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Abstract: In this paper, by using the monotone iterative method and Daher's fixed point theorem and an 

inequality of noncompact measure of Monch and Von Harten, we study the existence of maximum solution 

and minimal solution and the iterative approximation of the following initial value problem for O.D.E with 

delay in Banach spaces u’ = f(t, u(t), ut), ut0 = ψ0 and give a sufficient condition of the existence of solutions of 

the above problem. The obtained results improve and generalize the corresponding results. 
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1. Introduction 

Delay differential equations have been the important topic of research in recent years and many 

problems of fields of science and technology can be converted into the problems of delay differential 

equations. The existence of solutions of delay differential equations in a Banach space have been studied by 

many authors (see [1-7]). In this paper, we consider the following initial value problem of delay differential 

equation 

 

0 0( , ( ), ),t tu f t u t u u                                     (1) 

 

In this paper, by using the monotone iterative method and Daher's fixed point theorem and an inequality 

of noncompact measure of Monch and Von Harten, we study the existence of maximum solution and 

minimal solution and the iterative approximation of (1), and give a sufficient condition of the existence of 

solutions of (1). The obtained results improve and generalize the corresponding results in [1]. 

2. Preliminaries 

Let 
*E denote the dual of a real Banach space E  with norm .  and EK   be a cone, that is, a 

closed convex subset such that K K   for any 0  and { } { }K K    . By means of K  a 
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with norm . ,  
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partial order   is defined as uv   iff Kvu  . We let  

 
* *{ : ( ) 0K E u     for all }u K . 

 

A cone K  is said to be normal if there exists a real number 0   such that  uv 0  implies 

uv  , where   is independent of vu, . We shall always assume in this paper that K  is a normal 

cone. 

Let ,   denote the measure of noncompactness of Kuratowski and Hausdorff respectively. Their 

definitions are as follows 

 
( )

1
( ) inf{ 0 :

n

i
i

B B U M


 


    for some 
iM E  with diam ( ) }iM    

 

and 

 
( )

1
( ) inf{ 0 : ( , )

n

i
i

B B U S x


  


    for some }ix E  , 

 

where B E  bounded, ( , ) { : }i iS x x E x x      . 

If F  is a subspace of E  and M F  is bounded, then we define 

 
( )

1

( ) inf{ 0 : ( , )
n

F i
i

M M S z


  


     for some }iz F  . 

 

We have 

 

( ) ( ) ( ) 2 ( )FB B B B        for B F  bounded. 

 

For these and further properties we refer to Deimling [6] and Sadovskii [8]. 

For any  , ,v w C I E  such that ( ) ( )v t w t  on I , we define the conical segment 

 

   , { , : }v w u C I E v u w    . 

 

From the definition of  ,v w  and the normality of the cone K , we  know that  ,v w  is a bounded 

closed convex subset of  ,C I E . 

For any  ,x C I E , t I , we define  ( ) ( ), ,0tx s x t s s     .  Clearly, we have 0tx E . For any 

bounded set       1

0 0 0 0, , ,B C I E C I E I t t T    , we define  

 

       0: , :t tB t t B B B E        . 
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Let us list the following assumptions for convenience: 

1) For any bounded set    1

0 , ,B C I E C I E  , 

 

   
 

  
,0

max , ,t t
s

f I B t B L B s t I


 
 

    for some 0L  . 

 

2)    1

0, , ,v w C I E C I E   with    v t w t  on I ,      
0 00t tv s s w s   on  , 0  such 

that    , , , , ,t tv f t v v w f t w w    on I . 

3) For any                2 1, , t tt I v t y t x t w t v s s s w s        on  , 0 , 

             
0

1 2 1 2, , , ,f t x t f t y t M x t y t N s s ds


   


            , 

where , 0M N  . 

4) For any bounded set    1

0 , ,B C I E C I E  , 

 

   
 

  
,0

max ,t t
s

f t B t B L B s t I


 
 

    , for some 0L  . 

 

5) For any bounded set    1

0 , ,B C I E C I E  , 

 

      ,tf t B t B L B t I     , for some 0L  . 

