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Abstract: Brillouin Scattering (SBS) is a nonlinear process in which an electromagnetic (pump) wave 

generates an acoustic wave through the process of electrostriction. The theoretical model for SBS is 

initiated by thermally excited acoustic waves distributed within a Brillouin-active medium; thermally 

excited acoustical phonons cause an inelastic scattering of light in a fiber optic tube. This paper provides a 

derivation of an approximate analytical solution to the system of SBS equations in a lossless medium. The 

model’s solution predicts how the SBS Stokes power depend upon the laser light intensity and upon the 

physical properties of the medium. A brief study of a numerical solution of the model is presented.  
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1. Introduction 

SBS is a process in which an electromagnetic light wave, typically generated by a laser, interacts with a 

microwave, typically called a Stokes wave, in a material medium. Through the intermediary of an acoustic 

wave, this leads to the amplification of the Stokes wave and attenuation of the laser wave. A more specific 

description of scattering is the coupling between the pump, acoustic and Stokes waves. In other words, the 

scattered Stokes wave will be produced as the acoustic wave generating a modulation in the material. 

Through electrostriction or radiation pressure [1–3], electromagnetic wave induces very small strains in the 

medium (material). This in turn stimulates the generation of coherent phonons via photo-elasticity or by 

physical motion of the waveguide (i.e., fiber optic tube) boundaries. A phonon is a quantity of energy found 

within a vibration while a photon is a quantum particle within a light wave. A physical example of a phonon 

includes sound waves. Acoustic phonons are coherent movements of atoms of the lattice out of their 

equilibrium positions. SBS is sometimes an unwanted phenomena in telecommunications networks. The 

long lengths and low attenuations which describe modern fiber networks allow for long interaction lengths 

where SBS can be detrimental even for power levels near 1 mW. SBS creates a situation where small Stokes 

signals can be amplified, degrading signal quality or damaging upstream optical components. Study and 

experiment of SBS allows it to be controlled more efficiently.  

The geometry of the sBs interaction is shown in Fig. 1. The light wave component is represented by the 

incident laser light wave EP, the back-scattered Stokes wave, ES, and the acoustic wave, ρa. Thus, the pump 

optical wave, acoustic wave, and scattered Stokes wave will couple to each other and an amplification 

process will be established when the intensity of pump light is high enough.  Based on energy conservation 

and supported by experimental observations, the optical pump frequency is related to the Stokes and 
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acoustic frequencies via: ωp = ωS + ωa. The geometry of the Brillouin scattering medium is typically a fiber 

optic tube (8–9 um dia.). 

 

 

Fig. 1. Geometry of the Brillouin scattering medium. 

2. Electrostriction and the Continuity Equation 

2.1. Electrostriction 

Electrostriction is the tendency of materials to become compressed in the presence of an electric field. An 

analogy is the parallel plate capacitor where a molecule near the plate placed in the presence of electric 

field creates energy, U, stored in the polarization of the molecule, which changes linearly as the plates move 

in one direction. The amplitude function 𝑬 of the field can be used to express a force, F, acting on a molecule 

near the medium: 

 

𝑭 = − ∇𝑈 = 
𝜀0

2
𝛾 ∇(𝑬·𝑬) (1) 

 

So, the electric field is inducing a force which rearranges the molecules and creates a density change. The 

term 𝜀0 is the dielectric constant of the fiber medium shown in Fig. 1, while 𝛾 is the electrostrictive 

coefficient. The dielectric constant can be written as a change from average value: 𝜀𝑟 = 𝜀0 + ∆𝜀0 with: ∆𝜀0 =

(𝛾 𝜌0)∆𝜌⁄  where ∆𝜌  is a subtraction. Thus, the dielectric constant can be expressed as: 𝜀𝑟 = 𝜀0 +

(𝛾 𝜌0)(𝜌 − 𝜌0)⁄ . 

