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Abstract: By employing the characteristics of the basic structure (keystream), Stream ciphers designers 

attempt to create algorithms that have advanced features from security and speed point of view. They take 

into consideration the state-of-the-art scientific and technical developments to design more advanced 

algorithm versions. This research proposes the design of a new efficient and secure stream cipher, named 

BloStream which proves to be more secure than conventional stream ciphers that commonly implement 

Exclusive-OR (XOR) for mixing. The proposed algorithm encompasses two major components. The first part 

involves the Pseudo Random Number Generator (PRNG), exhausting Rabbit algorithm. And the second part 

involves a nonlinear invertible round function (combiner), depending on Rijndael-like function algorithm, 

to perform the encryption/decryption processes. This new construction strengthens the weak XOR 

combiner. The proposed cipher is not only a random number generator but also a self-synchronizing stream 

cipher in such a way that the cipher text influences its internal functioning. The proposed algorithm utilizes 

16-bytes secret key to encrypt the plaintext which is a multiple of 16-bytes up to 264bytes length. The 

evaluation of BloStream performance, in terms of implementation aspects and security properties as well as 

the statistical test for keystream and comparison with similar systems revealed that, BloStream was more 

efficient, faster, and securer than the conventional stream ciphers. 
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1. Introduction 

Stream ciphers are an important class of symmetric encryption algorithms. They encrypt individual 

characters or binary digits of a plaintext message one at a time, using an encryption transformation which 

varies with time. They are also more appropriate, and in some cases mandatory (e.g. in some 

telecommunications applications), when buffering is limited or when characters must be individually 

Ring the plaintext with a random key. The drawback of the Vernam cipher is that the keystream must 

possess a true random sequence, shared by the sender and the receiver, and it can only be used once [1]-[3]. 

A combiner is the heart of a stream cipher, which generally employs an ‘additive’ combiner such as XOR. 

Additive combiners have absolutely no strength at all; this means that, if an opponent somehow comes up 
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processed as they are received. Stream ciphers employ — in Shannon's terminology — confusion only [1], 

[2]. Their basic design philosophy is inspired by the Vernam (One-Time Pad) cipher, which encrypts by XO
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with some plaintext which matches the cipher text, an additive combiner immediately reveals the confusion 

sequence. This allows the opponent to begin work on breaking the confusion sequence generator [4], [5]. 

An alternate approach to the design of a secure stream ciphers is to seek combining functions which can 

resist attack; such functions would act to conceal the pseudo-random sequence from analysis. Such 

cryptographic combining functions could be utilized to substitute the Vernam XOR combiner provided that 

they have an inverse. An improved combiner is intended to enhance the sophistication of cryptanalysis, 

making it more time consuming and expensive than simple combiners [6]. Dynamic substitution is a way to 

build a cryptographic combiner; it is not a complete cipher. It is deployed simply as a replacement for the 

weak XOR combiner, conventionally used in stream ciphers. The strength of dynamic substitution combiner 

can support the use of weaker but faster PRNG [5]. In today’s world, this does not provide the required 

security. Also this does not represent a real blend (mixing together) between the plaintext and keystream. 

Instead, it is merely, a hiding process for the plaintext without affecting its actual bits directly. Therefore, if 

the confusion RNG is linear, with a small amount of state, the opponent has the capacity to try various sets 

of keystream values until the system is solved. But if the RNG has a large amount of state, selecting a set of 

correct random values from the larger set of possible keystream values (by many trials), then cryptanalysis 

will be very difficult. 

 

 

 

 

2. BloStream 

2.1. Algorithm Components 

The motivation for the choice of the design in BloStream is summarized as follows: 

According to the structure presented in Fig. 1, there are three basic parts in the proposed algorithm: 1) 

PRNG for keystream generation; 2) cipher feedback; and 3) combiner for encryption/decryption process. 

Each of these components is elaborated as follows. 

