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Abstract: Inspired by Kirby’s work in which constructed the Poincare 3-sphere 𝐒𝟑/𝟐𝐈 by an 𝐄𝟖-plumbing, 

we worked out a general and systematic argument to show that other spherical 3-manifolds 𝐒𝟑/𝟐𝐎, 𝐒𝟑/𝟐𝐓 

and 𝐒𝟑/𝟐𝐃𝐧 can be obtained from a plumbing construction by the Dynkin diagrams 𝐄𝟕, 𝐄𝟔, and 𝐃𝐧+𝟐, 

respectively. 
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1. Introduction 

Topologists have a construction called the plumbing of vector bundles that was used in Milnor’s work [1] 

on the group of homotropy spheres Θ4𝑘−1. Precisely, when 𝑘 > 1, consider the cotangent bundle over 𝐒
2𝑘 

and plumb eight copies of it according to the 𝐸8 diagram’s structure. The boundary forms a (4𝑘 −

1)-manifold which generates Θ4𝑘−1. When 𝑘 = 1, the same recipe recovers the famous Poincare homology 

3-sphere 𝐒3/2𝐼 [2], where 2𝐼 denotes the binary icosahedral group, which is the lift of the icosahedral 

group 𝐼 along the double cover 𝑝: 𝑆𝑈(2) → 𝑆𝑂(3). There is a canonical isomorphism 

 𝑆𝑈(2) = {(
𝑧1 −𝑧2̅
𝑧2 𝑧1̅

) : 𝑧1, 𝑧2 ∈ ℂ, |𝑧1|
2 + |𝑧2|

2 = 1} ≅ 𝐒3 (1) 

The Poincare 3-sphere belongs to a family called spherical 3-manifolds. Those are quotients of 𝐒3 by 

finitely many rotations. In particular, because there is a group structure on 𝐒3 = 𝑆𝑈(2) coming from the 

multiplication of quaternions, the group 𝑆𝑈(2) embeds into 𝑆𝑂(4) by the self action of 𝐒3. Thus, given a 

finite subgroup 𝐺 ⊂ 𝑆𝑂(3), denote 2𝐺 = 𝑝−1(𝐺), then 2𝐺 can be viewed as a finite subgroup of 𝑆𝑂(4), 

and we can form 𝐒3/2𝐺, with 2𝐺 being its fundamental group. Equivalently we can understand 𝐒3/2𝐺 as 

a coset space 

  (2) 

Given integers 𝑝, 𝑞, 𝑟 > 1, following Coxeter and Moser [3], we let ⟨𝑝, 𝑞, 𝑟⟩ denote the group defined by 

the presentation 

 〈a, b, c: ap = bq = cr = abc〉 (3) 
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It is a finite group if and only if 𝑝−1 + 𝑞−1 + 𝑟−1 > 1. The only solutions are (2,3,5), (2,3,4), (2,3,3) 

and (2,2, 𝑛), 𝑛 > 1. In these cases, 𝑎𝑏𝑐 is of order 2, and the groups correspond to 

(1) 𝐺 = 𝐼 the icosahedral group of order 60, 2𝐺 = ⟨2, 3, 5⟩. The generators 𝑎, 𝑏, 𝑐 are sent by 𝑝 to the 

rotations of an icosahedron whose axis contains a pair of midpoints of edge, centers of face and vertices, 

respectively. 

(2) 𝐺 = 𝑂 the octahedral group of order 24, 2𝐺 = ⟨2, 3, 4⟩.  

(3) 𝐺 = 𝑇 the tetrahedral group of order 12, 2𝐺 = ⟨2, 3, 3⟩.  

(4) 𝐺 = 𝐷𝑛 the dihedral group of order 2𝑛, 2𝐺 = ⟨2, 2, 𝑛⟩. Here we are using the obvious embedding 

𝑂(2) ↪ 𝑆𝑂(3). 

Remark. Strictly speaking the above subgroups 𝐺 ⊂ 𝑆𝑂(3) are only defined up to conjugacy. The 

resulting spaces 𝐒3/2𝐺 are then well-defined up to homeomorphism. 

A parallel to this story is, the theory of Dynkin diagrams, originally from the Lie theory. The goal of this 

paper is to explore this beautiful connection. Fig. 1 below shows the five simply laced Dynkin diagrams: 

 

 
Fig. 1. Dynkin diagrams. The subscript indicates the number of vertices. 

 

They are related to our 3-manifolds via the core result of this paper: 

Main theorem. Consider the cotangent bundle 𝐸 over 𝐒2. A plumbing construction of 𝐸 according to 

the diagrams 𝐴𝑛, 𝐷𝑛, 𝐸6, 𝐸7, 𝐸8 gives a 4-manifolds whose boundary is homeomorphic to 𝐿(𝑛 + 1,−1) 

(the lens space), 𝐒3/2𝐷𝑛−2, 𝐒
3/2𝑇, 𝐒3/2𝑂 and 𝐒3/2𝐼, respectively. 

The rest of the paper is organized as follows. Section 2 is preparatory, it introduces all the relevant 

topological objects such as Seifert fibered spaces, which serve as a bridge in our proof via the classification 

theorem. The key step is in Section 3, where it carries out an explicit invariant theoretic computation that 

enables us to apply the method of Kirby [4] to the remaining cases. The main theorem can be viewed as a 

manifestation of the McKay correspondence. Author includes this further background as well as the thought 

processes in a brief commentary chapter at the end. 

2. Topological Theory 

 Plumbing 

Throughout, the topological object we plumb together will be an oriented plane bundle 𝐸 over 𝐒2. Up to 

isomorphism, such a bundle is in 1-1 correspondence with an integer 𝑛, its Euler number. We can define 

the Euler number of 𝐸 without the notion of cohomology or self-intersection number: note that restricted 

over the two hemispheres, 𝐸 is the trivial bundle 𝐷2 × 𝐑𝟐. The datum of 𝐸 is just a transition map 

𝑡: 𝐒1 →  𝑆𝑂(2) at the equator. 

Definition 2.1. We say that 𝐸 is of Euler number 𝑛, if 𝐸 is isomorphic to the bundle with the transition 

 𝑡(𝜃) = (
𝑐𝑜𝑠(𝑛𝜃) − 𝑠𝑖𝑛(𝑛𝜃)

𝑠𝑖𝑛(𝑛𝜃) 𝑐𝑜𝑠(𝑛𝜃)
) , 𝜃 ∈ [0,2𝜋] (4) 
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That is, 𝐸 is obtained by gluing two 𝐷2 × 𝐑𝟐 along the equator by a 2𝑛𝜋 twist. 

For example, inverting the orientation of 𝐸 changes 𝑛 to −𝑛. The Euler number of the tangent bundle 

𝑇𝐒2 is 2, the Euler characteristic of 𝐒2. 

Next, we look at two different equivalent descriptions of the 𝐸8-plumbing explained in Kirby’s work [4]. 

1) Description 1: The plumbing process, the bulk of the first description, is conducted through the 

following steps. Given 2 copies of 𝐸 (e.g., tangent bundle over 𝑺2 of Euler number 2 or cotangent bundle 

of Euler number −2), we can perform the following construction: 

a) Take the disk bundle 𝐷(𝐸), which is taking a unit 2-disk centered at the points on the base space 

of the plane bundle. 

b) In each 𝑺2 take a small disk 𝐷2, and consider the restricted bundle 𝐷(𝐸)|𝐷2 = 𝐷2 × 𝐷2. 

c) Glue two 𝐷(𝐸), 𝐷1(𝐸) and 𝐷2(𝐸), along 𝐷
2 × 𝐷2 by the map 𝜏(𝑥, 𝑦) = (𝑦, 𝑥). In other words, 

we are identifying a point (𝑥, 𝑦) ∈ 𝐷2 × 𝐷2 ⊆ 𝐷1(𝐸) with (𝑦, 𝑥) ∈ 𝐷
2 × 𝐷2 ⊆ 𝐷2(𝐸). 

 

 
Fig. 2. Red lines enclose the disks whose bundle is plumbed. 

 

Fig. 2 shows that the points in one enclosed region will be identified with their corresponding point in the 

other; this process producing a compound space containing the two bundle spaces. 

Definition 2.2. The resulting space of 2.1 is the plumbing of 𝐸 according to the 𝐴2 diagram (i.e., two 

vertices joined by an edge). Clearly the space is independent of the small disks chosen. 

We now explain how to plumb 𝐸 according to an arbitrary simple graph: each vertex in the graph 

represents a copy of 𝐷(𝐸) and each edge represents a construction as above. Using this same method and 

plumbing 8 copies of 𝐸 together according to the 𝐸8 Dynkin diagram, we construct the 𝐸8-plumbing. 

Notice that the choice of the neighborhood, or the 2-disk in 𝑺2 to do the plumbing does not change the 

homotopy type. 

2) Description 2: In the second description, we will consider, as an essential component, the 

construction of A2 diagram closely with the space 𝑺3 − Λ, where Λ is a link of circles. Specifically, we will 

constantly consider the boundaries of the plumbed and manipulated parts to create 𝑺3 − Λ and utilize its 

properties. For the A2 diagram, Λ is just two linked circles, or solid tori to be specific. We will refer back 

to the beginning of Section 2.1 and Definition 2.1 extensively for this description. 

