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Abstract: The effects of g-jitter induced and combined with heat and mass transfer by mixed convection in 

microgravity situation on MHD flow second grade fluid in porous space is investigated for a particular 

system. This system consists of two heated vertical parallel infinite flat plates held at constant but different 

temperatures and concentrations. By using modified Darcy’s law, the equations governing the flow are 

modelled. These equations are solved analytically for the induced velocity, temperature and concentration 

distributions. Similar result in the relevant literature relating to Newtonian fluid is also obtained as a 

special case of the present solution. Finally particular attention is given to the graphical results for the 

velocity profiles of the oscillating flow in the channel. The analysis on the variations of embedded flow 

parameters in the solution expressions are presented and discussed. 
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1. Introduction 

The studies of non-Newtonian fluids have received considerable attention because of numerous 

applications in industry, geophysics and engineering. Some investigations are notably important in 

industries related to paper, food stuff, personal care products, textile coating and suspension solutions 

[1]-[3]. The non - Newtonian fluids have been mainly classified under the differential, rate and integrals 

types. The second grade fluids are the subclass of non – Newtonian fluids and are the simplest subclass of 

differential type fluids which can show the normal stress effects [4]-[7]. It was employed to study various 

problems due to their relatively simple structure. Moreover, one can reasonably hope to obtain exact 

solutions from this type of second grade fluid. This motivates us to choose the second grade model in this 

study. The exact solutions are important as these provide standard for checking the accuracies of many 

approximate solutions which can be numerical or empirical. They can also be used as tests for verifying 

numerical schemes that are developed for studying more complex flow problems [8]-[11].  

Currently, we found great interest in the applications of the effects of complex body forces on fluid motion. 

Such forces exist, when a system with density gradients is subject to vibrations. The resulting buoyancy 
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forces which are produced by the interaction of density gradients and the spatial and frequency 

distributions of the vibration-induced acceleration field on fluid motion is known as gravity modulation or 

g-jitter induced flow. 

 G-jitter is defined as the inertia effect due to quasi-steady, oscillatory or transient acceleration arising 

from aircraft’s crew motions and machinery vibrations in parabolic aircrafts, space shuttles or other 

microgravity environments [12]-[15]. Sharidan et al. [16] has investigated the effects of g-jitter induced and 

combined with heat and mass transfer by mixed convection flow in microgravity situation for a simple 

system. This system consists of two heated vertical parallel infinite flat plates held at constant but different 

temperatures and concentrations for Newtonian fluid. 

However, to the best for our knowledge, there are nocurrent attempts being made for viscoelastic fluids 

that take into account the phenomenon of g-jitter in free convection flows. These flows arise from the 

combined buoyancies due to thermal and chemical species concentration diffusion in a cavity.  

The aim of this paper is to generate an exact analytical solution for the problem of laminar combined heat 

and mass transfer by mixed convection of a fully developed flow of a non Newtonian fluid. This flow is 

induced by a combination of g-jitter and an oscillating pressure gradient in a vertical channel of  MHD flow 

second grade fluid. This fluid saturates the porous medium. We consider the g-jitter field to be constant in 

space, or else it would change with time harmonically. Finally the graphical results of the solution are 

plotted and discussed. 

2. Formulation of the Problem 

Let us consider a Cartesian coordinate system  ,x y and the incompressible second grade fluid saturated 

porous half space bounded by an infinite plate at 0y   ( y axis is taken normal to the plate). Moreover, 

the fluid is electrically conducting in the presence of an applied magnetic field  0,0, B B . The magnetic 

Reynolds number is assumed small and hence the induced magnetic field is neglected. The flow is laminar 

mixed convection flow between two vertical parallel plates with uniform temperatures and concentrations 

at the walls with g-jitter fully developed. 

The unsteady flow in a porous medium is governed by the following equations of continuity, motion, 

energy and concentration are: 
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In the above equations  ,0,0uV  is the velocity filed, t is time ,   is the fluid density, p is the 

pressure , S  is the extra stress tensor, J  is the current density, B b B  is the total magnetic field, 

B  and b are the applied and induced magnetic fields respectively and R  is the Darcy resistance, 
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concentration and D  is the mass diffusivity. It is assumed that at time 0t   the flow is at the constant 

temperature 0T  and constant concentration 0C . 

