.55 5   3.99 5   6.24 6   2.98 6   4.65 7  

2.0   2.88 5   6.29 6   1.74 5   2.71 6   1.50 6   2.35 7  

3.0   1.90 5   4.14 6   1.09 5   1.71 6   8.72 7   1.36 7  

4.0   8.77 6   1.91 6   5.04 6   7.87 7   3.98 7   6.21 8  

5.0   5.10 6   1.11 6   2.99 6   4.67 7   2.44 7   3.81 8  

 

5. Conclusion 

In this article, we constructed a three time-level spline-difference scheme for the one-dimensional 

generalized sine-Gordon equation. We proved the stability and convergence of the developed schemes by 

energy method for our scheme. We prove that our presented schemes are unconditionally stable. To 

examine the accuracy and efficiency of the proposed algorithm, we give one numerical examples. These 

computational results show that our proposed algorithm is effective and accurate in comparison with [2]. 
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