We look at the 𝐴2-plumbing, again, and give it an equivalent description [4]. Note that 𝐷(𝐸) is obtained 

by gluing the disk bundles over the two hemispheres, two 𝐷2 × 𝐷2 = 𝐷4 along a solid torus 𝑺1 × 𝐷2 ⊂

∂𝐷4 by a 2𝑛𝜋 twist. This solid torus is the 2-disk bundle over the common boundary (i.e., equator) of the 

two hemispheres. A more clearly presented relationship between the different components involved in the 

plumbing description is given below: 

 𝑆3 = 𝜕𝐷4 = 𝜕(𝐷2 × 𝐷2) = 𝜕(𝐷(𝐸)|𝐷2) = (𝜕(𝐷2) × 𝐷2) ∪ (𝜕(𝐷2) × 𝐷2) (5) 

We first take the 2-disk bundle of ONE of the two hemispheres, equivalent to picking a disk on 𝑺2 in 

description 1, 𝐷2 × 𝐷2 = 𝐷4 in each 𝐷(𝐸) to do the plumbing. Recall the map 𝜏 we use for plumbing is 

in Eq. (3) of Section 2.1. The resultant space/object here through the first step merges into one 4-disk. We 

will look at how the map acts on the disk bundles over the common boundary, as those are the parts that 
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yield constructive results for our purposes. We must track where the two tori go. Through 𝜏, the second 

solid torus 𝑺1 × 𝐷2 is identified with 𝐷2 × 𝑺1 in the first 𝜕𝐷4, which is linked with the first solid torus 

𝐒1 × 𝐷2. The plumbing sends the base space coordinates to the fiber space, and vise versa. Note that even if 

those two solid tori don’t "seem" connected like in a link, torus 2 can be continuously deformed into torus 3 

that forms a link with torus 1. 

 

 
Fig. 3. A family of 3-manifolds arising from the plumbing construction. 

 

In the compound space we now have, if we take the boundary of the resultant plumbed object, we will get 

𝐒3 − Λ. The solid tori are 3-dimensional, homotopic equivalent to solid tori residing in the boundary of 𝐷4, 

and only considering the boundaries of the solid tori, 𝐓 results in the removal of links from 𝐒3. 

Then we glue back the remaining unplumbed 𝐷4, the other hemisphere’s disk bundle, in each 𝐷(𝐸) to 

the boundary 3-sphere, filling up the hollowed link. When we glue back the 2-disk bundle, we are applying 

the naturally induced transtion map 𝑡: 𝐒1 × 𝐷2 → 𝐒1 × 𝐷2, as defined in Eq. (2). 

In conclusion, take a 4-disk and dig off two linked solid tori at its boundary, the 3-sphere, then in each 

place glue back a 4-disk by the transition map of 𝐸, 𝑡, this recipe produces a space homotopy equivalent to 

the 𝐴2-plumbing of 𝐸. Notice that the solid tori glued back carries a 2 · 2𝜋 twist, and this twist will affect 

the homotopy type of the space. 

This description up to homotopy equivalence works for an arbitrary simple graph, and will be used in the 

computation of the fundamental group in the next section. Take the 𝐸8 diagram for example, we have a 𝐷4 

minus 8 solid tori forming an 𝐸8 link in 𝜕𝐷
4, and in each place a 𝐷4 is attached. Again, note that we can 

move and/or change the size of small plumbing disk in each 𝐒2 without changing the final homotopy type, 

so all plumbing areas merge into one single 𝐷4. 

 Compute the Fundamental Group 

This section motivates our main theorem. Through an argument of computing the fundamental group in 

Kirby’s paper [4], we provide some evidence of the main results before actually getting to the proof. 

Take again the 𝐸8 diagram as example in the second description in the last section, consider the 

boundary 3-manifold 𝑀. We have 𝑀 = 𝑈 ∪ 𝑉1 ∪ …∪ 𝑉8,  

where 𝑈 ≃ 𝐒3 − 𝐸8, the 3-sphere minus 8 solid tori, and 𝑉𝑘 ≃ 𝐒
3 − 𝐒1 ≃ 𝐒1 (1 ≤ 𝑘 ≤ 8), the 3-sphere 

minus one solid tori. Each 𝑉𝑘 is attached to 𝑈 by the transition map of 𝐸, and 𝑈 ∩ 𝑉𝑘 ≃ 𝐒
1 × 𝐒1, a torus. 

We thus apply the Van Kampen theorem to compute 𝜋1(𝑀). 

We use a standard algorithm of computing 𝜋1 of a link complement [5]: every crossing provides a 

conjugacy relation among the generators. So 𝜋1(𝑈) is generated by 8 elements as in the picture below, and 

every pair of adjacent generators commute. 

Now say 𝜋1(𝑉𝑘) = 𝐙 generated by 𝑏𝑘 , and 𝜋1(𝑈 ∩ 𝑉𝑘) = 𝐙2 generated by 𝑥𝑘 and 𝑦𝑘, where 𝑖𝑘(𝑥𝑘) =

𝑏𝑘 , 𝑗𝑘(𝑥𝑘) = 𝑎𝑘 , 𝑖𝑘(𝑦𝑘) = 0, and 𝑗𝑘(𝑦𝑘) is the loop in the boundary torus that wraps 𝑛 times (the Euler 

number of 𝐸) along the longitude, and one time along the latitude. It follows that, for 𝐸 the cotangent 
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bundle 𝑇𝐒2 (i.e., the tangent bundle with the orientation inverted) in particular, we have 8 further 

relations in 𝜋1(𝑀): 

 1 = a1
2a2 = a1a2

2a3 = a2a3
2a4 = a3a4

2a5 = a4a5
2a6a8 = a5a6

2a7 = a6a7
2 = a5a8

2 (6) 

An algebraic manipulation then yields 

 π
1
(M) = 〈a1, a7: (a1a7)

2 = a7
3 = a1

5〉 = 2I (7) 

The above argument has full generality to apply to an arbitrary graph. Play with the 𝐴𝑛 diagram, the 

resulting 3-manifold 𝑀 has 𝜋1(𝑀) generated by 𝑛 elements 𝑎1, … , 𝑎𝑛 that are subject to 

 1 = a1
2a2 = a1a2

2a3 = ⋯ = an−2an−1
2 an = an−1an

2  (8) 

It follows that 

 ak = a1
(−1)k−1k (9) 

The relation 𝑎𝑛−1𝑎𝑛
2 = 1 implies that 𝑎1

𝑛+1 = 1. So 𝜋1(𝑀) = 𝐶𝑛+1, the cyclic group of order 𝑛 + 1. This 

suggests that 𝑀 might be a lens space. Indeed, in a literature by Orlik we found: 

Theorem 2.3. Plumb 𝑛 bundles over 𝐒2 whose Euler numbers are −𝑏1, …, −𝑏𝑛 in sequence according 

to the 𝐴𝑛 diagram, the resulting 4-manifold has boundary homeomorphic to 𝐿(𝑝, 𝑞) [6]. 

where 

 
q

p
= b1 −

1

b2−
1

b3−⋯

 (10) 

In our case all 𝑏𝑘 = 2, the continued fraction is 
𝑛

𝑛+1
. So, we conclude that 𝑀 ≅ 𝐿(𝑛 + 1,−1). 

Remark. Unlike the case 2𝐼, the fundamental group does not determine a lens space. So, the notion 

𝐒3/𝐶𝑛+1 is ambiguous, while 𝐒3/2𝐼 and so on are well defined 

We then tried a general (𝑝, 𝑞, 𝑟) graph as in Fig. 3. The intermediate steps will be similar to the steps 

above but will be explained in a more detailed and nuanced manner. Consider an arbitrary link with circles 

representing torus labeled, representing a diagram (only the special cases discussed in this paper are types 

of Dynkin diagram), that comes in the following form with exactly one junction point: 

 

 
Fig. 3. General link with loops assigned to each circle/solid torus. 

 

Proposition 2.4. Notice the following. 𝜋1(𝐒
3 − Λ) ≅ 𝜋1(𝐑

3 − Λ), Λ ∈ {𝐸6, 𝐸7, 𝐸8, 𝐷𝑛} 

Proof: We know that 𝐒2 = 𝐑2 ∪ {∞}, so (𝐒3 − Λ) = (𝐑3 − Λ) ∪ {∞}. Then, by the general form of the Van 

Kampen Theorem: 

 𝜋1(𝑺
3 − 𝛬) = 𝜋1((𝑹

3 − 𝛬) ∪ {∞}) = 𝜋1(𝑹
3 − 𝛬) ∗(𝑹3−𝛬)∩({∞}) 𝜋1({∞}) = 𝜋1(𝑹

3 − 𝛬) (11) 
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Proposition 2.5. The fundamental group of a link’s complement considered as the (𝑝, 𝑞, 𝑟) graph 

(𝑝, 𝑞, 𝑟 ≥ 2) yields a group 

 〈𝑎, 𝑏, 𝑐: 𝑎𝑝 = 𝑏𝑞 = 𝑐𝑟 = 𝑎𝑏𝑐〉 (12) 

Proof: By looking at the knot as represented in the links of tori represented above, we can establish the 

following relationships between the loops around the longitude seen as elements in the group. To have a 

uniform definition, we define a single loop starting from the "outside" (in 2D representation given in the 

diagram) of torus 𝑎𝑘 as "𝑎𝑘" if the loop, first goes on top across and then below the circle when drawn on 

the general diagram above, while it is defined as 𝑎1
−1 if a loop first goes under then above and across the 

circle. If a loop is considered with a start point within the "hole" of a torus, then a loop’s definition will be 

the opposite from the one above. 

