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Abstract: The success of the triangular meshing technique in plane wave scattering by perfect electric 

conductor bodies in free space is tested for the special case of a sphere under physical optics approximation 

by representing each facet as an equivalent electrical dipole source. The scattering patterns are observed to 

conform to the exact solution of the corresponding boundary value problem as well as CSTTM simulation 

results. 
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1. Introduction 

In the present work, we introduce an asymptotic analytical approach for electromagnetic scattering by 

Perfect Electric Conductor (PEC) surfaces defined by triangular facets in free space. The investigation starts 

with the derivation of the rotation dyadic of an arbitrarily oriented triangular facet and the equivalent 

moment of the electrical Hertzian dipole that characterizes the fields scattered by the PEC facet under 

homogeneous plane wave incidence and Physical Optics (PO) approximation [1], which is founded on 

Huygens-Fresnel principle derived originally from the Kirchhoff diffraction formula [2] introduced in 1883. 

The Principle of Superposition reveals the total fields scattered by arbitrarily shaped PEC surfaces. The 

performance of the method is tested for the canonical case of a PEC sphere w.r.t. exact expressions and CST 

Studio SuiteTM (CST) [3] simulations of the scattered electrical field.  

Time dependence 𝑒𝑥𝑝( − 𝑖𝜔𝑡) is assumed for phasor quantities. Here, 𝜔 = 2𝜋𝑓 = 2𝜋
𝑐0

𝜆
= 𝑘𝑐0, where 

𝑐0 represents the speed of light in free space. 

2. Formulation 

 Geometric Aspects of the Problem 

Consider an arbitrarily oriented triangular facet 𝑆𝐹  in global Cartesian 𝑂𝑥1𝑥2𝑥3 −frame as illustrated in 

Fig. 1. It is defined by the position vectors of its vertices  

𝑟𝐴 = (𝑥1𝐴, 𝑥2𝐴, 𝑥3𝐴), 𝑟𝐵 = (𝑥1𝐵 , 𝑥2𝐵 , 𝑥3𝐵), 𝑟𝐶 = (𝑥1𝐶 , 𝑥2𝐶 , 𝑥3𝐶) 

Let us denote the relative position vectors through the vertices by 

𝑟𝐴𝐵 = 𝑥̂𝑖(𝑥𝑖𝐵 − 𝑥𝑖𝐴), 𝑟𝐴𝐶 = 𝑥̂𝑖(𝑥𝑖𝐶 − 𝑥𝑖𝐴) 

Using summation convention. Their Euclidean norms are 
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|𝑟𝐴𝐵| = [(𝑥1𝐵 − 𝑥1𝐴)
2 + (𝑥2𝐵 − 𝑥2𝐴)

2 + (𝑥3𝐵 − 𝑥3𝐴)
2]
1
2 

|𝑟𝐴𝐶| = [(𝑥1𝐶 − 𝑥1𝐴)
2 + (𝑥2𝐶 − 𝑥2𝐴)

2 + (𝑥3𝐶 − 𝑥3𝐴)
2]
1
2 

 

 
Fig. 1. Orientation of a triangular PEC facet 𝑆𝐹  in global 𝑂𝑥1𝑥2𝑥3 −frame. 

 
We represent the associated unit vectors by 

𝑟̂𝐴𝐵 = 𝑥̂𝑖
(𝑥𝑖𝐵−𝑥𝑖𝐴)

|𝑟𝐴𝐵|
, 𝑟̂𝐴𝐶 = 𝑥̂𝑖

(𝑥𝑖𝐶−𝑥𝑖𝐴)

|𝑟𝐴𝐶|
 

The Eulerian transformation between the local Cartesian reference frame 𝑂𝑥1
′𝑥2
′𝑥3
′  and the global frame 