2.1.1. PRNG 

The PRNG in the BloStream algorithm is implemented depending on Rabbit algorithm, for the 

cryptanalysis of Rabbit does not reveal an attack better than exhaustive key search. The next advantage of 

Rabbit is its simplicity and small size which makes it suitable for implementations on processors with 

limited resources such as 8-bit processors.  Furthermore, Rabbit was designed to be faster than commonly 

deployed ciphers (as illustrated in Table 1), justifying a key size of 128 bits for encrypting up to 2^64 blocks 

of plaintext; as such, it is suitable for both hardware and software implementation [8]. 
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Table 1. Best Encryption Speed of Some Stream Ciphers on a Pentium IV

Algorithm name Profile Cycle/byte

Trivium

Rabbit

Phelix

SOSEMANUK

HC-256

HW

SW & HW

SW & HW

SW

SW

8.10
9.46
10.09
10.26
11.12

Dragon SW 11.43

Hence, to complicate the weak XOR combiner, this paper produces a new scheme, employing a hybrid 

concept between the block cipher round and stream cipher system. The proposed cipher scheme aims to 

utilize large block sizes in order to overcome attacks such as frequency analysis and cipher text/plaintext 

pairs. The new design is called BloStream algorithm, using key dependent S-boxes based on a Rijndael-like 

function [7]. The paper is followed in Section 2 by the investigation of the structure of BloStream. In Section 

3 BloStream is compared with other similar ciphers. Security analyses with possible attacks are presented 

in Section 4. Randomness tests of the keystream bits are applied in Section 5. Conclusion is summed up in 

the last section. 
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Fig. 1. Graphical illustration of BloStream algorithm. 

 

Rabbit is characterized by a high performance in software with a measured encryption/decryption speed 

of 3.7 clock cycles per byte on a Pentium III processor [8]. The algorithm is initialized by expanding the 

128-bit key into both the eight state variables and the eight counters in such a way that there is a 

one-to-one correspondence between the key and the initial state variables 𝑋𝑗 ,0, and the initial counter 𝐶𝑗 ,0, 

the key K [127...0] is divided into eight sub keys: K0=K[15…0], K1=K[31..16], …, K7=K[127...112]. The state 

and counter variables are initialized from the sub keys. We use the following notation: ⨁ denotes logical 

XOR, & denotes logical AND, ≪and ≫denote left and right logical bit-wise shift, ⋘ and ⋙ denote left 

and right bit-wise rotation, and ⋄ denotes concatenation of two bit sequences.  𝐴[𝑔..] means bit number 

g through h of variable A. When numbering bits of variables, the least significant bit is denoted by 0. 

Hexadecimal numbers are prefixed by’0x’. Finally, we use integer notation for all variables and constants. 

The state and counter variables are initialized from the subkeys as follows: 

 

𝑥𝑗 ,0 =  
𝑘(𝑗+1 mod  8) ⋄ 𝑘𝑗                           𝑓𝑜𝑟 𝑗 𝑒𝑣𝑒𝑛

𝑘(𝑗+5 mod  8) ⋄ 𝑘 𝑗+4 𝑚𝑜𝑑  8        𝑓𝑜𝑟 𝑗 𝑜𝑑𝑑 
  

 

𝑐𝑗 ,0 =  
𝑘(𝑗+4 mod  8) ⋄ 𝑘(𝑗+5 mod  8)         𝑓𝑜𝑟 𝑗 𝑒𝑣𝑒𝑛

𝑘𝑗 ⋄ 𝑘 𝑗+1 mod  8                           𝑓𝑜𝑟 𝑗 𝑜𝑑𝑑 
  

 

The system is iterated four times, according to the next-state function, to diminish correlations between 

bits in the key and bits in the internal state variables. Finally, the counter variables are re-initialized 

according to: 

 
𝑐𝑗 ,4 = 𝑐𝑗 ,4⨁𝑥 𝑗+4 mod  8 ,4      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 