 〈𝑎1, 𝑎2…𝑎𝑝+𝑞+𝑟−2: 𝑎𝑛𝑎𝑛+1 = 𝑎𝑛+1𝑎𝑛, 𝑎𝑝𝑎𝑝+𝑞 = 𝑎𝑝+𝑞𝑎𝑝, 1 ≤ 𝑛 ≠ 𝑝 + 𝑞 − 1 ≤ 𝑝 + 𝑞 + 𝑟 − 2〉  (13) 

We also have a series of other relationships between elements by considering a loop around each of the 

circles in the link. Notice that because of the way we have glued back the tori under the transition map. So, 

one loop around the latitude line of a torus also comes with two loops out of that torus around the 

longitude line of the torus because of the 2 × 2𝜋 twist brought by the transition map at the boundaries of 

the removed tori. There are three types of circles in the link in terms of the loops associated with them. 

(1) For tori on an end, like 𝑎1, one loop around its latitude line also equals to a loop around the torus next 

to them because of the way the tori are linked. So, we have, 𝑎1
2𝑎2 in the case for 𝑎1. 

(2) For the most special torus 𝑎𝑝, one loop around its latitude line also equals to a loop around the three 

tori attached to it because of the way the tori are linked. After the partial commutative relationships, we 

have 1 = 𝑎𝑝−1𝑎𝑝
2𝑎𝑝+1𝑎𝑝+𝑞 . 

(3) For any other tori 𝑎𝑛 in the link, each one is linked to two other tori. On the same note, we have 

𝑎𝑛−1𝑎𝑛
2𝑎𝑛+1. 

We thus have the following relationships. 

 1 = 𝑎1
2𝑎2 = 𝑎𝑝+𝑞+1

2 𝑎𝑝+𝑞−2 = 𝑎𝑝+𝑞+𝑟−2
2 𝑎𝑝+𝑞+𝑟−3  

1 = 𝑎𝑝−1𝑎𝑝
2𝑎𝑝+1𝑎𝑝+𝑞 = 𝑎𝑘−1𝑎𝑘

2𝑎𝑘+1, for 2 ≤ 𝑘 ≤ 𝑝 + 𝑞 + 1 and 𝑝 + 𝑞 + 1 ≤ 𝑘 ≤ 𝑝 + 𝑞 + 𝑟 − 3     (14) 

 1 = 𝑎𝑝−1𝑎𝑝
2𝑎𝑝+1𝑎𝑝+𝑞  

The whole chain of equalities can be simplified into a neat form. 

Summarizing everything, after doing all the manipulations, we have: 

 〈𝑎, 𝑏: 𝑎𝑝 = 𝑏𝑞 = (𝑎𝑏)𝑟〉 (15) 

which is an alternative form for the group presented in 2.8. (𝑝, 𝑞, 𝑟) = (2, 3, 5), (2, 3, 4), (2, 3, 3), (2, 2, 𝑛 − 2) 

corresponds to the groups 2𝐼, 2𝑂, 2𝑇, 2𝐷𝑛, which are preimages of 𝐼, 𝑂, 𝑇, 𝐷𝑛 under the 2-cover 𝑺3 =

𝑆𝑈(2) → 𝑆𝑂(3). The cases where it is finite correspond exactly to the four Dynkin diagrams: 𝐸8 = (2, 3, 5), 

𝐸7 = (2, 3, 4) , 𝐸6 = (2, 3, 3) , 𝐷𝑛 = (2, 2, 𝑛 − 2) . This suggests our main theorem, that the resulting 

3-manifold might be 𝑺3/2𝐼 and so on. Indeed, it follows directly from a result of Perelman which states 

that all compact 3-manifolds with finite 𝜋1 are spherical. But of course, this paper will not end here. 

Remark. During our algebraic manipulation, we came across some crucial steps. First, we have the 

relationships 1 = 𝑎1
2𝑎2 = 𝑎𝑝+𝑞−1

2 𝑎𝑝+𝑞−2 = 𝑎𝑝+𝑞+𝑟−2
2 𝑎𝑝+𝑞+𝑟−3, which are what we get by analyzing the two 

tori at the end of each arm. By arms here, we mean taking the parts of the link starting with 𝑎𝑝 and all the 

tori in the same direction until the end of the link (conveniently, the tori enclosed by the bracket). WLOG we 

can take 𝑎1
2𝑎2 = 1 and get that 𝑎2 = 𝑎1

−2, and down the arm, we get that 𝑎3 = 𝑎1
3. Notice that the sign of 
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the exponents alternates and the number increasing by 1 whenever it moves 1 torus close to the central 𝑎𝑝. 

Indeed, every other loop generated by the other tori in an arm can be written in terms of one of 𝑎1, 𝑎𝑝+𝑞−1, 

or 𝑎𝑝+𝑞+𝑟−2, the single loops generated by an end torus. More importantly, around the intersection of three 

arms, 𝑎𝑝. we have the relationships: 

 𝑎𝑝 = 𝑎1
𝑝∙(−1)𝑝−1

= 𝑎𝑝+𝑞−1
𝑞∙(−1)𝑞−1

= 𝑎𝑝+𝑞+𝑟−2
𝑟∙(−1)𝑟−1  (16) 

Notice here that in the case of a sign change, we simple change the originally defined generator to its 

inverse to create the final group presentation. For example, if exponent component 𝑝 (𝑞 or 𝑟 for the 

other two cases) is even, then we will take the generator 𝑎 = 𝑎1
−1 , otherwise, generator 𝑎 = 𝑎1 . 

Conveniently, we redefine 𝑎𝑝+𝑞−1 and 𝑎𝑝+𝑞+𝑟−2 with 𝑏 and 𝑐 using the same way. 

Further, observe that with the relationship 𝑎𝑝−1𝑎𝑝
2𝑎𝑝+1𝑎𝑝+𝑞 = 1, 𝑎𝑝 generator may be written in terms 

of 𝑎, 𝑏, 𝑐. Notice the parity of 𝑝 is different from that of 𝑝 − 1 and 𝑝 + 1, and with some simple testing, 

we can get that 

 𝑎𝑝−1𝑎𝑝 = 𝑎1
𝑝∙(−1)𝑝−1+(𝑝−1)∙(−1)𝑝−2

= 𝑎  

 𝑎𝑝𝑎𝑝+1 = 𝑎1
𝑟∙(−1)𝑟−1+(𝑟−1)∙(−1)𝑟−2 = 𝑏 (17) 

 𝑎𝑝−1𝑎𝑝
2𝑎𝑝+1𝑎𝑝+𝑞 = 𝑎𝑏𝑐

1−𝑟 = 1;  𝑎𝑏𝑐 = 𝑐𝑟   

Then, we have the relationship 

 𝑎𝑝 = 𝑎
𝑝 = 𝑏𝑞 = 𝑐𝑟 = 𝑎𝑏𝑐 (18) 

which matches the presentation given in Eq. (12). 

 Seifert Fibered Space 

We need the notion of Seifert fibered space as an intermediate tool for our proof. So, we will not present 

its whole theory here but rather it is towards the application [6, 7]. 

A Seifert fibered space is, roughly speaking, a variation of 𝑺1 𝑓𝑖𝑏𝑒𝑟 𝑏𝑢𝑛𝑑𝑙𝑒. Consider the trivial 𝑺1 

bundle over the 2-disk, that is, a solid torus 𝐷2 × 𝑺1. Perform a Dehn surgery: cut along a longitude (tube of 

the torus shape), twist a cross section by a 
2𝜋𝑞

𝑝
 rotation (where 𝑝, 𝑞 are coprime integers) then paste it 

back to the other cross section. The 𝑺1 action on this twisted torus is then altered accordingly: an orbit 

circle wraps 𝑝 times along the longitude and 𝑞 times along the latitude, except that the central circle 

{0} × 𝑺1 becomes an orbit of isotropy group 𝐶𝑝. The cyclic 𝐶𝑝 group’s special properties also allow it to 

have a set group of non-trivial stabilizers. This makes the twisted torus into a 𝑺1 bundle over the orbitfold 

𝐷2/𝐶𝑝, which is a fundamental example of Seifert fibered space. The Seifert fibered spaces considered in 

this paper are constructed from the following recipe:  

(1) Take a closed oriented surface 𝑋 to be the base space.  

(2) Take an oriented 𝑺1 bundle 𝐸 over 𝑋.  

(3) Take 𝑚 trivializing small disks in 𝑋 disjoint with each other, replace the 𝑚 solid tori over them by 

some twisted tori. That is, we cut off a solid torus and glue back a (𝑝𝑖 , 𝑞𝑖)- twisted torus, in a way that the 

𝑺1 actions at the boundary are compatible. That is, we are not only gluing the points but also preserving the 

group action results on the boundary. In this case, only the central circle is said to be an exceptional fiber of 

type (𝑝𝑖 , 𝑞𝑖), 1 ≤ 𝑖 ≤ 𝑚.  

Example. Consider the unit sphere 𝑺3 ⊂ ℂ2. Define a circle action (rotation action) on 𝑺3: 

 γ ∙ (z1, z2) = (γ
p
z1,γ

q
z2) ,γ ∈ S1 (19) 
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Fig. 4 shows that by stretching and twisting the cylinder to match the same numbers on the two faces, a 

Seifert fibered space is formed. 

 

 
Fig. 4. The example of type (5,2). Extracted from 

https://commons.wikimedia.org/w/index.php?curid=4406471. 