𝑂𝑥1𝑥2𝑥3 of the facet is defined as 

𝑟 = 𝑄̄̄ ⋅ 𝑟 ′ + 𝑟𝐴 , 𝑟̂ = 𝑄̄̄ ⋅ 𝑟̂ ′ and 𝑟 ′ = 𝑄̄̄𝑇 ⋅ (𝑟 − 𝑟𝐴), 𝑟̂
′ = 𝑄̄̄𝑇 ⋅ 𝑟̂ 

The rotation dyadic 𝑄̄̄ has the typical properties 𝑑𝑒𝑡 𝑄̄̄ = 1, 𝑄̄̄−1 = 𝑄̄̄𝑇 with elements 𝑄𝑖𝑗 = 𝑥̂𝑖 ⋅ 𝑥̂𝑗
′ . We 

specify the unit vectors of the local reference frame as 

𝑥̂1
′ ≜ 𝑟̂𝐴𝐵 , 𝑥̂2

′ ≜
[𝑟̂𝐴𝐶−(𝑟̂𝐴𝐶⋅𝑟̂𝐴𝐵)𝑟̂𝐴𝐵]

|𝑟̂𝐴𝐶−(𝑟̂𝐴𝐶⋅𝑟̂𝐴𝐵)𝑟̂𝐴𝐵|
 

𝑥̂3
′ = 𝑥̂1

′ × 𝑥̂2
′ =

[𝑟̂𝐴𝐵 × 𝑟̂𝐴𝐶]

|𝑟̂𝐴𝐶 − (𝑟̂𝐴𝐶 ⋅ 𝑟̂𝐴𝐵)𝑟̂𝐴𝐵|
 

Then, the explicit expressions of the coordinates of vertices B and C in the local 𝑂𝑥1
′ 𝑥2

′ −frame, as 

illustrated in Fig. 2, are given as 

{

𝑥1𝐵
′ = 𝑄11(𝑥1𝐵 − 𝑥1𝐴) + 𝑄21(𝑥2𝐵 − 𝑥2𝐴) + 𝑄31(𝑥3𝐵 − 𝑥3𝐴)

𝑥1𝐶
′ = 𝑄11(𝑥1𝐶 − 𝑥1𝐴) + 𝑄21(𝑥2𝐶 − 𝑥2𝐴) + 𝑄31(𝑥3𝐶 − 𝑥3𝐴)

𝑥2𝐶
′ = 𝑄12(𝑥1𝐶 − 𝑥1𝐴) + 𝑄22(𝑥2𝐶 − 𝑥2𝐴) + 𝑄32(𝑥3𝐶 − 𝑥3𝐴)

 

 

 

Fig. 2. Orientation of a triangular PEC facet in local 𝑂′𝑥1
′ 𝑥2

′ 𝑥3
′ −frame. 
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 Calculations of the Equivalent Point Dipoles 

We consider a homogeneous monochromatic plane wave incidence in the direction 

𝑛̂𝑖𝑛𝑐 = −𝑥̂1 𝑠𝑖𝑛 𝜃𝑖𝑛𝑐 𝑐𝑜𝑠 𝜙𝑖𝑛𝑐 − 𝑥̂2 𝑠𝑖𝑛 𝜃𝑖𝑛𝑐 𝑠𝑖𝑛 𝜙𝑖𝑛𝑐 − 𝑥̂3 𝑐𝑜𝑠 𝜃𝑖𝑛𝑐 = 𝑥̂1𝑛1 + 𝑥̂2𝑛2 + 𝑥̂3𝑛3 

with fields 

{
 
 

 
 𝐸⃗⃗𝑖𝑛𝑐 = 𝐸⃗⃗0 𝑒𝑥𝑝( 𝑖𝑘𝑛̂𝑖𝑛𝑐 ⋅ 𝑟) = 𝐸⃗⃗0 𝑒𝑥𝑝( 𝑖𝑘𝑛̂𝑖𝑛𝑐 ⋅ 𝑟𝐴) 𝑒𝑥𝑝( 𝑖𝑘𝑛̂𝑖𝑛𝑐 ⋅ 𝑄̄̄ ⋅ 𝑟

′)

𝐻⃗⃗⃗𝑖𝑛𝑐 = 𝐻⃗⃗⃗0𝑒
𝑖𝑘𝑛̂𝑖𝑛𝑐⋅𝑟 = 𝐻⃗⃗⃗0 𝑒𝑥𝑝( 𝑖𝑘𝑛̂𝑖𝑛𝑐 ⋅ 𝑟𝐴) 𝑒𝑥𝑝( 𝑖𝑘𝑛̂𝑖𝑛𝑐 ⋅ 𝑄̄̄ ⋅ 𝑟

′)

𝐸⃗⃗0 = 𝐸𝜃0𝜃(𝜃𝑖𝑛𝑐 , 𝜙𝑖𝑛𝑐) + 𝐸𝜙0𝜙̂(𝜙𝑖𝑛𝑐)