 
To prevent recovery of the key by inversion of the counter system. The core of the Rabbit algorithm is the 

iteration of the system defined by the following equations[9]: 

 
𝑥0,𝑖+1 =  𝑔0,𝑖  +  𝑔7,𝑖 <<< 16 +  𝑔6,𝑖 <<< 16 , 𝑥1,𝑖+1 =  𝑔1,𝑖  +  𝑔0,𝑖 <<< 8 + 𝑔7,𝑖  

 

𝑥2,𝑖+1 =  𝑔2,𝑖  +  𝑔1,𝑖 <<< 16 +  𝑔0,𝑖 <<< 16  , 𝑥3,𝑖+1 =  𝑔3,𝑖  +  𝑔2,𝑖 <<< 8 + 𝑔1,𝑖  
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𝑥4,𝑖+1 =  𝑔4,𝑖  +  𝑔3,𝑖 <<< 16 +  𝑔2,𝑖 <<< 16 ,  𝑥5,𝑖+1 =  𝑔5,𝑖  +  𝑔4,𝑖 <<< 8 + 𝑔3,𝑖  

 

𝑥6,𝑖+1 =  𝑔6,𝑖  +  𝑔5,𝑖 <<< 16 +  𝑔4,𝑖 <<< 16  ,  𝑥7,𝑖+1 =  𝑔7,𝑖  +  𝑔6,𝑖 <<< 8 + 𝑔5,𝑖  

 

𝑔𝑗 ,𝑖 =   𝑥𝑗 ,𝑖 + 𝑐𝑗 ,𝑖+1 
2

 ⨁  𝑥𝑗 ,𝑖 + 𝑐𝑗 ,𝑖+1 
2

>> 32  mod232 

 

where all additions are modulo 264. This coupled system is illustrated in Fig. 2. 

 

 
Fig. 2. Graphical illustration of the Rabbit algorithm. 

 

Before the iteration the counters are incremented as illustrated in Fig. 2. The dynamics of the counters is 

defined in the following equations: 

 

𝑐0,𝑖+1 = 𝑐0,𝑖 + 𝑎0 + ∅7,𝑖  mod232, 𝑐1,𝑖+1 = 𝑐1,𝑖 + 𝑎1 + ∅0,𝑖+1mod232 

 

𝑐2,𝑖+1 = 𝑐2,𝑖 + 𝑎2 + ∅1,𝑖+1mod232, 𝑐3,𝑖+1 = 𝑐3,𝑖 + 𝑎3 + ∅2,𝑖+1mod232 

 

𝑐4,𝑖+1 = 𝑐4,𝑖 + 𝑎4 + ∅3,𝑖+1  mod232, 𝑐5,𝑖+1 = 𝑐5,𝑖 + 𝑎5 + ∅4,𝑖+1mod232 

 

𝑐6,𝑖+1 = 𝑐6,𝑖 + 𝑎6 + ∅5,𝑖+1mod232, 𝑐7,𝑖+1 = 𝑐7,𝑖 + 𝑎7 + ∅6,𝑖+1mod232 

 

where the counter carry bit, ∅𝑗 ,𝑖+1 , is given by 

 

∅6,𝑖+1 =  

1  𝑖𝑓  𝑐0,𝑖 + 𝑎0 + ∅7,𝑖  ≥  232 ∧ 𝑗 = 0     

1 𝑖𝑓  𝑐𝑗 ,𝑖 + 𝑎𝑗 + ∅𝑗−1,𝑖+1  ≥  232 ∧ 𝑗 > 0

0                                                 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  

 

Furthermore, the 𝑎𝑗  constants are defined as: 

 

𝑎0 = 0x4D34D34D, 𝑎1 = 0xD34D34D3, 𝑎2 = 0x34D34D34, 𝑎3 = 0x4D34D34D 

 

𝑎4 = 0xD34D34D3, 𝑎5 = 0x34D34D34 , 𝑎6 = 0x4D34D34D, 𝑎7 = 0xD34D34D3 

 