 

for a pair of coprime integers 0 < 𝑞 < 𝑝. Then the map 𝐒3 → ℂℙ1 = ℂ ∪ {∞} given by 

 (z1, z2) ↦
z1
q

z2
p (20) 

is the resulting Seifert fibering (note that when 𝑝 = 𝑞 = 1 we recover the Hopf fibration). The exceptional 

fibers are those with non-trivial isotropy group, which are {𝑧1 = 0} with 𝐶𝑞 and {𝑧2 = 0} with 𝐶𝑝. At 

{𝑧2 = 0} there is a local 𝑺1 fibering with the base 𝐷2 = {|𝑧2| ≤
1

2
}. This solid torus is twisted by 

2𝜋𝑞

𝑝
 since 

𝛾 = 𝑒
2𝜋𝑖

𝑝  sends (𝑧1, 𝑧2) to (𝑧1, 𝑒
2𝜋𝑞𝑖

𝑝 𝑧2). Then it is glued into the global fibering, making an exceptional 

fiber of type (𝑝, 𝑞). Similarly, {𝑧1 = 0} is an exceptional fiber of type (𝑞, 𝑝). 

Example. Here is another example concerning the 𝐴2-plumbing of a bundle 𝐸 of Euler number 𝑛. 

Denote its boundary by 𝑀 . Recall that the construction 𝑀  involves gluing two 𝐷2 × 𝐒1  along the 

boundary 𝐒1 × 𝐒1 through the identification map 𝜏(𝑥, 𝑦) = (𝑦, 𝑥). To define a Seifert fiber structure, the 

𝐒1 rotation action on one 𝐷2 × 𝐒1 is given by fiber rotation, namely acting only on the 𝐒1 component of 

the solid torus. The action goes through a natural transformation to the other 𝐷2 × 𝐒1 through 𝜏. Near the 

fiber bundle of the base space’s boundary 𝐒1 × 𝐒1 the 𝐒1 action becomes a rotation in the base space. 

Through the transition map 𝑡 of 𝐸 defined the same way as the one given in equation 1.3, near {0} × 𝐒1 

the 𝐒1 orbit wraps 𝑛 times along the longitude (the base 𝐷2) and one time along the latitude (the fiber 

𝐒1). Eventually it degenerates to a mere fiber rotation at the center of the base space {0} × 𝐒1 continuously. 

We will apply the following classification theorem presented in Orlik’s or Jankins’ books to proof the 

ultimate homeomorphism result (see [6], section 1.10 or [7], section 1.5): 

Theorem 2.6. Given a 3-manifold 𝑀 with Seifert fiber structure. The homeomorphism type of 𝑀 is 

determined by 

(1) The genus 𝑔 of the base space 𝑋. 

(2) The Euler number (defined by a self-intersection number). 

(3) The type of exceptional fibers, i.e., pairs of coprime numbers (𝑝𝑖 , 𝑞𝑖) with 0 < 𝑞𝑖 < 𝑝𝑖 . 

Remark. Our notations are different from [6]. The type (𝑝, 𝑞) there is the type (𝑝, 𝑞−1) here, and the 

invariant 𝑏 there (called the cross-section obstruction) is minus the Euler number here. 

 Method of the Proof 

To prove the main theorem, the strategy is to give Seifert fiber structures to the spaces 𝐒3/2𝐺 and those 

from the plumbing, then use the classification theorem to conclude. 
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Denote by 𝑀 the boundary of a plumbing of 𝑇  𝐒2 according to the (𝑝, 𝑞, 𝑟) graph. This side is 

completely analogous to [4], where the case (2, 3, 5) is shown.  

Proposition 2.7. When 𝑝−1 + 𝑞−1 + 𝑟−1 > 1, there is a Seifert fiber structure on 𝑀 with the base 𝐒2, 

three exceptional fibers of type (𝑝, 1), (𝑞, 1), (𝑟, 1) and the Euler number 1. 

Proof: We briefly summarize Kirby’s arguments. The Seifert fiber structure is produced by first doing a 

fiber rotation at the central vertex 𝑋, then extending it to the three arms. At the end of an arm, we might 

need the procedure described in the last section to deal with the base rotation. The determination of Seifert 

invariants is scattered in [4]: the base space has genus 0 as a consequence of finite 𝜋1(𝑀) (page 132); each 

arm makes an exceptional fiber of type (𝑝, 1), (𝑞, 1) or (𝑟, 1) (page 134) and increases the Euler number 

by 1 (page 135). The cotangent bundle has Euler number −2 so the final Euler number is 1. 

Now to compare with the other side, we need some computational works.  

Theorem 2.8. For some polynomial function 𝜑𝐺: ℂ
3 → ℂ, there is a homeomorphism 

 S3/2G ≅φ
G

−1
(0) ∩ S5 (21) 

where 𝐒5 ⊂ ℂ3 is the unit sphere. We have 𝜑𝐺: ℂ
3 → ℂ as a polynomial function. For 𝐺 ∈ {𝐷𝑛, 𝑇, 𝑂, 𝐼}, we 

get:  

(1) 𝜑𝐷𝑛 = 𝑧1
2 + 𝑧2

2𝑧3 + 𝑧3
𝑛+1.  

(2) 𝜑𝑇 = 𝑧1
2 + 𝑧2

3 + 𝑧3
4.  

(3) 𝜑𝑂 = 𝑧1
2 + 𝑧2

3 + 𝑧2𝑧3
3.  

(4) 𝜑𝐼 = 𝑧1
2 + 𝑧2

3 + 𝑧3
5. 

Remark. Algebraic geometers know these as Du Val singularities. However, we will prove it in the next 

chapter by a very down-to-earth computation in the flavor of invariant theory based on what is called group 

involution in Du Val [8], chapter 5. 

The main theorem then follows from the following. 

Proposition 2.9. There is a Seifert fiber structure on 𝜑𝐺
−1(0) ∩ 𝑺5 defined by 

 𝛾 ∙ (𝑧1, 𝑧2, 𝑧3) = (𝛾𝑎𝑧1, 𝛾
𝑏𝑧2, 𝛾

𝑐𝑧3), 𝛾 ∈ 𝑆
1 (22) 

such that the Seifert invariants coincide with those in the previous proposition. We have 

(1) 𝐺 = 𝐷𝑛, (𝑎, 𝑏, 𝑐) = (𝑛 + 1, 𝑛, 2). 

(2) 𝐺 = 𝑇, (𝑎, 𝑏, 𝑐) = (6, 4, 3). 

(3) 𝐺 = 𝑂, (𝑎, 𝑏, 𝑐) = (9, 6, 4). 

(4) 𝐺 = 𝐼, (𝑎, 𝑏, 𝑐) = (15, 10, 6). 

It is a well-known fact that the quotient, ℂ2/2𝐺, represents the orbit space of 2𝐺 acting on ℂ2. An orbit, 

then, is the set of points generated by the group action acting on one point in ℂ2. Per the groups (2𝐺) we 

are looking at, they are all subgroups of 𝑆𝑈(2). So, the elements in the orbit space ℂ2/2𝐺 are of the form: 

 [
𝑎 𝑏
𝑐 𝑑

] (
𝑢
𝑣
)  𝑢, 𝑣 ∈ ℂ, [

𝑎 𝑏
𝑐 𝑑

] ∈ 2𝐺 ∈ 𝑆𝑈(2) (23) 

3. Invariant Theory 

Recall that, we have a subgroup 2𝐺 ⊂ 𝑆𝑈(2), 𝐺 ∈ {𝐷𝑛, 𝑇, 𝑂, 𝐼}, which acts on ℂ
2, and also on ℂℙ1 = ℂ ∪

{∞} by linear fractional transformation. The latter is compatible with the action of 𝐺 ⊂ 𝑆𝑂(3) on 𝐒2 with 

respect to the double cover 𝑆𝑈(2) → 𝑆𝑂(3). 

Properties ℂℙ1  is used only to calculate the elements in the orbit that we are specifically doing 

calculations on, which depends on the group 𝐺 we look at. Recall the description of an orbit from the end 

of Section 2, the properties of the double cover map allow us to consider the resultant orbits of the 2𝐺 
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action on ℂℙ1 as sets of points on a regular polygon (whose symmetry group is 𝐷𝑛) or some regular 

polyhedrons (whose symmetry groups are 𝑇, 𝑂, 𝐼). For our purpose, we will use three special orbits 𝒪: 

vertex (𝑉), midpoint of edges (𝐸), certers of faces (𝐹). 

Our ultimate goal is to construct an invariant function under the group action 2𝐺, and to do that, we first 

define an intermediate function to ease our construction. 

For 𝑡 ∈ ℂℙ1, define a function from ℂ2 to ℂ: 

 𝑟𝑡(𝑢, 𝑣) = {
𝑢 − 𝑡𝑣, 𝑡 = [𝑝, 𝑞] =

𝑝

𝑞
∈ {∞} ⊆ ℂℙ

1
 

−𝑣, 𝑡 = [𝑝, 𝑞] =
𝑝

𝑞
∈ ℂ ⊆ ℂℙ

1  (24) 

which can be viewed as a regular function on ℂℙ1 with 𝒪 the set of zeros. For any 𝑔 ∈ 2𝐺, since 𝑔 · 𝒪 =

𝒪, the functions 𝑓𝒪(𝑔 ∙ (𝑢, 𝑣)) and 𝑓𝒪(𝑢, 𝑣) must differ by a constant multiple. That is 

 𝑓𝒪(𝑎𝑢 + 𝑏𝑣, 𝑐𝑢 + 𝑑𝑣) = 𝑘 ∙ 𝑓𝒪(𝑢, 𝑣), ∀𝑔 = (
𝑎 𝑏
𝑐 𝑑

) ∈ 2𝐺 (25) 

where 𝑘 = 𝑘(𝑔, 𝒪) ∈ ℂ is a constant not depending on (𝑢, 𝑣). It follows immediately that 𝑘(−,𝒪) is a 

character of 2𝐺 for every orbit 𝒪. The value for 𝑘(𝑔, 𝒪) will be calculated and utilized in each case. 