𝑍𝐻⃗⃗⃗0 = 𝐸𝜙0𝜃(𝜃𝑖𝑛𝑐 , 𝜙𝑖𝑛𝑐) − 𝐸𝜃0𝜙̂(𝜙𝑖𝑛𝑐)

 

Here, 𝑍 = √
𝜇0

𝜀0
 denotes the characteristic impedance of free space while 

{
𝜃(𝜃𝑖𝑛𝑐 , 𝜙𝑖𝑛𝑐) = (𝑥̂1 𝑐𝑜𝑠 𝜙𝑖𝑛𝑐 + 𝑥̂2 𝑠𝑖𝑛 𝜙𝑖𝑛𝑐) 𝑐𝑜𝑠 𝜃𝑖𝑛𝑐 − 𝑥̂3 𝑠𝑖𝑛 𝜃𝑖𝑛𝑐
𝜙̂(𝜙𝑖𝑛𝑐) = −𝑥̂1 𝑠𝑖𝑛 𝜙𝑖𝑛𝑐 + 𝑥̂2 𝑐𝑜𝑠 𝜙𝑖𝑛𝑐

 

The (phasor) vector potential generated by the induction surface currents with density 𝐽𝑆  are 

represented by the radiation integral 

 𝐴(𝑟) =
𝜇0

4𝜋
∫ 𝐽𝑆(𝜉)

𝑒𝑖𝑘𝑅

𝑅𝑆𝐹
 𝑑𝑆, 𝑑𝑆 = 𝑑𝑥1

′ 𝑑𝑥2
′ , 𝑅 = |𝑟 − 𝜉| (1a) 

Under a first-order approximation its far-field shapes into  

 𝐴ff(𝑟) ≃
𝜇0

4𝜋

𝑒𝑖𝑘𝑅𝑃

𝑅𝑃
∫ 𝐽𝑆(𝜉𝑆)𝑆𝐹

𝑑𝑆 (1b) 

with 𝜉𝑆 = 𝜉|
𝑆𝐹

,𝑟 − 𝜉𝑆 = 𝑟
′, and 𝑅𝑃 = |𝑟 − 𝑟𝑃| = [(𝑥1 − 𝑥1𝑃)

2 + (𝑥2 − 𝑥2𝑃)
2 + (𝑥3 − 𝑥3𝑃)

2]
1

2. Here, we pick 

𝑃 as the central point of 𝑆𝐹  defined by 𝑟𝑃 =
(𝑟𝐴+𝑟𝐵+𝑟𝐶)

3
. 

We characterize the scattered far field (1b) by the far field of an electrical Hertzian dipole (HD) at 𝑟 = 𝑟𝑃 

having moment 𝑝⃗ as 

 𝐴𝐻𝐷(𝑟) =
𝜇0

4𝜋
(−𝑖𝜔𝑝⃗)

𝑒𝑖𝑘𝑅𝑝

𝑅𝑝
 (2a) 

This requires 

 −𝑖𝜔𝑝⃗ = ∫ 𝐽𝑆(𝜉𝑆)𝑆𝐹
𝑑𝑆 (2b) 

We set 

𝐽𝑆(𝜉𝑆) = 2𝑛̂𝐹 × 𝐻⃗⃗⃗𝑖𝑛𝑐|𝑆𝐹
= (2𝛾𝐴𝑛̂𝐹 × 𝐻⃗⃗⃗0) 𝑒

𝑖𝑘𝑛̂𝑖𝑛𝑐
′ ⋅𝑟

′

|
𝑥3
′ =0

 

with 𝛾𝐴 ≜ 𝑒𝑥𝑝( 𝑖𝑘𝑛̂𝑖𝑛𝑐 ⋅ 𝑟𝐴), 𝑛̂𝐹 ≜ 𝑥̂3
′  under PO approximation to get 

−𝑖𝜔𝑝⃗ = (2𝛾𝐴𝑛̂𝐹 × 𝐻⃗⃗⃗0)𝐼, 𝐼 = ∫ 𝑒𝑥𝑝( 𝑖𝑘𝑛̂𝑖𝑛𝑐
′ ⋅ 𝑟𝑆

′)𝑑𝑥1
′ 𝑑𝑥2

′
𝑆𝐹

 