 

6)    1

0, , ,v w C I E C I E   with    v t w t  on I such that there are 0M  ， 0N   

satisfying  

 

         
0

, , 0t t tv f t t M v N v s s ds


    


       
   , 

 

         
0

, , 0t t tw f t t M w N w s s ds


    


       
    

for all  ,v w   and 
*K . 

In the proof of our main results the following lemmas are necessary. See [9],[10] for details. 

Lemma 2.1 [9] (Daher's fixed point theorem) Let X  be a nonempty, bounded, closed and convex 

subset of a Banach space E . Let XXA :  be a continuous mapping such that for every countable 

subset C X ，    AC C   whenever C  is not relatively compact. Then A  has a fixed point. 

Lemma 2.2 [10] Let E  be a Banach space and   the Kuratowski measure of noncompactness on E . 

Let   
1nnx  be a sequence of continuously differentiable functions from  baJ ,  to E  such that 

there is some  baL ,1  with  ( ) ( )nx t t  and 
' ( ) ( )nx t t  on J . Let      

1


nn txt  . 

Then  t  is absolutely continuous on J  and 
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     ' '

1
2 n n

t x t 


  a.e. on J . 

Lemma 2.3 [10] Let E  be a separable Banach space and   the Hausdorff measure of 

noncompactness on E . Let  nx  be a sequence of continuous functions from  baJ ,  to E  such that 

there is some   baL ,1  with ( ) ( )nx t t  on J . Let   

 

     
1n n

t x t 


 . 

 

Then  t  is integrable on J  and 

 

    
1

b b

n
a a

n

x s ds s ds 


 
 

 
  . 

 

Corollary 2.1 Let E  be a Banach space and   the Kuratowski measure of noncompactness on E . 

Let  nx  be a sequence of continuously differentiable functions from  baJ ,  to E  such that there is 

some  baL ,1  with    ttxn   and ' ( ) ( )nx t t  on J . Let      
1n n

t x t 


 . Then 

 t  is integrable on J  and  

 

    
1

2
b b

n
a a

n

x s ds s ds 


 
 

 
  . 

 
Proof. The absolute continuity of   follows from  

 

            
 

1
1

'

1

2sup ( ) 2 , .

t

n n nn s
n

t t

n
s sn

t s x t x s x d

x d d for t s J

     

    






      
 

  



  　　 　

 

 

So  t  is integrable on J . 

Let  

 

  : 1nS x t n and t J Q   　 　  and F spanS , 

 

where Q  is a rational number set. Then F  is a separable closed subspace of E  and  

 

       : 1 , : 1, ,
b

n n
a

x s ds n F x t n t a b F     . 

 
By the properties of   and Lemma 2.3, we have 
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     
         

1 1

1 1

2

2 2 2 .

b b

n F n
a a

n n

b b b

F n nn na a a

x s ds x s ds

x s ds x s ds s ds

 

  

 

 

   
   

   

  

 

  

 

 
The proof is complete. 

3. Main Results 

In [1] S. W. Du established the following 

Theorem 3.1 Assume that the cone K is normal and assumptions    1 2,A A  and  3A  are satisfied. 

Then there exist two sequences    ,n nv w  on I  such that 

 

1 2 2 1n nv v v v w w w w           

 

and 

 

       lim , limn n
n n

v t t w t t 
 

   

 

uniformly on I , where ,  are minimal and maximal solutions of (1).  

Our main aim is to prove the following Theorem 3.2 and Theorem 3.3. 

Theorem 3.2 Assume that the cone K  is normal and assumptions    2 3,A A  and  4A  are 

satisfied. Then there exist two sequences    ,n nv w  on I  such that 

 

1 2 2 1n nv v v v w w w w           

 

and    

 

       lim , limn n
n n

v t t w t t 
 

   

 

uniformly on I , where ,   are minimal and maximal solutions of (1) 

Note. Obviously, the condition of  4A  is weaker than that of  1A . The result of Theorem 3.2 is the 

extension of that of Theorem 3.1. 

Theorem 3.3 Assume that the cone K  is normal and assumptions  5A  and  6A  are satisfied. Then 

there exists a solution  tu  of  1.1  such that      twtutv   on I . 