Definition 3.1. A function satisfying the above equation is called an almost invariant form of 2𝐺. An 

invariant form is an almost one with 𝑘 ≡ 1. 

So invariant forms are functions on ℂ2/2𝐺. In what follows, we will construct them using almost 

invariant forms associated to some orbit 𝒪 with non-trivial stabilizer. To this end, we compute 𝑘(𝑔, 𝒪) 

explicitly. Firstly, we have 

 
𝑟𝑎𝑡+𝑏
𝑐𝑡+𝑑

(𝑎𝑢+𝑏𝑣,𝑐𝑢+𝑑𝑣)

𝑟𝑡(𝑢,𝑣)
=

{
 
 

 
 

1

𝑐𝑡+𝑑
, 𝑡 ≠∞, 𝑡 ≠ −

𝑑

𝑐

𝑑, 𝑡 =∞, 𝑐 = 0 
1

𝑐
, 𝑡 =∞, 𝑐 ≠ 0

−𝑐, 𝑡 = −
𝑑

𝑐
, 𝑐 ≠ 0

 (26) 

The numerator of the expression above comes from the fact that an element in the complex projective 

plane, after group action map, satisfy: 

 𝑔 ∙ (𝑢, 𝑣) = (𝑎𝑢 + 𝑏𝑣, 𝑐𝑢 + 𝑑𝑣)  

 𝑔 ∙ 𝑡 = 𝑔 ∙ (
𝑝

𝑞
) = 𝑔 ∙ ([𝑝, 𝑞]) = [𝑎𝑝 + 𝑏𝑞, 𝑐𝑝 + 𝑑𝑞] =

𝑎𝑝+𝑏𝑞

𝑐𝑝+𝑑𝑞
=

𝑎
𝑝

𝑞
+𝑏

𝑐
𝑝

𝑞
+𝑑
=

𝑎𝑡+𝑏

𝑐𝑡+𝑑
 (27) 

Taking the product over 𝑡 ∈ 𝒪 yields 

 𝑘(𝑔, 𝒪) =

{
 
 

 
 ∏

1

𝑐𝑡+𝑑𝑡∈𝒪 , ∞ ∉ 𝒪

𝑑 ∙ ∏
𝑎𝑑−𝑏𝑐

𝑐𝑡+𝑑𝑡∈𝒪\{∞} = 𝑑 ∙ 𝑎|𝒪|−1 = 𝑑2−|𝒪| = 𝑎|𝒪|−2 ∞ ∈ 𝒪 𝑐 = 0

1

𝑐
∙ (−𝑐) ∙ ∏

1

𝑐𝑡+𝑑𝑡∈𝒪\{−
𝑑

𝑐
,∞}

= −∏
1

𝑐𝑡+𝑑𝑡∈𝒪\{−
𝑑

𝑐
,∞}

 ∞ ∈ 𝒪 𝑐 ≠ 0

 (28) 

The lengthy derivation of the results is shown as the following, starting with the expression itself. All 

notations carried over from above. The functions will be re-notated in the specific calculations for the 

different types of orbit we look at. 

 k(g, 𝒪) =
f𝒪(u,v)

f𝒪(g∙(u,v))
= ∏

rat+b
ct+d

(au+bv,cu+dv)

rt(u,v)
t∈𝒪 = ∏

(au+bv)−
at+b

ct+d
(cu+dv)

u−tvt∈𝒪  (29) 

Proposition 3.2. We give detailed calculations to proof equation 3.3, in which we show that the value of 
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 Q =
(au+bv)−

at+b

ct+d
(cu+dv)

u−tv
 (30) 

equals with different values of 𝑡 and 𝑐: 

Proposition 3.3. For 𝑡 ≠ ∞ or −
𝑑

𝑐
, 𝑄 =

1

𝑐𝑡+𝑑
 

Proof: 

 Q =
(au+bv)(ct+d)−(at+b)(cu+dv)

(u−tv)(ct+d)
  

 =
auct+aud+bvct+bvd−atcu−atdv−bcu−bdv

(u−tv)(ct+d)
  

 =
aud+bvct−atdv−bcu

(u−tv)(ct+d)
  

 =
(ad−bc)(u−tv)

(u−tv)(ct+d)
=

ad−bc

ct+d
 (31) 

Because 𝑎, 𝑏, 𝑐, 𝑑 are entrances of a matrix in 𝑆𝑈(2), their determinant 𝑎𝑑 − 𝑏𝑐 = 1. 

Proposition 3.4. For 𝑐 = 0, 𝑡 = ∞, so 
𝑎𝑡+𝑏

𝑐𝑡+𝑑
= ∞. 𝑄 = 𝑑  

Proof: From the definition of 𝛾𝑡(𝑢, 𝑣) function when 𝑡 = ∞ we can transform equation 3.8 in to the 

following. 

 Q =
−(cu+dv)

−v
=

−dv

−v
= d (32) 

Proposition 3.5. For 𝑐 ≠ 0, 𝑡 = ∞, so 
𝑎𝑡+𝑏

𝑐𝑡+𝑑
=

𝑎

𝑐
. 𝑄 =

1

𝑐
  

Proof: 

 Q =
au+bv−

a

c
(cu+dv)

−v
=

bv−
a

c
∙dv

−v
=

(cb−ad)v

−cv
=

−v

−cv
=

1

c
 (33) 

Proposition 3.6. For 𝑐 ≠ 0, 𝑡 = −
𝑑

𝑐
, so 

𝑎𝑡+𝑏

𝑐𝑡+𝑑
= ∞. 𝑄 = −𝑐 

Proof: 

 Q =
−(cu+dv)

u−tv
=

−(cu+dv)

(u+
d

c
v)

= −c (34) 

Summarizing all the different cases for the product components calculated above, the total possible 

product of 𝑘(𝛾, 𝒪) are 

 𝑘(𝛾, 𝒪) =

{
 
 

 
 ∏

1

𝑐𝑡+𝑑𝑡∈𝒪 , ∞ ∉ 𝒪

𝑑 ∙ ∏
𝑎𝑑−𝑏𝑐

𝑐𝑡+𝑑𝑡∈𝒪\{∞} = 𝑑 ∙ 𝑎|𝒪|−1 ⇒ 𝑑2−|𝒪| = 𝑎|𝒪|−2 ∞ ∈ 𝒪 𝑐 = 0

1

𝑐
∙ (−𝑐) ∙ ∏

1

𝑐𝑡+𝑑𝑡∈𝒪\{−
𝑑

𝑐
,∞}

= −∏
1

𝑐𝑡+𝑑𝑡∈𝒪\{−
𝑑

𝑐
,∞}

 ∞ ∈ 𝒪 𝑐 ≠ 0

 (35) 

(For the second case, we used the fact that 𝑎𝑑 − 𝑏𝑐 = 𝑎𝑑 = 1.) 

We will study the cases 𝐺 = 𝐷𝑛, 𝑇, 𝑂, 𝐼 individually. In each case, we will extend the above calculations to 

show appropriate results. 

Remember, our goal, through group involution and invariant theorem is to construct a function, a map, 

𝑓𝐺: ℂ
3 → 𝜑𝐺

−1(0) ⊆ ℂ3, such that 𝜑 keeps invariant in each case of 𝐺. We will look at the values of these 

maps in each specific case of 𝐺 ∈ {𝐷𝑛, 𝑂, 𝑇, 𝐼} later in this section. 

 Dihedral Case 

Recall the formula of stereographic projection from 𝐒2 ⊂ 𝐑3 to ℂ ∪ {∞}: 

 (𝑥, 𝑦, 𝑧) ↦
𝑥+𝑦𝑖

1−𝑧
 (36) 
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This map will be constantly referred back as "the projection" in future sections. Consider a regular 𝑛-gon 

𝐴1…𝐴𝑛 placed in the equatorial plane such that 𝐴1 = (
1

2
, 0,

1

2
). Say the action of 𝐺 = 𝐷𝑛 on 𝐒

2 fixes this 

𝑛-gon. 

There are three 𝐷𝑛-orbit with non-trivial stabilizer: the orbit 𝒱 of all 𝐴𝑘; the orbit ℰ of all midpoints of 

arcs 𝐴𝑘𝐴𝑘+1; the orbit ℱ of the north and south poles. We have 

 {

𝒱 = {tn − 1 = 0}, f𝒱(u, v) = un − vn

ℰ = {tn + 1 = 0}, fℰ(u, v) = u
n + vn

ℱ = {t = {
1

0
,
0

1
}} = {0,∞}, fℰ(u, v) = −uv

  (37) 

An element 𝑔 ∈ 2𝐷𝑛, according to whether it fixes the two poles or swaps them, has one of the following 

forms that are shown as transformation matrices. 

(1) Rotation: 𝑔 = (
𝑧 0
0 𝑧−1

). Since 𝑔 · 1 = 𝑧2 ∈ 𝑉, we have 𝑧2𝑛 = 1. 

(2) Reflection: 𝑔 = ( 0 𝑤−1

−𝑤 0
). Since 𝑔 · 1 = −𝑤−2 ∈ 𝑉, we have 𝑤2𝑛 = (−1)𝑛. 

Remark. The entries in the above matrices satisfy the equalities because our rotation matrix, when 

applied 𝑛 times, 𝑔𝑛, will belongs to the kernel of the double cover map from 2𝐷𝑛 ⊆ 𝑆𝑂(2) to 𝐷𝑛 ⊆

𝑆𝑂(3). Same thing for the reflection matrix being applied an even number of times; the reflection matrix 

applied an odd number of times will satisfy the square of its image of the double cover map becomes the 

identity in 𝑆𝑂(3). 