2.2. Material Density and Continuity Equation 

An incident optical pump wave, 𝑬𝑷, with magnitude and direction, is a vector, and induces an acoustic 

wave with a pressure on the medium. Let P denote the pressure of an elastic acoustic field in the medium, 

let u denote the velocity of the elastic motion of the medium along the direction of propagation, namely the 

z-axis. Assume the direction of propagation is only in the z-direction since longitudinal (compressional) is 

the dominant mode of SBS and based on based experimental observations [4]. Let 𝜌0 denote the average 

mass density. The density variation 𝜌(z, t) of the fiber from its mean value 𝜌0 depend on time t and 

longitudinal position z, varying from z = 0 at the front face of the fiber to z = L at the rear face. Applying 

Newton’s second law to a unit volume with average density ρ, of the medium, yields the following PDE [5]: 

 

𝜌0
𝜕u

𝜕𝑡
+ Г𝜌0u + 𝛻𝑃 = 0  (2) 

 
The first term in Eq. (2) is the force proportional to the mass and acceleration. The second term is the 

damping force proportional to the mass and velocity of the moving particle. The damping factor Г has units 

of sec-1 while u is the velocity vector. P is the pressure imposed on the unit volume of the medium owing to 

the pressure gradient. The optical pump is connected to the medium left face along the z-axis at z = 0, and 

assume longitudinal (compressional) is the dominant mode of SBS. Since the intense optical wave exerts a 

force on the molecules in the fiber medium causing them to move and this change in density would include 

a forcing term into Eq. (1). Take this force to be proportional to the gradient of the square of the amplitude 
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of the optical wave, E. Therefore, using Eqs. (1) and (2) becomes 

 

𝜌0
𝜕u

𝜕𝑡
+ Г𝜌0u + ∇𝑃 =

𝜀0

2
𝛾 𝛻(𝑬·𝑬) (3) 

 

The continuity equation for conservation of mass of an element in the medium is 

 

∇ ∙ u +
1

𝜌0

𝜕𝜌

𝜕𝑡
= 0  (4) 

 

where ρ(z, t) is the mass density function in the presence of an optical field. 

Clairaut’s Theorem states that mixed variable partial derivatives are equal under certain conditions. Here, 

the velocity, u, density, ρ are functions for which 𝜕u 𝜕𝑡⁄  and 𝜕𝜌 𝜕𝑡⁄  exist and continuous over their domains. 

The divergence operator can be written as ∇ ∙ u= 𝜕u 𝜕𝑧⁄   𝜕2u 𝜕𝑧𝜕𝑡⁄  = 𝜕2u 𝜕𝑡𝜕𝑧⁄ . Taking the divergence of 

both sides of Eq. (3): 

 

𝜌0∇ ∙ (
𝜕u

𝜕𝑡
) +  Г𝜌0∇ ∙ u +  ∇2P =

𝜀0

2
𝛾∇2(𝑬·𝑬) (5) 

 

and using the fact that 𝛻 ∙ u = −
1

𝜌0

𝜕𝜌

𝜕𝑡
, the new equation is: 

 

𝛻2𝑃 − Г
𝜕𝜌

𝜕𝑡
−

𝜕2𝜌

𝜕t2
=

𝜀0𝛾

2
𝛻2(�⃗⃗� ·�⃗⃗� )  (6) 

 

The first term in Eq. (6) can be simplified by recognizing the Laplacian of pressure is proportional to the 

modulus of elasticity, β divided by average density variation, 𝜌0. Thus, Eq. (6) becomes after multiplying 

through by 𝜌0 𝛽⁄  . 

 

𝛻2𝜌 −
𝜌0

𝛽
Г

𝜕𝜌

𝜕𝑡
−

𝜌0

𝛽

∂2𝜌

∂t2
=  

𝜌0

𝛽

𝜀0𝛾

2
𝛻2(𝑬·𝑬)  (7) 

 

The velocity of acoustic wave in a medium depends on the square root of the restoring force, that is the 

ratio of elasticity to density. Velocity squared is the ratio of elasticity, divided by average density variation, 

𝑣𝑎
2 =  𝛽 𝜌0⁄ . The acoustic wave attenuation, 𝛼, in the fiber medium, is related to the damping factor, Г (units 

of sec-1) and velocity as [6]: Г = 𝑣𝑎𝛼𝑎. Eq. (7) can be revised with real mass density, so the fiber medium 

modulus of elasticity, 𝛽 = 𝜌0𝑣𝑎
2. Therefore, the material density disturbance is described by the wave 

equation: 