After each iteration the output is extracted as follows: 

 

𝑆𝑖
[15..0]

= 𝑥0,𝑖
[15..0]

 ⨁ 𝑥5,𝑖
[31..16]

, 𝑆𝑖
[31..16]

= 𝑥0,𝑖
[31..16]

 ⨁ 𝑥3,𝑖
[15..0]
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𝑆𝑖
[47..32]

= 𝑥2,𝑖
[15..0]

 ⨁ 𝑥7,𝑖
[31..16]

, 𝑆𝑖
[63..48]

= 𝑥2,𝑖
[15..0]

 ⨁ 𝑥5,𝑖
[15..0]

 

 

𝑆𝑖
[79..64]

= 𝑥4,𝑖
[15..0]

 ⨁ 𝑥1,𝑖
[31..16]

, 𝑆𝑖
[96..80]

= 𝑥4,𝑖
[31..16]

 ⨁ 𝑥7,𝑖
[31..16]

 

 

𝑆𝑖
[111..96]

= 𝑥0,𝑖
[15..0]

 ⨁ 𝑥3,𝑖
[31..16]

, 𝑆𝑖
[127..112]

= 𝑥6,𝑖
[31..16]

 ⨁ 𝑥1,𝑖
[15..0]

 

 

where 𝑆𝑖  is the 128-bit keystream block at iteration 𝑖. 

The extracted bits are XOR’ed with the plaintext/ciphertext to encrypt/decrypt: 

 

𝐶𝑖 = 𝑃𝑖 ⨁ 𝑆𝑖  

 

𝑃𝑖 = 𝐶𝑖 ⨁ 𝑆𝑖  

 

where 𝐶𝑖  and 𝑃𝑖  denote the 𝑖𝑡  ciphertext and plaintext blocks, respectively. 

The chaotic scheme that is employed in the PRNG of the BloStream algorithm can achieve a higher level of 

complexity than classical binary systems due to its arithmetical properties. The deployed PRNG is a 

generator with a new type of design. It provides a strong non-linear mixing of the inner state between 

iterations. As opposed to almost all other designs currently available, it uses neither linear feedback shift 

registers nor S-boxes. The mechanism utilized in the PRNG of the proposed cipher is depicted in Fig. 3. 
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•   •  •

P1

C1

K1
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Fig. 3. Mechanism used in PRNG. 

 

 

Stream ciphers never assume the use of a single key more than once. In some algorithms, Initial Vector 

(IV) is used as another input to ensure the ability to use the same key more than once. The proposed cipher, 

producing the cipher text 𝐶0 that provides the possibility of deploying the same key for more encryptions 

as what the IV offers. This increases randomness in the internal states in addition to long distance that the 

plaintext passes through, when compared to IV. The time of this distance is considered at setup stage prior 

to encryption/decryption point, and the modern microprocessors overcome this problem. Fig. 4 illustrates 

algorithm feedback used in BloStream. 

As it is illustrated in Fig. 4, the data value involved in the cipher text is feedback into the RNG internal 

state (in Rabbit cipher) by XO Ring with the four 32-bit counter variables 𝐶𝑗 ,𝑖  of the internal state 

according to the even/odd condition of the fifth byte of the key stream. In this case, if the result of XO 

International Journal of Applied Physics and Mathematics

157 Volume 5, Number 3, July 2015

2.1.2. Cipher feedback



  

 

cipher text, Else 𝐶𝑗 ,𝑖[1]  ,𝐶𝑗 ,𝑖[3]  ,𝐶𝑗 ,𝑖[5] , and 𝐶𝑗 ,𝑖[7]   are modified. The 4th, 8th, 12th and 16th bytes 

respectively are selected from the previous cipher text to modify 𝐶𝑗 ,𝑖  counter variable and this will affect 

the new 16-bytes of the keystream generation in the next iteration which is utilized in the combiner 

function. The important advantage of the feedback is the capacity to share--or to contribute to — the round 

function in the encryption/decryption process and it cannot be isolated. In the proposed cipher, there is 

dependency between the feedback to the RNG and the output function (combiner) since the keystream 

being updated by the previous cipher text at the 𝑖𝑡  iterations is immediately used as the new keystream. 