For the second grade fluid we have the extra stress tensor S  given in [5] and [10] as 

 

1 2    1A
2

2 1S A A ,                                   (3) 

 

where   is the dynamic viscosity and i  1,2i  are material constants satisfying 1 1 20, 0     , 

1A  and 2A
 

are the first two Rivlin – Eriksen tensors and the velocity field V is assumed in the form 

  , ,0,0u y tV = .                                     (4) 

3. Exact Solution of the Problem 

Introducing the dimensionless variables    
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, Pr  and Sc  are the Prandtl and Schmidt numbers, respectively. 

Equations (6) and (7) are subject to the following boundary conditions: 
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The solution of equation (6) and (7) are derived as follows: 
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where 
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The expressions (8) for MHD viscous fluid  0 , 1   in a porous space are 

 

 

 
 

 
 

  
 

    

2

sinh 1sinh
1

Re sinh Re sinh

,

                1 1
Re Re

T C

i

T C T C

F Gr F Gr
N r Nr

e
f

Gr F Gr
r N r r Nr



 

   

 







     
        

     
 
 

 
       

  

, 

 

with 

 

1
i M

B
    , and 

 

   

  3 1 1sinh

2cosh sinh 2 Re 2

T Cr r NF Gr 

   

  
 

  
.       (9) 

 

If we put 
1

0M
B

 
 

into Eq. (10) we recover the exact solution obtained by Sharidan et al. ([16] Eq. 
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In the case of steady flow 0 , the gravity field is constant which corresponds to the buoyancy driven 

flow under terrestrial conditions. The solution of this particular case is contained in Eq. (8) as follows:  
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But for the steady state for hydrodynamic second grade in nonporous case, (i.e. 1
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  ), the solution 

takes the form 
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The above solution (12) can be shown to be equivalent to the steady solution of the Newtonian fluid. See 

shardian et al. [16], eq. (12). 

4. Results and discussion 

This section concerns with the variations of embedded flow parameters in the solution expressions. 

Hence Fig. 1 to Fig. 9 have been displayed in order to illustrate such variations.  

 

    

    Fig. 1. Effects of 0N   (aiding buoyancies).    Fig. 2. Effects of 0N   (opposing buoyancies). 

 

       

    Fig. 3. Effects of 0N   and C Tr r .          Fig. 4. Effects of 0N   and T Cr r . 
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Fig. 1 and 2 shown that for, C Tr r the flow is reversed close to the left wall for 0N   (aiding 

buoyancies) and close to the right wall for opposing buoyancies case when 0N  , respectively. However, 

when 0N   and C Tr r , the flow is reversed only near the right wall, while for 0N   and C Tr r , the 

flow is reversed close to the both walls as can be seen from Fig. 3 and Fig. 4. 

 

    

Fig. 5. Effects of   when C Tr r .             Fig. 6. Effects of   when T Cr r . 

 

        

Fig. 7. Effects of M  when T Cr r .                Fig. 8. Effects of B  when T Cr r . 
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partial reversed flow (Fig. 6) when / ReGr  increased. 

Fig. 7 is prepared to see the effects of applied magnetic field (Hartman number) M on the velocity 

profile. Keeping the other parameters are fixed and varying M , it is noted that the velocity profile 

decreases by increasing the magnetic field parameter M . Clearly, we observe that with increasing values 
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field on an electrically conducting fluid which gives rise to a resistive type force called the Lorentz force 

which tends to slow down the motion of the fluid. 

Fig. 8 indicates the variations of the porous parameter B . it is noted that by increasing the porous 

parameter B , this would lead to decrease in the velocity profile.  

Fig. 9 shows the effects of parameter   of velocity profile when the other parameters are fixed. It is 

interesting to notice that by increasing in the parameter  , this would lead to the increase in the velocity 

profile. This is because of the fact that increasing values of   would reduce the friction forces, and thus 

assists the flow of the fluid considerably; and hence the fluid moves with greater velocity. 

 

 

Fig. 9. Effects of   when T Cr r . 

 

5. Concluding Remarks 

In this article, the effect of g-jitter induced combined heat and mass transfer by mixed convection MHD 

second grade flow in microgravity for a simple system consisting of two heated vertical parallel infinite flat 

plates held at constant but different temperatures and concentrations has been studied. In addition the 

graphical results are plotted and discussed. From the presented analysis, the main observations are 

described as below: 

1) The effect of B  and   on the velocity profile components leads to an opposite effect to M . 

2) The results corresponding to viscous fluid can be obtained by choosing 0  .    

3) The steady state solution for hydrodynamic second grade fluid it shown to be equivalent to the 

steady state case of viscous fluid. 
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