The integral 𝐼 is calculated by 

𝐼 = ∫ 𝑒𝑥𝑝( − 𝑖𝑘𝑛1
′ 𝑥1

′ ) [∫ 𝑒𝑥𝑝( − 𝑖𝑘𝑛2
′ 𝑥2

′ )𝑑𝑥2
′

𝑥2𝐶
′

𝑥1𝐶
′ 𝑥1

′

0

] 𝑑𝑥1
′

𝑥1𝐶
′

0

−∫ 𝑒𝑥𝑝( − 𝑖𝑘𝑛1
′ 𝑥1

′ ) [∫ 𝑒𝑥𝑝( − 𝑖𝑘𝑛2
′ 𝑥2

′ )𝑑𝑥2
′

𝑥2𝐶
′

𝑥1𝐶
′ −𝑥1𝐵

′ (𝑥1
′ −𝑥1𝐵

′ )

0

] 𝑑𝑥1
′

𝑥1𝐶
′

𝑥1𝐵
′

 

in a straightforward manner to get 
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𝑘2𝐼

𝑁𝐵𝐶
=

{
 
 
 
 
 

 
 
 
 
 

𝑖

𝑁𝐵𝑁𝐶(𝑁𝐵 −𝑁𝐶)
[𝑁𝐶𝑒

−𝑖𝑁𝐵 𝑠𝑖𝑛𝑁𝐵 −𝑁𝐵𝑒
−𝑖𝑁𝐶 𝑠𝑖𝑛𝑁𝐶], 𝑁𝐵 ≠ 𝑁𝐶 ≠ 0

−𝑖
𝑒−𝑖𝑁𝐵

𝑁𝐵
2 𝑠𝑖𝑛 𝑁𝐵 , 𝑁𝐵 = 𝑁𝐶 ≠ 0

𝑖
1

𝑁𝐶
2
[𝑒−𝑖𝑁𝐶 𝑠𝑖𝑛𝑁𝐶 −𝑁𝐶], 𝑁𝐵 = 0,𝑁𝐶 ≠ 0

𝑖
1

𝑁𝐵
2
[𝑒−𝑖𝑁𝐵 𝑠𝑖𝑛𝑁𝐵 − 𝑁𝐵], 𝑁𝐵 ≠ 0,𝑁𝐶 = 0

1,𝑁𝐵 = 𝑁𝐶 = 0

 

with the definitions 

2𝑁𝐵 ≜ 𝑘𝑛1
′𝑥1𝐵

′ , 2𝑁𝐶 ≜ 𝑘(𝑛2
′ 𝑥2𝐶

′ + 𝑛1
′𝑥1𝐶

′ ), 2𝑁𝐵𝐶 ≜ 𝑘
2𝑥1𝐵

′ 𝑥2𝐶
′  

 Explicit Expression of the Electrical Field of an Equivalent Point Dipole 

The electrical field associated with the vector potential Eq. (2) can be expressed by 

𝐸⃗⃗𝐻𝐷(𝑟) = 𝜔2𝜇0𝐺̄̄(𝑟, 𝑟𝑃) ⋅ 𝑝⃗ = 2𝑖𝜔𝜇0𝐼𝛾𝐴𝐺̄̄(𝑟, 𝑟𝑃) ⋅ (𝑛̂𝐹 × 𝐻⃗⃗⃗0) 

Here, 𝐺̄̄ = 𝑥̂𝑗𝑥̂𝑛𝑔𝑗
𝑛 is the Green’s dyadic of free space with 𝑔𝑗

𝑛 𝑗, 𝑛 = 1,2,3 representing the 𝑥𝑗 −axis 

electrical field component at 𝑟 = (𝑥1, 𝑥2, 𝑥3) generated by the Hertzian dipole (with unit moment) located 

at 𝑟𝑃 = (𝑥1𝑃 , 𝑥2𝑃, 𝑥3𝑃) and directed along (positive) 𝑥𝑛 −axis. They are given by 

𝑔𝑖
𝑖 =

𝑒𝑖𝑘𝑅𝑃

4𝜋𝑅𝑃
[𝜉1 −

(𝑥𝑖−𝑥𝑖𝑃)
2

𝑅𝑃
2 𝜉2], 𝑖 = 1,2,3,  𝑔2

1 = −
(𝑥1−𝑥1𝑃)(𝑥2−𝑥2𝑃)