This dependency decreases the speed of encryption/decryption by about the time of modifying 𝐶𝑗 ,𝑖  

variables of the internal states. The proposed cipher implementation employs simple instructions which 

relatively constitute a small part of the overall computation. Also it does not deal with this dependency 

because its effect on the encryption speed is very limited on the Pentium 4 processor. The cipher text is 

feedback to the RNG instead of the combiner round function because the round function is used merely as 

an obscurity following XOR. In doing so, the trails of analyzing cipher text will be reduced. Also, the 

combined output cannot be used as contributor in the next processes. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Fig. 4. Cipher feedback algorithm. 

 

2.1.3. Combiner 

The Combiner in the proposed stream cipher is implemented, using Rijndael round like function because 

of Rijndael varied properties. First, Rijndael round is applied as a nonlinear invertible combiner, since it 

provides efficient implementation on 8-bit processors, typical for current smart cards, and on 32-bit 

PRNG: Internal state 

expending the key 

8-32 bits state 
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8-32 bits state 
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Modified with 4 bytes of C.T4th, 8th, 12th, 
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Ring 5𝑡 byte with 0 × 01 is 0, then 𝐶𝑗 ,𝑖[0] , 𝐶𝑗 ,𝑖[2] ,𝐶𝑗 ,𝑖[4] ,and 𝐶𝑗 ,𝑖[6]  are modified with four bytes of 



  

processors, typical for PCs. Second, it achieves high speed and compactness on a wide range of platforms. 

Third, the simplicity and resistance against known attacks are the other merits of Rijndael [10]. There are 

four transformations in this combiner, Add Roundkey stream, Byte Substitution, Shift Rows, and Dynamic 

folding. The new combiner shares more than one character in the encryption/decryption process. A 

graphical description of the combiner (round function) is illustrated in Fig. 5. 

 

Add Round 

Keystream

Byte  Substitution

Row Shift

Dynamic Folding

Keystream (128-bits)

Ciphertext (128-bits)

Plaintext (128-bits)

 
Fig. 5. The combiner of BloStream. 

 

For the new combiner algorithm, the length of the cipher key is 128 bits. The input plaintext block is 

viewed as 4 × 4 matrixes of bytes called a state. Each round consists of four functions, which are listed 

below: 

1) Add Round Keystream Transformations: this refers to the transformation in encryption and 

decryption in which a Round Key is added to the state, using an XOR operation. The length of a 

Round Key equals the size of the state (see Fig. 6). 

 

 
Fig. 6. Add round keystream transformation. 
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Byte Substitution Transformations: the signifies of the transformation in encryption that processes the 

state, employing a nonlinear byte substitution table (S-box) that operates on each of the state bytes 

independently (see Table 2). 

 
   

 

                 

 

 

 

 

 

 

 

 

 

 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

 
In decryption, the same transformations are implemented but with the use of the inverse substitution box. 

Fig. 7 illustration the byte substitution transformations. 

 

 
Fig. 7. Byte substitution transformation. 

 

2) Shift Rows Transformations: this implies that the action of shifting rows is particularly simple, just 

performing left circular shifts of rows 1, 2 and 3, by amounts of 1, 2, and 3 bytes respectively. Row 0 

is not changed. In the decryption process, the action of inverse shifting rows is particularly simple, 

just performing right circular of rows 1, 2, and 3, by amounts of 1, 2, and 3 bytes. Row 0 is not 

changed (see Figure 8). 

 
Fig. 8. Shift row transformation. 