 

𝛻2𝜌 −
𝛼𝑎

𝑣𝑎

𝜕𝜌

𝜕𝑡
 −  

1

𝑣𝑎
2

𝜕2𝜌

𝜕𝑡2  =
𝜀0

𝑣𝑎
2

𝛾

2
𝛻2(𝑬·𝑬) (8) 

 

where  

• 𝜌 [kg/m3] is the material density fluctuation with average value of 𝜌0 over the fiber medium of 

length zero to L. 

• 𝛼𝑎 is the attenuation factor of the acoustic wave 

• 𝑣𝑎
2 is the squared longitudinal sound velocity. 

• The “forcing term” for the induced pressure which can be written as −𝜀𝛾𝛻2(𝑬·𝑬)where 𝜀0 is the 

permittivity and 𝛾 is the electrostrictive coupling constant (induced pressure constant) [7] 
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3. Consequence of Maxwell’s Equations 

3.1. Optical Wave Equation 

The wave equation of the optical field E (pump or Stokes) can be written in an isotropic and transparent 

medium as 𝛻2𝑬 − 
1

𝒄2

𝜕2

𝜕𝒕2
(𝜀𝑟𝑬)  = 0, where 𝜀𝑟  =  

𝛾

𝜌0
(𝜌 − 𝜌0) + 𝜀�̅� is the relative permittivity. Substituting 𝜀𝑟 

into the wave equation and taking two derivatives w.r.t time yields: 

 

𝛻2𝑬 −
𝜀𝑟̅̅ ̅+𝛾

𝑐2

𝜕2

𝜕𝑡2 𝑬 =
1

𝑐2

𝜸

𝜌0
 

𝜕2

𝜕𝑡2
(𝜌𝑬) (9) 

 

Eq. (9) is the wave equation of an optical field 𝑬 in a medium involving an induced ‘photoelastic effect’, 

That is, the refractive index in the fiber optic medium is modified due to elastic strain in the material. Elastic 

strain changes when material density changes. 

The optical (pump) and Stokes waves propagate in the longitudinal z direction. This is because extensive 

experimental observations show the optical wave to propagate ‘down’ the tube and assume one spatial 

dependence, z, due to extensive experimental observations of Stokes wave behavior [6]. Summarizing, the 

material density disturbance is described by the density Eq. (8) along with the optical wave Eq. (9). The 

optical wave will take the form:  

 

𝑬(𝑧, 𝑡) =  𝑅𝑒[𝑬𝒑(𝑧, 𝑡) 𝑒
𝑖(𝜔𝑝𝑡−𝑘𝑝𝑧)+ 𝑬𝑺(𝑧, 𝑡) 𝑒

𝑖(𝜔𝑆𝑡+𝑘𝑆𝑧)] (10) 

 
where 𝑬𝒑(𝑧, 𝑡) and 𝑬𝑺(𝑧, 𝑡) are the pump and Stokes amplitudes. 𝑘𝑃 and 𝑘𝑆 are the wavenumbers while 𝜔𝑝 

and 𝜔𝑆 are the pump and Stokes frequencies, respectively. Since the optical wave and acoustic wave interact 

with each other (through the SBS process) in which the waves decay exponentially with fiber length 

(verified by experiments by the author and others), the solution is assumed exponential. Accordingly, a 

solution to the optical field and the induced acoustic wave in Eqs. (8) and (9) is: 

 

𝑬𝑷 = 𝐸𝑃(𝑧)𝑒
𝑖𝜔𝑝𝑡; (11-a) 

 
𝑬𝑺  =  𝐸𝑆(𝑧)𝑒

−𝑖𝜔𝑠𝑡;  (11-b) 
 

𝜌𝒂 = 𝜌𝑎(𝑧)𝑒
−𝑖𝜔𝑎𝑡 (11-c) 

 

Considering Fig. 1, the initial condition, 𝐸𝑃(0) is the optical wave intensity at the entrance (left front face) 

to the fiber medium. 𝐸𝑃(𝐿) is the optical wave intensity at the end of the fiber medium. Take z = 0 to be the 

laser source location. That is, the laser is fixed on the far left side of the fiber medium at z = 0. Since back-

scattered Stokes wave grows from right to left, the boundary conditions are: 𝑬𝑷(𝑧 = 0, t) = 𝐸𝑃(0)𝑒
𝑖𝜔𝑝𝒕 and 

𝑬𝑺(𝑧 = 𝐿, 𝑡) = 0.  