𝑅𝑃
2

𝑒𝑖𝑘𝑅𝑃

4𝜋𝑅𝑃
𝜉2 = −𝑔1

2,  

𝑔3
2 = −

(𝑥2−𝑥2𝑃)(𝑥3−𝑥3𝑃)

𝑅𝑃
2

𝑒𝑖𝑘𝑅𝑃

4𝜋𝑅𝑃
𝜉2 = 𝑔2

3,  𝑔1
3 = −

(𝑥1−𝑥1𝑃)(𝑥3−𝑥3𝑃)

𝑅𝑃
2

𝑒𝑖𝑘𝑅𝑃

4𝜋𝑅𝑃
𝜉2 = 𝑔3

1, 

where 𝜉1 = 1 −
1

𝑖𝑘𝑅𝑃
−

1

𝑘2𝑅𝑃
2 , 𝜉2 = 1 −

3

𝑖𝑘𝑅𝑃
−

3

𝑘2𝑅𝑃
2 . 

Straightforward calculations reveal the components of the PO electrical field of the facet 𝐸⃗⃗𝑃𝑂(𝑟) =

𝑥̂1𝐸1 + 𝑥̂2𝐸2 + 𝑥̂3𝐸3 as 

 𝐸𝑗 = 2𝑖𝑘𝐼𝛾𝐴
1

|𝑟𝐴𝐵||𝑟𝐴𝐶|

1

|𝑟̂𝐴𝐶−(𝑟̂𝐴𝐶⋅𝑟̂𝐴𝐵)𝑟̂𝐴𝐵|
× [𝛾𝐴𝐵 ∑ 𝑔𝑗

𝑛(𝑥𝑛𝐶 − 𝑥𝑛𝐴)
3
𝑛=1 − 𝛾𝐴𝐶 ∑ 𝑔𝑗

𝑛3
𝑛=1 (𝑥𝑛𝐵 − 𝑥𝑛𝐴)] (3) 

where we define 

𝛾𝐴𝐵 ≜ (𝑥1𝐵 − 𝑥1𝐴)[𝐸𝜙0 𝑐𝑜𝑠 𝜙𝑖𝑛𝑐 𝑐𝑜𝑠 𝜃𝑖𝑛𝑐 + 𝐸𝜃0 𝑠𝑖𝑛 𝜙𝑖𝑛𝑐] + (𝑥2𝐵 − 𝑥2𝐴)[𝐸𝜙0 𝑠𝑖𝑛 𝜙𝑖𝑛𝑐 𝑐𝑜𝑠 𝜃𝑖𝑛𝑐 − 𝐸𝜃0 𝑐𝑜𝑠 𝜙𝑖𝑛𝑐] 
      − (𝑥3𝐵 − 𝑥3𝐴)𝐸𝜙0 𝑠𝑖𝑛 𝜃𝑖𝑛𝑐 

𝛾𝐴𝐶 ≜ (𝑥1𝐶 − 𝑥1𝐴)[𝐸𝜙0 𝑐𝑜𝑠 𝜙𝑖𝑛𝑐 𝑐𝑜𝑠 𝜃𝑖𝑛𝑐 + 𝐸𝜃0 𝑠𝑖𝑛 𝜙𝑖𝑛𝑐] + (𝑥2𝐶 − 𝑥2𝐴)[𝐸𝜙0 𝑠𝑖𝑛 𝜙𝑖𝑛𝑐 𝑐𝑜𝑠 𝜃𝑖𝑛𝑐 − 𝐸𝜃0 𝑐𝑜𝑠 𝜙𝑖𝑛𝑐] 
      − (𝑥3𝐶 − 𝑥3𝐴)𝐸𝜙0 𝑠𝑖𝑛 𝜃𝑖𝑛𝑐 

 Total Scattered Electrical Far Field due to Equivalent Point Dipoles 

The far field approximation can be incorporated as 

(𝑥1 − 𝑥1𝑃) → 𝑥1 = 𝑟 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙,  (𝑥2 − 𝑥2𝑃) → 𝑥2 = 𝑟 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙, (𝑥3 − 𝑥3𝑃) → 𝑥3 = 𝑟 𝑐𝑜𝑠 𝜃, 𝑅𝑃 → 𝑟, 𝜉1 →