Complete Construction. We close up our construction using the explicit formula for 𝑓𝑉, 𝑓𝐸 , 𝑓𝐹 , and 

show the necessary slight adjustments in the process to satisfy the invariant condition. 

Proposition 3.7. There is invariant form 

 (f1, f2, f3) = (uv(u
2n + v2n), u2n − v2n, u2v2) (38) 

To be exact, we will need to modify the coefficients to construct the sum to be 0. Later on, we will rename 

the quantifiers to (𝑧1, 𝑧2, 𝑧3), which is (𝑓1, 𝑓2, 𝑓3) with appropriate constant coefficients, for clarity. 

Proof: We prove the case 2 ∤ n and the other case is completely analogous. We need to show 𝑘1 = 𝑘2 =

𝑘3 =1. One way is to use equation 3.6 and the following relationships 

 𝑓1
2 = 𝑓3(𝑓2

2 + 4𝑓3
𝑛)  

 𝑓3 = 𝑓𝒱𝑓ℰ  (39) 

 𝑓3 = 𝑓ℱ
2  

to compute. But it is not hard to compute directly the 𝑘 for each component. For each type of function, we 

first test the invariant conditions for 𝑓𝐹  whose orbit only contains two values: 

 𝑓ℱ(𝑢, 𝑣) = (𝑢 − 0 ∙ 𝑣)(𝑢 − ∞ ∙ 𝑣) = −𝑢𝑣 (40) 

By applying element 𝑔 ∈ 2𝐷𝑛 to (𝑢, 𝑣) 

 {
𝑓ℱ(𝑢, 𝑣) ↦ (𝑧𝑢, 𝑧−1𝑣) = −𝑢𝑣        𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛

𝑓ℱ(𝑢, 𝑣) ↦ (𝑤−1𝑣,−𝑤𝑢) = 𝑢𝑣   𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛
 (41) 

We have 

 𝑘(𝑔, ℱ) =
(𝑎𝑢+𝑏𝑣)(𝑐𝑢+𝑑𝑣)

𝑢𝑣
= {

1,       𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛
−1, 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

 (42) 

So 𝑘3 = 𝑘(𝑔, ℱ)
2 ≡ 1. 

For the two forms that contain 𝑓𝒱 and 𝑓ℰ , they are to be considered together: 
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 𝑓𝒱(𝑢, 𝑣) = ∏ (𝑢 − 𝑡𝑣)𝑡∈𝑉 = 𝑢𝑛 − 𝑡𝑛𝑣𝑛 = 𝑢𝑛 − 𝑣𝑛 (43) 

 𝑓ℰ(𝑢, 𝑣) = ∏ (𝑢 − 𝑡𝑣)𝑡∈𝐸 = 𝑢𝑛 − 𝑡𝑛𝑣𝑛 = 𝑢𝑛 + 𝑣𝑛 (44) 

We derived the simplified forms of both functions using the root of unity of equations with complex roots 

as well as the definition of the orbits given in Eq. (37). So, we have the following: 

 {
𝑓𝒱(𝑢, 𝑣) ↦ (𝑧𝑢, 𝑧−1𝑣) = (𝑧𝑢)𝑛 − (𝑧−1𝑣)2 = 𝑧𝑛𝑢𝑛 − 𝑧−𝑛𝑣𝑛        𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛

𝑓𝒱(𝑢, 𝑣) ↦ (𝑤−1𝑣,−𝑤𝑢) = (𝑤−1𝑣)𝑛 − (−𝑤𝑢)𝑛 = 𝑤−𝑛𝑣𝑛 − (−𝑤)𝑛(𝑢)𝑛 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛
 (45) 

 
𝑓ℰ(𝑢, 𝑣) ↦ (𝑧𝑢, 𝑧−1𝑣) = (𝑧𝑢)𝑛 + (𝑧−1𝑣)2 = 𝑧𝑛𝑢𝑛 + 𝑧−𝑛𝑣𝑛        𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛

𝑓ℰ(𝑢, 𝑣) ↦ (𝑤−1𝑣,−𝑤𝑢) = (𝑤−1𝑣)𝑛 + (−𝑤𝑢)𝑛 = 𝑤−𝑛𝑣𝑛 + (−𝑤)𝑛(𝑢)𝑛 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛
 (46) 

So 𝑘2 = (𝑘(𝑔, 𝒱)𝑘(𝑔, ℰ))
2
≡ 1. Because, from the relationship the matrix entries satisfy, we have: 

 𝑘(𝑔, 𝒱)𝑘(𝑔, ℰ) = {

𝑧2𝑛𝑢2𝑛−𝑧−2𝑛𝑣2𝑛

𝑢2𝑛−𝑣2𝑛
= 1,         𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

𝑤−2𝑛𝑣2𝑛−𝑤2𝑛𝑢2𝑛

𝑢2𝑛−𝑣2𝑛
= −1, 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

 (47) 

coincides with 𝑘(𝑔, ℱ). Because of the way 𝑓1 is constructed from 𝑓2 and 𝑓3, if 𝑘2 and 𝑘3 are invariant, 

then 𝑘1 is, too. 

Because the equality 𝑓1
2 = 𝑓3(𝑓2

2 + 4𝑓3
𝑛) from basic algebraic calculations, we can define a map 𝑓𝐷𝑛  

from ℂ2/2𝐷𝑛 to 𝜑𝐷𝑛
−1(0) by 

 𝑓𝐷𝑛 = (√2
𝑛

∙ 𝑖 ∙ 𝑓1, 𝑓2, √4
𝑛

∙ 𝑓3) = (𝑧1, 𝑧2, 𝑧3) (48) 

Later we will show that this map 𝑓𝐷𝑛  induces the homeomorphism as said in Theorem 2.8. 

We distributed the terms into three independent complex expressions, and we have 

 (𝑧1, 𝑧2, 𝑧3) {

𝑧1 = 𝑖 ∙ √2
𝑛
𝑢𝑣(𝑢2𝑛 + 𝑣2𝑛)  𝑧1

2 = −√4
𝑛
𝑢2𝑣2(𝑢2𝑛 + 𝑣2𝑛)2

𝑧2 = 𝑓𝐸𝑓𝑉   𝑧2
2 = (𝑢2𝑛 − 𝑣2𝑛)2

𝑧3 = √4
𝑛
𝑓𝐹
2 = √4

𝑛
𝑢2𝑣2

 (49) 

Per our equality construction our subsequent proof at the end of Section 3 involving Seifert invariant 

derived of it will be facilitated. 

 Octahedral Case 

We place the octahedron in 𝐒2 so that its dual cube has a pair of faces parallel to the equatorial plane. So, 

its six vertices are sent by the projection to {0,∞,±1,±𝑖} ⊆ ℂℙ1. Denote this 𝑂-orbit by 𝒱 then 

 𝑓𝒱(𝑢, 𝑣) = ∏ (𝑢 − 𝑡𝑣)𝑡∈𝒱 = 𝑢𝑣(𝑣4 − 𝑢4) (50) 

The other two orbits with non-trivial stabilizer are ℰ consisting of 12 midpoints of edges and ℱ 

consisting of 8 centers of faces. To compute 𝑓ℰ  and 𝑓ℱ , we may compute all these coordinates and calculate 

the almost-invariant function. But there is a shortcut: we can rely on the properties of the Hessian Matrix of 

𝑓𝒱 to achieve an invariant 𝑓ℱ , which is inspired by Nash [9]. It is straightforward to check (by some lengthy 

calculations) that the Hessian determinant 

 ℋ(𝑓𝒱) = |

𝜕2𝑓𝜈

𝜕𝑢2
𝜕2𝑓𝜈

𝜕𝑢𝜕𝑣

𝜕2𝑓𝜈

𝜕𝑢𝜕𝑣

𝜕2𝑓𝜈

𝜕𝑣2

| (51) 

is an almost invariant form.  

Proposition 3.8. ℋ(𝑓𝒱) = 𝑓ℱ  up to some constant multiple. 

Proof: We know that both ℋ(𝑓𝒱) and 𝑓ℱ  are degree-8 almost invariant forms under the group action 

2𝑂 by our definition. Then, the 8 roots of ℋ(𝑓𝒱) must be a union of several orbits. Among the different 
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types of orbits formed under 2𝑂 action, that are 𝒱 (of 6 points), ℰ (of 12 points), ℱ (of 8 points), and 

non-special orbits. As a result, ℋ(𝑓𝒱) has the same set of roots as 𝑓ℱ . This means that ℋ(𝑓𝒱) = 𝑓ℱ  up to 

some constant multiple. 