 

3) Dynamic Folding Transformations: this means that to perform the encryption and decryption process 

at the combiner, specific values are selected from the keystream generated by the PRNG. The 

direction for the new permutation and the position to start are extracted from those values to 

implement the dynamic folding as the following: 
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Table 2. The Substitution Table-S-box [x, y] in Hexadecimal [11]
Y

0 1 2 3 4 5 6 7 8 9 A B C D E F

X

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 CA A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 08 D8
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 EA 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 48 BD 88 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16



  

 The 1st byte of the keystream is AND’ed with 0 × 01, If the result = 0, the Horizontal Direction is right, 

Else, the Horizontal Direction is left  

 The 2nd byte of the keystream is AND’ed with 0 × 01, If the result = 0, the Vertical Direction is up, Else, 

the Vertical Direction is down 

 The 3rd byte of the keystream is AND’ed with 0 × 03, If the result = 0, the row is 0, if the result = 1, the 

row is 1, If the result = 2, the row is 2, If the result = 3, the row is 3 

 The 4th byte of the keystream is AND’ed with 0x03, If the result = 0, the column is 0, If the result = 1, the 

column is 1, If the result = 2, the column is 2, If the result = 3, the column is 3. 

Suppose the start point is (1, 2), after applied dynamic folding transformation, one of the four directions, 

illustrated in Fig. 9, is produced. 

 

 
Fig. 9. Dynamic folding four directions. 

 

Considering the four stages of the proposed combiner, it can be argued that the new combiner has 

attained certain properties that make it more challenging against cryptanalysis. First, XOR is the initial 

operation; this ensures an absolute security to the plaintext. Moreover, the remaining transformations 

themselves will be a real complexity against the opponent. Second, the utilization of key dependent S-box in 

the combiner ensures large difficulties since S-box is unknown to some scope, it increases the number of 

probabilities faced by the attacker. Third, since XOR represents uniquely the first point of meeting between 

the plaintext with the confusion sequence, the adversary cannot analyze the other parts that transmit the 

effect of bits among each other. The selection of Rijndael round function seems a better choice for 

BloStream algorithm. Fourth, the probability that some items appear with the existence of dynamic folding 

in the proposed cipher combiner encompasses both rows and columns and involves mutating elements 

depending on a specific issue. Consequently, dynamic folding augments probabilities against the 

cryptanalysis. This means adding some key dependent operations to the main body of the combiner before 

outputting each block. There are 16 locations in the (4×4) state array to start the new permutation 

according to a specific direction. Instead of utilizing a fixed arrangement for the state, there are 64 (4 × 4) 

state arrays. Thus the opponent cannot specify the correct order easily and this will increase the difficulties 

of cryptanalysis. 

2.2. Algorithm Inputs 

There are four types of inputs in BloStream algorithm. 

1) The key (𝐾): it is the main key of the algorithm. This key is 16-bytes (𝑘0,𝑘1,𝑘2,… ,𝑘15), which enters 

PRNG to produce the keystreams ( 𝐾𝑆1,𝐾𝑆2,𝐾𝑆3,𝐾𝑆4 ...). Each 𝐾𝑆  is 16 bytes 
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keystream(𝑘𝑠0,𝑘𝑠1,… , 𝑘𝑠15) in each iteration. 

2) The plaintext (P1, P2, P3, P4 ...): it is the real message to be encrypted. Each P is 16- bytes 

(𝑝0,  𝑝1,… ,  𝑝15) which enters the combiner. 

3) Text1 (P0): it is used only once in the algorithm. It is 16-bytes text (𝑝0,  𝑝1,… ,  𝑝15) utilized as a 

starting (virtual) plaintext which is input to the encryption/decryption function to produce the 

starting virtual cipher text C0, used in the feedback. 

4) Text2 (C0): it is a virtual cipher text that is generated before actual encryption and decryption 

process, each C0 is 16 bytes (𝑐0,  𝑐1,… , 𝑐15) used in the feedback. 

2.3. Algorithm Outputs 

The cipher text (C1, C2, C3, C4 ...): it is the result of combining keystream with plaintext. Each C is 

16-bytes (𝑐0, 𝑐1,… ,  𝑐15) for each round.  