1 −
1

𝑖𝑘𝑟
−

1

𝑘2𝑟2
, 𝜉2 → 1 −

3

𝑖𝑘𝑟
−

3

𝑘2𝑟2
, 𝑒𝑖𝑘𝑅𝑃 → 𝛾𝑃𝑒

𝑖𝑘𝑟 

with the definition 

𝛾𝑃 ≜ 𝑒𝑥𝑝( − 𝑖𝑘𝑟̂ ⋅ 𝑟𝑃) = 𝑒𝑥𝑝[ − 𝑖𝑘(𝑥1𝑃 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙 + 𝑥2𝑃 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙 + 𝑥3𝑃 𝑐𝑜𝑠 𝜃)]. 

This shapes the dyadic components into 𝑔𝑗
𝑛 =

𝑒𝑖𝑘𝑟

4𝜋𝑟
𝛾𝑃𝛥𝑗

𝑛 with  

𝛥1
1 = 𝜉1 − 𝜉2 𝑠𝑖𝑛

2 𝜃 𝑐𝑜𝑠2 𝜙, 𝛥2
2 = 𝜉1 − 𝜉2 𝑠𝑖𝑛

2 𝜃 𝑠𝑖𝑛2𝜙, 
3 2

3 1 2 cos   = − 𝛥2
1 = −𝜉2 𝑠𝑖𝑛

2 𝜃 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜙 = −𝛥2
1 ,

 𝛥1
3 = −𝜉2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜙 = 𝛥3

1 , 𝛥3
2 = −𝜉2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜙 = 𝛥2

3 
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and one substitutes them into Eq. (3) to get 

 𝐸𝑗 = 2𝑖𝑘𝐼
1

|𝑟𝐴𝐵||𝑟𝐴𝐶|

1

|𝑟̂𝐴𝐶−(𝑟̂𝐴𝐶⋅𝑟̂𝐴𝐵)𝑟̂𝐴𝐵|
𝛾𝐴𝛾𝑃

𝑒𝑖𝑘𝑟

4𝜋𝑟
∑ 𝛥𝑗

𝑛[𝛾𝐴𝐵(𝑥𝑛𝐶 − 𝑥𝑛𝐴) − 𝛾𝐴𝐶(𝑥𝑛𝐵 − 𝑥𝑛𝐴)]
3
𝑛=1  (4) 

The 𝜃 − and 𝜙 −components of the total scattered electrical field vector can be synthesized in terms of 

the Cartesian components Eq. (4) over the illuminated facets (𝑛̂𝑖𝑛𝑐 ⋅ 𝑛̂𝐹 < 0) as 

 𝐸𝜃,𝜙
𝑃𝑂 =

𝑒𝑖𝑘𝑟

𝑘𝑟
∑ 𝑓𝜃,𝜙(𝜃, 𝜙; 𝑘𝑟𝐴, 𝑘𝑟𝐵, 𝑘𝑟𝐶)Illuminated
facets

 (5) 

with (electrically normalized) scattering patterns 

  𝑓𝜃 =
𝑖𝑘2𝐼

2𝜋

1

|𝑟𝐴𝐵||𝑟𝐴𝐶|

1

|𝑟̂𝐴𝐶−(𝑟̂𝐴𝐶⋅𝑟̂𝐴𝐵)𝑟̂𝐴𝐵|
𝛾𝐴𝛾𝑃 ∑ {

[𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜙 𝛥1
𝑛 + 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜙 𝛥2

𝑛 − 𝑠𝑖𝑛 𝜃 𝛥3
𝑛]

× [𝛾𝐴𝐵(𝑥𝑛𝐶 − 𝑥𝑛𝐴) − 𝛾𝐴𝐶(𝑥𝑛𝐵 − 𝑥𝑛𝐴)]
}3

𝑛=1  (6a) 

 𝑓𝜙 =
𝑖𝑘2𝐼

2𝜋

1

|𝑟𝐴𝐵||𝑟𝐴𝐶|

1

|𝑟̂𝐴𝐶−(𝑟̂𝐴𝐶⋅𝑟̂𝐴𝐵)𝑟̂𝐴𝐵|
𝛾𝐴𝛾𝑃 ∑ {

[− 𝑠𝑖𝑛 𝜙 𝛥1
𝑛 + 𝑐𝑜𝑠 𝜙 𝛥2

𝑛]

× [𝛾𝐴𝐵(𝑥𝑛𝐶 − 𝑥𝑛𝐴) − 𝛾𝐴𝐶(𝑥𝑛𝐵 − 𝑥𝑛𝐴)]
}3

𝑛=1  (6b) 

3. Numerical Implementations 

 The Exact Expression of the Scattered Electrical Field 

We shall test the performance of the current PO formulation by comparing to exact scattered electrical 

fields for a PEC illustrated in Fig. 3 and simulations by CSTTM.  