4. The Proof of Theorem 3.2 

We first, as in [1], consider the linear differential equation with delay 

 

  
0 0, , ,t tu F t u t u u    ,                              (2) 
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where              
0

, , , ,t t t tF t u t u f t t M u t t N u s s ds


   


            and  ,v w . 

As the proof of Lemma 3.1 in [1], (2) has an unique solution  tu . Thus we define the mapping A  by

uA  . 

Concerning the mapping A ,  the following properties is proved in [1]. 

1)     , ; , , ;v Av w Aw A v w v w  　  

2) 1 2A A   if  1 2 1 2, , ,v w      and 
0 01, 2, 0t t    . 

 

 

 1 1, 1,2,n n n nv Av w Aw n      

 

with 0 0,v v w w  . Obviously, 

 

0 1 2 2 1 0n nv v v v v w w w w w             

. 

Thus    
0,0  nnnn wv  are uniformly bounded on I . By (2) and  4A ,   

1 1
,n nn n

v w
 

   are uniformly 

bounded on I , too. Therefore,   
0,0  nnnn wv  are equicontinuous. 

Let   

 

                , 00
, ( ) { ( )} , , , , ,0 .n t n t n t tn

Z t v t Z s v s m t Z t m s Z s t I s  
        

 

Obviously the sequence  
0nnv  satisfies the conditions of Lemma 2.2 and Corollary 2.1. Using the 

properties of measure of noncompactness and the condition  4A  , we have, by Lemma 2.2 and Corollary 

2.1, 

 

     
1

2 n n
D m t v t


  

           
0

1 1, 1 , 1,
1

2 , ,n n t n n n t n t
n

f t v t v M v t v t N v s v s ds


    




 
          

 
  

            
0

1 1, , 1,
1 1

2 , , 4 2n n t n t n t
n n

f t v t v Mm t N v s v s ds


   
 

 
    

 
  

        
0

2 , , 4 8t tf t Z t Z Mm t N Z s ds


 


     

 
   

 
 

,0 ,0
2 max 4 8 maxt t

s s
L m s Mm t N m s

 


   
    

 
 

 
,0

2 4 8 max t
s

L M N m s



 

   . 

 

Noting   
0 0 0tm    , the above estimation yields   0m t   on I  by a standard result 

(Theorem 1.6.6 in [11]). So   
0n n

v t


 is relatively compact for each t I . Similarly,   
0n n

w t


 is 
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relatively compact for each t I . Therefore, by the Ascoli-Arzela theorem, the sequences   
0n n

v t


 and 

  
0n n

w t


 have uniformly convergent subsequences. This, together with the monotone character of each 

one of these sequences , implies that full sequences converge uniformly on I . Let 

       lim , limn n
n n

v t t w t t 
 

  , where the convergence is uniform on I . By (2),    ,t t   are 

solutions of (1). Moreover, if  tu  is a solution of (1) such that  wvu , , then by using induction 

arguments, we can show that nn wuv   holds for all n . This implies that v u w   on I , which 

means that ,  are indeed minimal and maximal solutions of (1) and the proof is complete.  

5. The Proof of Theorem 3.3 

The proof of Theorem 3.3 will be completed by two steps. 

Step 1. Assume that the number T  is small enough such that 

 

 
1

0
2 2 4

T
L M N

 
 

. 

 

we first consider the linear IVP of differential equations with delay 

 

  
01 0, , ,t tu F t u t u u     ,                            (3) 

 
where 

 

             
0

1 , , , ,t t t tF t u t u f t t M u t t N u s s ds


   


            

 

and  ,v w . 

As the proof of Lemma 3.1 in [1], (3) has an unique solution u . Thus we define the mapping A  by 

uA  . 

Concerning the mapping A , there are the following properties. 

1) A  maps the sector  ,v w  into itself. 

2)    : , ,A v w v w  is continuous. 