2.4. Algorithm Stages 

Fig. 10 and Fig. 11 illustrate the mechanism employed in the algorithm stages as described below: 

 

This stage is performed by both the sender and receiver. The next state function defined in Rabbit 

algorithm is iterated four times. At the fourth iteration, 16-bytes (128-bit) are extracted to be assumed as 

virtual keystream KS0 which is input with the P0 to the combiner function to produce the cipher C0. Each 

KS0, P0, and C0 is known to both the encipherer and the decipherer. Then C0 is input to the PRNG to modify 

the 𝐶𝑗 ,𝑖  counter variables of the internal states. At this point the modified key setup is completed. The 

proposed algorithm now is ready to get the actual keystream (KS1, KS2 ...) to be deployed in the encryption 

and decryption processes. 

 

Here, the first 16-bytes block of plaintext P1= (𝑝0,𝑝1,… ,𝑝15) and 16-bytes keystream KS1= 

(𝑘𝑠0,𝑘𝑠1,… , 𝑘𝑠15)are input to the combiner (forward round function) and the output is 16-bytes ciphertext 

C1= (𝑐0, 𝑐1,… , 𝑐15). But the encryption of the second 16-bytes block of plaintext P2 requires returning the 

previous block of cipher text C1 to the RNG. This pervious cipher text affects the next 16-bytes keystream 

KS2 generation. Then the second 16- bytes keystream KS2 and the second 16-bytes block of plaintext P2 

enter the encryption function to produce the second 16-bytes block of cipher text C2. Also, the same 

mechanism is used to encrypt P3, P4... (see Fig. 10). 

 

 
Fig. 10. Encryption stage. 
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2.4.1. Setup stage

2.4.2. Encryption stage



  

 

When the receiver obtains the cipher text C1, C0 is input to combiner (inverse function) with KSl to get P1 

as the first plaintext block. To get P2, C1 is input to PRNG to get KS2 which is combined with C2 to produce 

P2. The same process is followed to decrypt C3, C4… (see Fig. 11).  

 

 
Fig. 11. Decryption stage. 

 

3. Blostream vs. Others 

In this section BloStream is compared with other similar stream ciphers such as Chameleon [12] and RC4 

[13], especially with regard to performance and memory requirements. Chameleon is built from a new 

cryptographic primitive, called a Mutating S-box that shares some basic internal structures with RC4. In RC4 

and Chameleon, there is an obvious symmetry between the state and the cycle that produces a clear biasing 

in the output, but the Initial Vector is employed to modify the state which is time consuming. In BloStream 

design, there is no symmetry between the state and the cycle. Two different algorithms are required (Rabbit 

PRNG and Rijndael-like round function) that avoid biases and make the cryptanalysis more complicated. 

Table 3 explains the speed measuring and memory requirement of the proposed cipher. 
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Table 3. BloStream Speed Measuring and the Required Memory
Cipher Encryption

Operation/byte
Decryption

Operation/byte
Speed
MB/S

Memory
Requirements

in Bytes

BloStream 4 operation 4 operation 66 MB/S key setup: 68
Enc. / Dec. : 276

Table 4 summarizes the performance evaluation and memory requirements of RC4, Chameleon and 

BloStream in terms of key setup, encryption, decryption, and memory bytes. 

Table 4. BloStream vs. RC4 and Chameleon
Cipher Key Schedule

without IV
Encryption

16-byte
Decryption

16-byte
Memory

Requirements

RC4 3328 operation 768 operation 2560 operation 256 Bytes

Chameleon 3300 operation 80 operation 112 operation 513 Bytes

BloStream 1987 operation 64 operation 64 operation 344  Bytes

From the presented results, it is inferred that BloStream has better performance than RC4 and Chameleon 

stream ciphers. Moreover, the memory requirements are less in the proposed cipher. 

2.4.3. Decryption stage



  

4. Security Analysis with Possible Attacks 

Several possible attacks are surveyed to examine the efficiency of Blostream. 