Explicitly, if we expand the expression for ℋ(𝑓𝒱), we will get 𝑓ℱ , 

 𝑓ℱ = 𝑢
8 + 14𝑢4𝑣4 + 𝑣8 (52) 

Similarly, the Jacobian determinant 

 𝒥(𝑓𝒱 , 𝑓ℱ) = |

𝜕𝑓𝒱

𝜕𝑢

𝜕𝑓𝒱

𝜕𝑣
𝜕𝑓ℱ

𝜕𝑢

𝜕𝑓ℱ

𝜕𝑣

| (53) 

is an almost invariant form of degree 12. With the same logic as the derivation of 𝑓ℱ , we also see that the 

Jacobian Matrix can be used for our construction for 𝑓ℰ , which has 12 points in the solution set. However, 

there’s another possibility the Jacobian Matrix’s determinant can equal to: 𝑓𝒱
2. This because the number of 

solutions in 𝑓𝒱 is 6, and squared will get 12 solutions. However, the latter can be eliminated because 0 is 

not a root of 𝒥(𝑓𝒱 , 𝑓ℱ), but it is a root of 𝑓𝒱 , so we will have a contradiction. Then, we must have the former 

case. Explicitly, 

 𝑓ℰ = 𝑢
12 − 33𝑢8𝑣4 − 33𝑢4𝑣8 + 𝑣12 (54) 

Recall the almost invariant relationship 𝜑(𝑔 · (𝑢, 𝑣)) = 𝑘 · (𝜑(𝑢, 𝑣)) under the group action 2𝑂 acting 

on ℂ2. Because of how 𝑘(𝑔, 𝒪) is defined, it follows that 𝑘(𝑔 · ℎ, 𝒪) = 𝑘(𝑔, 𝒪)𝑘(ℎ, 𝒪), which means the 

transformations defined by 𝑘(−, 𝒪) is a group homomorphism from 2𝑂 to ℂ − {0}. Now we compute the 

multipliers 𝑘. Recall that 

 2𝑂 = 〈𝑥, 𝑦, 𝑧: 𝑥2 = 𝑦3 = 𝑧4 = 𝑥𝑦𝑧〉 (55) 

and that 𝑘(−, 𝒪) is always a character of 2𝑂 and a group homomorphism. It follows that 

 𝑘(𝑥)2 = 𝑘(𝑦)3 = 𝑘(𝑧)4 = 𝑘(𝑥)𝑘(𝑦)𝑘(𝑧) ∈ ℂ − {0} (56) 

Notice here that the group homomorphism maps a non-abelian group to an abelian group hence, with 

some manipulation, we can deduce, 𝑘(𝑦) = 1, 𝑘(𝑥) = 𝑘(𝑧) = ±1. So, the character 𝑘 may be completely 

determined by the value 𝑘(𝑧). This generator can be taken as 

 𝑧 = (𝑒
𝜋𝑖

4 0

0 𝑒−
𝜋𝑖

4

) (57) 

i.e., the 90 rotation. So, we use Eq. (28) to compute 

 𝑘(𝑧, 𝒱) = 𝑎4 = 1  

 𝑘(𝑧, ℰ) = (
1

𝑑
)
12
= −1 (58) 

 𝑘(𝑧, ℱ) = (
1

𝑑
)
8
= 1  

where 𝑎 represents the corresponding matrix entrance as defined in the beginning of Section 3. 

Proposition 3.9. There are three invariant forms 

 (𝑧1, 𝑧2, 𝑧3) = (𝑓𝒱𝑓ℰ , 𝑓𝒱
2, 𝑓ℱ) (59) 

Proof: Immediately from the above results. 

Proposition 3.10. There are constants 𝜆, 𝜇 ∈ ℂ such that 

 𝑓𝒱
4 + 𝜆𝑓ℱ

3 + 𝜇𝑓ℰ
2 = 0 (60) 
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Proof: Note that 𝑓𝒱
4, 𝑓ℱ

3 and 𝑓ℰ
2 are all invariant forms so they take the same value inside an orbit. We 

set 

 𝜆 = −
𝑓𝒱
4(ℰ)

𝑓ℱ
3(ℰ)

, 𝜇 = −
𝑓𝒱
4(ℱ)

𝑓ℱ
3(ℱ)

 (61) 

So that, the zeros of 𝑓𝒱
4 + 𝜆𝑓ℱ

3 + 𝜇𝑓ℰ
2 contain ℰ ∪ ℱ. But the degree is 24 and |ℰ ∪ ℱ| = 20, there is no 

room for any one other whole orbit to fit in the zeros which contradicts the definition of the polynomial. 

This property forces the polynomial expression to be 0, not be any arbitrary polynomial of degree 24. In fact, 

𝜇 = −𝜆 = 108−1. 

Corollary 3.11. Up to some constant multiples, 𝑓𝑂 = (𝑧1, 𝑧2, 𝑧3) defines a map from ℂ2/2𝑂 to 𝜑𝑂
−1(0). 

Recall that 𝜑𝑂
−1(0) is the solution set of 𝑧1

2 + 𝑧2
3 + 𝑧3

3𝑧2. This 𝜑𝑂 we constructed always equal to 0, after 

we substitute in the expressions for the three quantifiers in terms of 𝑓𝒱 , 𝑓ℱ , and 𝑓ℰ , along with appropriate 

constant coefficients. 

 Tetrahedral Case 

This case is closely related to the octahedral case. We place the tetrahedron so that the vertices are 4 of 

the 8 vertices of the previous dual cube. Then 𝑇 is naturally viewed as a subgroup of 𝑂 of index 2. 

Precisely, 

 O = T ∪ zT (62) 

where 𝑧 is defined in 3.36. Again, we denote by 𝒱, ℰ, ℱ the orbits of vertices, midpoints of edges, centers 

of faces and use a superscript to indicate the tetrahedron or the octahedron or the cube. 

Proposition 3.12. We have the relations 

 𝑓𝒱𝑂 = 𝑓ℰ𝑡   

 𝑓ℱ𝑂 = 𝑓𝒱𝑡𝑓ℱ𝑡  (63) 

 𝑓ℰ𝑂 = 𝑓𝒱𝑡
3 + 𝑓ℱ𝑡

3   

and they are all 2𝑇-invariant. 

Proof: The first one follows from the fact that 𝒱𝑂 = ℱ𝑐 = ℰ𝑡 , and the second one from ℱ𝑂 = 𝒱𝑐 = 𝒱𝑡 ∪

ℱ𝑡. For the last one, we need the group character argument. The relation 

 𝑘(𝑥)2 = 𝑘(𝑦)3 = 𝑘(𝑧)3 = 𝑘(𝑥)𝑘(𝑦)𝑘(𝑧) ∈ ℂ − {0} (64) 

implies that (𝑘(𝑥), 𝑘(𝑦), 𝑘(𝑧)) = (1, 𝑒
2𝜋𝑖

3 , 𝑒
4𝜋𝑖

3 ) or (1, 𝑒
4𝜋𝑖

3 , 𝑒
2𝜋𝑖

3 ). Thus 𝑓𝒱𝑡
3  and 𝑓ℱ𝑡

3  are 2𝑇-invariant forms, 

so is their sum. Furthermore, the sum is 2𝑂-almost invariant. To show this, it remains to consider the 

action of 𝑧. Since it swaps 𝒱𝑡 and ℱ𝑡, we have 𝑓𝒱𝑡(𝑧 · (𝑢, 𝑣)) = 𝑘 · 𝑓ℱ𝑡(𝑢, 𝑣) for some constant 𝑘. In fact, 

a slight variation of 3.6 gives 

 𝑘 = 𝑎4 = −1 (65) 

Similarly, 𝑓ℱ𝑡(𝑧 · (𝑢, 𝑣)) = 𝑓𝒱𝑡(𝑢, 𝑣). We conclude that the sum is an 2𝑂-almost invariant form of degree 

12 with the multiplier 𝑘(𝑧) = −1, so it must be 𝑓ℰ𝑂 . 

To show that the three are 2𝑇-invariant, the second is easy since 𝑓ℱ𝑂 is already 2𝑂-invariant. The third 

one was just seen. For the first, since it is both 2𝑂 and 2𝑇 -almost invariant, its multiplier takes value in 

{±1} ∩ {1, 𝑒
2𝜋𝑖

3 , 𝑒
4𝜋𝑖

3 }. Hence it must be 1. 

Corollary 3.13. Up to some constant multiples, 𝑓𝑇 = (𝑓ℰ𝑂 , 𝑓ℱ𝑂 , 𝑓𝒱𝑂) defines a map from ℂ2/2𝑇 to 

𝜑𝑇
−1(0), the solution set of 𝑧1

2 + 𝑧2
3 + 𝑧3

4. 
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 Icosahedral Case 

This case has an advantage that the group character argument immediately implies that, all almost 

invariant forms are actually invariant. We place the icosahedron so that the orbit of vertices is 

 𝒱 = {0,∞, ϵk + ϵk+1, ϵk + ϵk+2): ϵ = e
2πi

5 , k = 0,1,2,3,4} (66) 

It follows that (by some hard work) 

 𝑓𝒱 = 𝑢𝑣(𝑣
10 − 11𝑢5𝑣5 − 𝑢10) (67) 

The same method as in the last section will give 𝑓ℰ  and 𝑓ℱ . By the same reasoning in proposition 3.10 

there is a relation (up to some constant multiples) 

 f
ℰ
2 + f

ℱ
3 + f𝒱

5 = 0 (68) 

and we set 𝑓𝐼 = (𝑓ℰ , 𝑓ℱ , 𝑓𝒱): ℂ
2/2𝐼 → 𝜑𝐼

−1(0). Now we have gathered 𝑓𝐷𝑛 , 𝑓𝑇 , 𝑓𝑂 and 𝑓𝐼 . 

Proposition 3.14. The map 𝑓𝐺: (ℂ
2 − {0})/2𝐺 → 𝜑𝐺

−1(0) − {0} is a homeomorphism. 