We consider an incidence as 𝑛̂𝑖𝑛𝑐 = −𝑥̂3, 𝐸⃗⃗𝑖𝑛𝑐 = 𝑥̂1 𝑒𝑥𝑝( − 𝑖𝑘𝑥3) under which the exact scattered fields 

are already available in [4] as 

𝐸⃗⃗𝑒𝑥𝑎𝑐𝑡 = 𝜃̂𝐸𝜃
𝑒𝑥𝑎𝑐𝑡 + 𝜙̂𝐸𝜙

𝑒𝑥𝑎𝑐𝑡 =
𝑒𝑖𝑘𝑟

𝑘𝑟
[𝜃̂𝑓𝜃

𝑒𝑥𝑎𝑐𝑡(𝜃, 𝜙) + 𝜙̂𝑓𝜙
𝑒𝑥𝑎𝑐𝑡(𝜃, 𝜙)] 

𝑓𝜃
𝑒𝑥𝑎𝑐𝑡(𝜃, 𝜙) = 𝑆1(𝜃) 𝑐𝑜𝑠 𝜙 , 𝑓𝜙

𝑒𝑥𝑎𝑐𝑡(𝜃, 𝜙) = −𝑆2(𝜃) 𝑠𝑖𝑛 𝜙 

 

 
Fig. 3. Homogeneous plane wave incidence on a PEC sphere centered at the origin of the global 

𝑂𝑥1𝑥2𝑥3 −frame. 
 

𝑆1(𝜃) = ∑(−𝑖)𝑛+1 [𝐴𝑛
𝑃𝑛
1(𝑐𝑜𝑠 𝜃)

𝑠𝑖𝑛 𝜃
+ 𝑖𝐵𝑛

𝑑

𝑑𝜃
𝑃𝑛
1(𝑐𝑜𝑠 𝜃)]

∞

𝑛=1

 

𝑆2(𝜃) = ∑(−𝑖)𝑛+1 [𝐴𝑛
𝑑

𝑑𝜃
𝑃𝑛
1(𝑐𝑜𝑠 𝜃) + 𝑖𝐵𝑛

𝑃𝑛
1(𝑐𝑜𝑠 𝜃)

𝑠𝑖𝑛 𝜃
]

∞

𝑛=1

 

𝐴𝑛 = −(−𝑖)
𝑛
2𝑛 + 1

𝑛(𝑛 + 1)

𝑗𝑛(𝑘𝑎)

ℎ𝑛
(1)(𝑘𝑎)

, 𝐵𝑛 = (−𝑖)
𝑛+1

2𝑛 + 1

𝑛(𝑛 + 1)

𝑑
𝑑(𝑘𝑎)

[𝑘𝑎 𝑗𝑛(𝑘𝑎)]

𝑑
𝑑(𝑘𝑎)

[𝑘𝑎 ℎ𝑛
(1)(𝑘𝑎)]
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Here, 𝑎 is the radius of the sphere; 𝑗𝑛 and ℎ𝑛
(1) are spherical Bessel and Hankel functions (of the first 

kind) of order 𝑛 and 𝑃𝑛
1 is the associated Legendre polynomial of degree 𝑛 and order 1. Their numerical 

calculations are performed in MATLABTM based on the formulas tabulated in [5]. 