1) Brute-force attack. With a key length of 128 bit, there are 2128 possible keys, which are 

approximately 3.4 × 1038 keys; moreover, Text 1 is changed with each communication. Thus, a 

brute-force attack appears impractical. 

2) Ciphertext only attack. The plaintext data that is input to the combiner of BloStream algorithm is 

randomized, using the key stream sequence by XOR. Then this data is treated by many 

transformations of the round function that include SubBytes, Shift Rows, and dynamic folding. Then 

the letter frequency statistics will be concealed and the result is random-like output. Therefore, it is 

difficult to applied cipher text only attack. 

3) Known plaintext attack. In the round function, each byte is XOR'ed with the key stream and then 

substituted, using keyed S-Box. The unknown values of the key stream and the shuffled S-Box make 

the attacker unable to determine the plaintext byte. Also, the dynamic folding, according to the key 

stream selected, changes dynamically in every iteration. This forms a more sophisticated state when 

deciphering the ciphertext byte. 

4) Differential attack. Differential attack is invalid to apply to BloStream because the employed tables 

are ‘keyed’, i.e. initialized by a particular key. This implies that the attacker does not have a prior 

knowledge of a particular table arrangement. 

5) Distinguishing and Correlation attacks. The nonlinear combiner of the proposed cipher has been 

defined to use an essential amount of inputs, e.g. virtual plaintext and the shuffled (or key dependant) 

S-box to perform strong transformations. In addition, the nonlinear equations of the PRNG make this 

kind of attack inapplicable.  

5. Randomness Tests of the Keystream 

Some statistical tests on Rabbit were performed; NIST Test Suite [14], the DIEHARD battery of tests [15] 

and the ENT test [16]. These tests were performed on the internal state as well as on the extracted output. 

Furthermore, the randomness property of the new PRNG is analyzed by performing the following statistical 

were adopted in these tests. The keystream generated in the proposed PRNG successfully passed all five 

statistical tests for every run and no weaknesses were found in any case. Table 5 shows the results of 

applying the statistical equations. 
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Table 5. Statistical Test of PRNG of the Proposed Algorithm

Type of Tests KEY1=256 bit KEY2=384-bit KEY3=512-bit Pass Value

Frequency Test 0.5625 0.5104167 0.28125 must be≤ 3.841
Run Test 0.41151961 0.26455128 0.021514893 must be≤ 22.362

Poker Test 2.463904 4.283115 1.721505 must be≤ 14.067
Serial Test 0.67282104 0.66711426 1.9320679 must be≤ 5.991

Autocorrelation Test
Shift 1
Shift 2
Shift 3
Shift 4
Shift 5
Shift 6
Shift 7
Shift 8
Shift 9

Shift 10

0.020383043
0.029912446
0.346075680
0.133855480
0.158414360
0.313954110
0.005365565
1.230112000
0.078361400
0.147380400

1.9317618E-4
0.1895285500
0.1825514100
0.0850798800
0.3287709400
0.1980387100
0.0055902110
0.4823570300
0.1367103000
0.0019449207

0.42174298000
0.24039537000
0.26257980000
1.12325324E-4
0.80725235000
1.32431070000
0.34034240000
0.55453010000
0.39982912000
0.15548588000

must be≤ 1.960

tests: Frequency test, Serial test, Poker test, Runs test, and Auto-correlation test [1]-[17]. Different key sizes 



  

6. Conclusion 

The mechanism adopted in this research is a modem stream cipher, called Blostream, with a combining 

function which excels the weak classical concept of simple XOR combiner, transforming it into a stronger 

form which is suitable for computer cryptography. A complete description of the algorithm, an evaluation of 

its performance, security properties and implementation aspects were examined. Because of its simplicity 

in implementation and its small processer size, BloStream is flexible. Furthermore, the analysis 

demonstrated that the proposed cipher is fast and highly secure. 
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