Proof: First note that the action of 2𝐺 on ℂ2 − {0} is free, so it suffices to prove that (see [10], theorem 

21.10) 𝑓𝐺: ℂ
2 − {0} → 𝜑𝐺

−1(0) − {0} is a |2𝐺|-sheeted covering. We use Lee’s work [10], proposition 4.46 

which states that a map between connected manifolds is a finite-sheeted covering if and only if it is a proper 

local diffeomorphism. It is straightforward to check that the Jacobian matrix of 𝑓𝐺  is nonsingular hence it is 

a local diffeomorphism. It is clearly proper since it is a polynomial map. Since 𝑓𝐺  is 2𝐺 -invariant, it is at 

least |2𝐺|-sheeted. It remains to find a point 𝑦 ∈ 𝜑𝐺
−1(0) − {0} such that |𝑓𝐺

−1(𝑦)| ≤ |2𝐺|. For this, there is 

some numerical coincidence: 

(1) 𝐺 = 𝐷𝑛, consider 𝑦 = (0, 1, 0), equation ?? immediately implies that |𝑓𝐷𝑛
−1(𝑦)| = 4𝑛 = |2𝐷𝑛|. 

(2) 𝐺 = 𝑇, 𝑂, 𝐼 , recall that 𝑓𝐺 = (𝑧1, 𝑧2, 𝑧3)  where deg(𝑓𝐺) = (12, 8, 6), (18, 12, 8), (30, 20, 12) 

respectively. Consider 𝑦 = (1,−1, 0) . Recall that 𝑓3 = 𝑓𝒱𝑂 , 𝑓ℱ𝑂 , 𝑓𝒱𝐼  respectively, 𝑧3 = 0  restricts to 

𝑑𝑒𝑔(𝑧3) complex lines through the origin. By substituting, in each line 𝑧𝑖 (𝑖 = 1, 2) has the form 𝑢deg(𝑧𝑖) 

or 𝑣deg(𝑧𝑖) up to some constant multiple. So, the sets of zeros of 𝑧1 = 1 and 𝑧2 = −1 form regular gons, 

hence they have at most 𝑔𝑐𝑑(𝑑𝑒𝑔(𝑧1) , 𝑑𝑒𝑔(𝑧2)) zeros in common. We conclude by noting that in each case 

 deg(z3) ∙ gcd(deg(z1) , deg(z2)) = |2G| (69) 

Finally, theorem 2.8 follows as a corollary of the proposition above. For all (𝑧1, 𝑧2) ∈ 𝐒
3 the unit sphere 

of ℂ2, the function from 𝐑>0 to 𝐑>0 defined by 

 λ ↦ |fG(λz1,λz2)| (70) 

is monotonic and surjective. Hence there is a unique 𝜆 such that 𝑓𝐺(𝜆𝑧1, 𝜆𝑧2) ∈ 𝐒
5. Since the action of 2𝐺 

is isometric, 

 𝑓𝐺 ∘ 𝜆: 𝑺
3/2𝐺 → 𝜑𝐺

−1(0) ∩ 𝑺5 (71) 

is a well-defined continuous map. It has a continuous inverse, which is 𝑓𝐺
−1 composed with the obvious 

map ℂ2 − {0} → 𝐒3. 

 Compute the Seifert Invariants 

In this section we prove proposition 2.9. First note that the map 𝜋𝐺: 𝜑𝐺
−1(0) ∩ 𝐒5 → 𝐒2 = ℂℙ1 = ℂ ∪ {∞} 

given by 

International Journal of Applied Physics and Mathematics

77 Volume 13, Number 4, October 2023



  

 𝜋𝐺(𝑧1, 𝑧2, 𝑧3) =

{
 
 

 
 𝑧3

𝑛+1/𝑧1
2, 𝐺 = 𝐷𝑛

𝑧3
4/𝑧1

2, 𝐺 = 𝑇

𝑧2
3/𝑧1

2, 𝐺 = 𝑂

𝑧3
5/𝑧1

2, 𝐺 = 𝐼

 (72) 

Defines a Seifert fibering with the circle action given by Eq. (19) We study the exceptional fibers 

individually. The general principle is that we look for fibers with non-trivial isotropy group, which can only 

happen when 𝑧1𝑧2𝑧3 = 0 because gcd(𝑎, 𝑏, 𝑐) = 1 in each case. 

(1) 𝐺 = 𝐼, there are three exceptional fibers. Consider {𝑧3 = 0}, it has the isotropy group 𝐶gcd(15,10) = 𝐶5. 

The action of 𝑒
2𝜋𝑖

5  sends 𝑧3 to 𝑒
2𝜋𝑖

5 𝑧3, so the type of {𝑧3 = 0} is (5,1). Similarly, {𝑧2 = 0} is exceptional of 

type (3,1), and {𝑧1 = 0} is exceptional of type (2,1). 

(2) 𝐺 = 𝑂, as usual {𝑧3 = 0} is exceptional of type (3,1). The set {𝑧1 = 0} breaks into two fibers: 

{𝑧2 = 0} and {𝑧2
2 + 𝑧3

2 = 0}. The action on the first one is 𝛾 · (0, 0, 𝑧3) = (0, 0, 𝛾
4𝑧3). Because 𝑒

𝜋𝑖

2  sends 𝑧1 

to 𝑒
𝜋𝑖

2 𝑧1, this fiber has type (4,1). The second one has the isotropy group 𝐶gcd(6,4) = 𝐶2 so it has type (2,1). 

(3) 𝐺 = 𝑇, as usual {𝑧3 = 0} is exceptional of type (2,1). The difference with the first case is that, 

{𝑧1 = 0}  is a regular fiber (because gcd(4,3) = 1 ), and {𝑧2 = 0} =  {𝑧1
2 + 𝑧3

4 = 0} = {𝑧1 = 𝑖𝑧3
2} ∪

{𝑧1 = −𝑖𝑧3
2} breaks into two exceptional fibers. Both has the isotropy group 𝐶gcd(6,3) = 𝐶3. Since the action 

of 𝑒
2𝜋𝑖

3  sends 𝑧2 to 𝑒
2𝜋𝑖

3 𝑧2, both has type (3,1). 

(4) 𝐺 = 𝐷𝑛, the situation depends on the parity of 𝑛. When 2|𝑛, the fiber {𝑧1 = 0} breaks into three: 

{(0, 𝑧2, 0)}, {𝑧2
2 = 𝑖𝑧3

𝑛/2
} and {𝑧2

2 = −𝑖𝑧3
𝑛/2
}. The first one has the isotropy group 𝐶𝑛. It has type (𝑛, 1) 

since 𝑒
2𝜋𝑖

𝑛  sends 𝑧1 to 𝑒
2𝜋𝑖

𝑛 𝑧1. The latter two have the isotropy group 𝐶gcd(𝑛,2) = 𝐶2, so both has type (2,1). 

When 2 ∤ 𝑛, still {(0, 𝑧2, 0)} is an exceptional fiber of type (𝑛, 1). The other two exceptional fibers are 

{𝑧2 = 0} = {𝑧1
2 = 𝑖𝑧3

(𝑛+1)/2
} ∪ {𝑧1

2 = −𝑖𝑧3
(𝑛+1)/2

}, both is of type (2,1). 

Denote by 𝑑  the integer such that the action of 𝛾  sends 𝜑𝐺  to 𝛾
𝑑𝜑𝐺 . The Euler number 𝑛  is 

computed by [6]. 

 𝑛 = ∑
𝑞𝑖

𝑝𝑖

3
𝑖=1 −

𝑑

𝑎𝑏𝑐
=

{
  
 

  
 
1

𝑛
+
1

2
+
1

2
−

2𝑛+2

2𝑛(𝑛+1)
, 𝐺 = 𝐷𝑛

1

2
+
1

3
+
1

3
−

12

6∙4∙3
, 𝐺 = 𝑇

1

2
+
1

3
+
1

4
−

18

9∙6∙4
, 𝐺 = 𝑂

1

2
+
1

3
+
1

5
−

30

15∙10∙6
, 𝐺 = 𝐼

= 1 (73) 

We examine that all these results are well in correspondence with the spaces arising from plumbing, thus 

complete the proof of the main theorem. 

4. Conclusion 

One of the most elegant results in classical mathematics is Elie Cartan’s classification of simple complex 

Lie algebras in the late 19th century, presented in the form of Dynkin diagrams. We are very delighted to 

find its incarnation in the topological world in this paper. In doing this program, we have fully appreciated 

the power of classification theorems in math. What’s even more exciting is that sometimes the 

classifications of two different structures which are seemingly irrelevant reveal the similar pattern, and turn 

out to be unified in some broader theoretical framework. For example, the classification of platonic solids 

has been known since the ancient Greeks. Little do people expect that it can be related to Dynkin diagrams 

via the so-called 𝐴𝐷𝐸 classification. In reading Kirby’s work from 1987, we are soon convinced that this 
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𝐸8- icosahedron correspondence is only a tip of the iceberg. Our paper aims to generalize the calculation 

presented there to other orbit spaces besides 𝑆3/2𝐼, which, from our account is a relatively simple case. 

Originally, we thought the equation constructed for each case would resonate the group presentation of the 

2𝐺  group that created the orbit space. This 2𝐺  group also has a corresponding compact lie group 

represented by a Dynkin Diagram. However, as our equivalency check persisted, such generalization was 

more complicated than we thought. Thus, slight adjustment was made to the function being constructed. 

Fortunately, the generalization still existed and the adjustments were relatively minor. We managed to get 

the right forms in the end but, as is normal in doing math, one can as well prove something or compute 

something down to earth without thoroughly understanding it. The deep reason why the correspondence in 

our paper can be established still holds an intriguing mystery for the author. We are aware that it can be 

explained using some modern algebraic geometry as in McKay’s work [11]. This line will keep the author 

motivated in the future years of studies. For now, we are very excited to discover this correspondence and 

present our work, as math always manifest its beauty and delight people via various surprising connections. 
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