 Physical Optics vs. Exact and Simulation Results 

In Fig. 4 PO, exact analytical and CSTTM simulation data are provided on 𝐸 −plane (i.e., on 𝑂𝑥1𝑥3 −plane) 

in the angular range 

𝜃 ∈ [0𝑜, 180𝑜], 𝜙 = 0𝑜 ∪ 𝜃 ∈ [0𝑜, 180𝑜], 𝜙 = 180𝑜 

for (range and amplitude normalized) total scattered electrical fields 

{
 
 

 
 20 𝑙𝑜𝑔10|𝑘𝑟 ⋅ 𝐸𝜃

𝑃𝑂| = 20 𝑙𝑜𝑔10 | ∑ 𝑓𝜃
Illuminated
facets

|

20 𝑙𝑜𝑔10|𝑘𝑟 ⋅ 𝐸𝜃
𝑒𝑥𝑎𝑐𝑡| = 20 𝑙𝑜𝑔10|𝑓𝜃

𝑒𝑥𝑎𝑐𝑡(𝜃, 𝜙)| = 20 𝑙𝑜𝑔10|𝑆1(𝜃) 𝑐𝑜𝑠 𝜙|

20 𝑙𝑜𝑔10|𝑘𝑟 ⋅ 𝐸𝜃
𝐶𝑆𝑇|

 

Forward scattering is intensified and shapes into a pencil beam with increasing electrical radius 𝑘𝑎. We 

observe that exact analytical and CSTTM results fit well for all 𝑘𝑎 values, while their discrepancy with PO 

formulation over the sidelobes diminishes for increasing values of 𝑘𝑎, as required theoretically.  

 

 
Fig. 4. 𝐸 −plane normalized scattering patterns for a) 𝑘𝑎 = 5[rad], b) 𝑘𝑎 = 10[rad], c) 𝑘𝑎 = 20[rad]. 
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Fig. 5. 𝐻 −plane normalized scattering patterns for a) 𝑘𝑎 = 5[rad], b) 𝑘𝑎 = 10[rad], c) 𝑘𝑎 = 20[rad]. 

 

A similar implementation carried out on 𝐻 −plane (i.e., on 𝑂𝑥2𝑥3 −plane) in the angular range 

𝜃 ∈ [0𝑜, 180𝑜], 𝜙 = 90𝑜 ∪ 𝜃 ∈ [0𝑜, 180𝑜], 𝜙 = −90𝑜 

for 𝜙 −components of the total scattered electrical fields 

{
 
 

 
 20 𝑙𝑜𝑔10|𝑘𝑟 ⋅ 𝐸𝜙

𝑃𝑂| = 20 𝑙𝑜𝑔10 | ∑ 𝑓𝜙
Illuminated
facets

|

20 𝑙𝑜𝑔10|𝑘𝑟 ⋅ 𝐸𝜙
𝑒𝑥𝑎𝑐𝑡| = 20 𝑙𝑜𝑔10|𝑓𝜙

𝑒𝑥𝑎𝑐𝑡(𝜃, 𝜙)| = 20 𝑙𝑜𝑔10|𝑆2(𝜃) 𝑠𝑖𝑛 𝜙|

20 𝑙𝑜𝑔10|𝑘𝑟 ⋅ 𝐸𝜙
𝐶𝑆𝑇|

 

Fig. 5 reveals similar observations. Picking the dimensions of the facets around 0.15𝜆 is observed to 

optimize numerical convergence in triangular meshing. The axial symmetry in the scattering patterns is a 

feature of the rotational symmetry of the scatterer. 

4. Concluding Remarks 

The high accuracy obtained in the numerical results for the canonical case of a PEC sphere reveals the 

success of representing each facet in a triangularly meshed PEC surface by an equivalent electrical Hertzian 

dipole. We observe that the requirements on the minimum electrical size of the scatterer for the 
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convergence of the present PO formulation are already satisfied fully in microwave bands in relation to RCS 

predictions of aircrafts and naval vessels. The presented analytical-asymptotic method has a significant 

computational advantage when compared to the approaches (such as in [6, 7]) which compute the double 

integral 𝐼 numerically. The equivalent Hertzian electrical dipoles also provide the formulation to be 

extendable to complex media by employing the associated Green’s dyadic 𝐺̄̄(𝑟, 𝑟𝑃) in virtue of the 

Directional Currents Method devised in [8, 9]. 

The present formulation is planned to be extended to PEC and impedance bodies located over a lossy 

dielectric half-space using the Green’s dyadic available already in [10]. Of special interest is the test of the 

performance of the present PO formulation for PEC surfaces with tips and edges such as plates, wedges, 

cones, and rectangular boxes in simulating 3-D platforms which may require incorporating higher order PO 

terms or the modified theory of PO [11] that involves edge contributions to the total scattered fields. 
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