In fact, for any  ,v w  and 
*K ,  we let  

               , , , , ,0t t tA u P t v t u t P s v s u s t I s           , 

Then 

      D P t v t u t     

           

           

0

0

( , ,

, , )

t t t

t t t

f t t M v t t N v s s ds

f t t M u t t N u s s ds





    

   





      

      



　　　
 



  

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 
 

 

 

 

 

International Journal of Applied Physics and Mathematics

122 Volume 5, Number 2, April 2015

  

Using the assumption 6( )A  with   , the above inequality implies 

 

           
0

t tD P t M v t u t N v s u s ds





       

   dssPNtMP t
0

  

 
 ,0

max ( )t
s

M N P s



 

 
. 

 

Noting 
0

0tP  , as the proof of Lemma 3.2 in [1], we have ( ) 0P t  on I . Since 
*K  is arbitrary, we 

have ( ) ( )v t u t  on I . Similarly, we can obtain ( ) ( )u t w t   on I . Therefore    , ,A v w v w , i.e. (i) 

holds. 

To prove (ii), let  ,nu v w , lim n
n

u u


 . Obviously  ,u v w . Because the interval 0, 0I t t T     is 

compact and f  is continuous, it is easy to see   

 

     ,, , , , 0n n t tf t u t u f t u t u   as n ,                     (4) 

 

     , ,, , , , 0n n t m m tf t u t u f t u t u   as ,m n                   (5) 

 

uniformly on I . 

By (5) and  

 

          
0

. ,, , , ,
t

n m n n s m m s
t

Au t Au t f s u s u f s u s u ds    
 

        
0

t

n m m n
t

M Au s Au s M u s u s ds         
 

        
0

0 0

, , , , ,
t

n s m s m s n s
t

N Au Au d u u d ds
 

     
 
           

 
 

we have 

 

 
       , ,max , , , , .

1
n m n n t m m t n m

t I

T
Au Au f t u t u f t u t u M N u u

M N T


 

      
  

 

 

Hence 

 

0n mAu Au   as ,n m . 

 

Since E  is a Banach space, there exists a u  such that lim n
n

Au u


 . It is easy to see , from the 

definition of A  and (4) , that  
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lim n
n

Au u Au


  . 

 

Therefore    : , ,A v w v w  is continuous. 

Now we will verify that the conditions of Lemma 2.1 are satisfied.  For any countable subset 

 ,C v w with   0C  , we  let      :n nt Au t u C   . Obviously the sequence 

  
1n n

Au t


 satisfies the conditions of Lemma 2.2.  Using the properties of measure of noncompactness, 

we have, by Lemma 2.2 and Corollary 2.1, 

 

     2 :n nt Au t u C 
 

   
 

 

            
0

, , ,2 , , :n n t n n n t n t nf t u t u M Au t u t N Au s u s ds u C





            

         2 2 2 4 4L C M C M AC N AC N C          

       2 4 2 2 4M N AC L M N C         a.e. on I . 

 

Thus, integrating this from 0t  to t ,  0 0,t t t T  , and rearranging, we have  

 

 
 

 
   

2 2 4

1 2 4

T L M N
AC C C

M N T


  



 
 

 
. 

 

By Lemma 2.1, we conclude that there exists a  ,u v w  such that uAu   and u  is a solution of (1) 

on I . 

Step 2. If T  is not sufficiently small, we divide the interval  0 0,t t T  into k  equal subintervals 

0 1 0kt t t t T      such that the length 0 1i iT t t   of each subinterval meets the needs of step 1, 

i.e., 
 0

1
0

2 2 4
T

L M N
 

 
. By step 1, there exists a solution   1u t  of (1) defined on  0 1,t t . 

We consider the following IVP  

 

    

     
1

1 2, , , ,

, ,0

t

t

u f t u t u t t t

u s u t s s 

   


    １ １

，

．
                        (IVP)1 

 

By step 1, there exists a solution u2  of  
1

IVP  defined on  2,t t１ . Similarly, we consider the 

following IVP  

 

    

     

1, , , ,

, ,0
i

t i i

t i i

u f t u t u t t t

u s u t s s 


   


   

，

．
                           (IVP)i 
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By step 1, there exists a solution 1iu   of  
i

IVP  defined on  1,i it t  . It is easy to verify that 

      1, , 1,2, ,i i iu t u t t t t i k     

is a solution of (1) on I  such that  ,u v w . The proof is complete. 
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