3.2. Acoustic Solution: One Wave 

Substituting the induced acoustic field Eq. (11-c) into the acoustic wave Eq. (11-c) into Eq. (8) and 

differentiating the left-hand-side yields: 

 

[𝛻2 + 𝑘𝑎
2 + 𝑖𝛼𝑎𝑘𝑎]𝜌𝑎(𝑧) =  

𝜀0

𝑣𝐴
2

𝛾𝑒

2
𝛻2[𝐸𝑃(𝑧)𝑒

𝑖𝜔𝑝𝑡𝐸𝑆(𝑧)𝑒
𝑖𝜔𝑠𝑡] (12) 

 

where 𝑘𝑎 = 𝜔𝑎 𝑣𝑎⁄  is the magnitude of acoustic wave. 
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3.3. Optical Solution: Two Waves 

Substituting the acoustic solution form Eq. (11-c) into the optical wave Eq. (9) and assuming a slowly 

varying acoustic amplitude such that 𝑣𝑎 ≪ 𝑐 𝑛⁄  and 𝜔𝑎 ≪ 𝜔𝑃  yields a separate pump and Stokes 

components. Then, this result can be separated into the optical laser (pump) and Stokes waves: 

 

[𝛻2 +
𝜀𝑟𝜔𝑝

2

𝑐2
] (𝐸𝑃(𝑧)𝑒

−𝑖𝜔𝑝𝑡) = −
𝜔𝑝

2

𝑐2

𝛾

𝜌0
 [𝜌𝑎(𝑧)𝐸𝑠(𝑧)] 

[∇2 +
𝜀𝑟𝜔𝑠

2

𝑐2 ] (𝐸𝑠(𝑧)𝑒
−𝑖𝜔𝑠𝑡) = −

𝜔𝑠
2

𝑐2

𝛾

𝜌0
 [𝜌𝑎(𝑧)𝐸𝑝(𝑧)] (13) 

 
The forward (incident) optical pump, backward Stokes wave and the induced acoustic wave are 

propagating along the z-axis. Recall, the amplitude functions of these waves are: 

 

𝑬 = 𝑬𝑃(𝑧)𝑒
−𝑖𝜔𝑝𝑡 +  𝑬𝑆(𝑧)𝑒

−𝑖𝜔𝑠𝑡 and 𝜌 = 𝜌𝑎(𝑧)𝑒
−𝑖𝜔𝑎𝑡 (14) 

 

Substituting Eq. (14) into the acoustic density Eq. (8) yields: 

 

[
𝜕2

𝜕𝑧2 𝜌𝑎  𝑒
−𝑖𝜔𝑎𝑡 + 𝑖𝛼𝑎𝑘𝑎𝜌𝑎(𝑧)] = −𝑘𝑎

2𝜌𝑎  𝑒
−𝑖𝜔𝑎𝑡 +

𝜀0

𝑣𝐴
2

𝛾𝑒

2

𝜕2

𝜕𝑡2
[𝑬𝑷(𝑧) ∙  𝑬𝑺(𝑧)] (15) 

 

3.4. Amplitude Functions of Three Waves 

To solve Eqs. (13) and (15), assume plane waves satisfy the electromagnetic wave equations in a 

homogeneous media (optical fiber). Specifically, the backward Stokes waves travels in the –z direction while 

the optical pump and acoustic wave travels in the +z direction. Based on a solution to the optical field and 

the induced acoustic wave as shown in Eqs. (11-a), (11-b) and (11-c), substituting these three equations 

into Eq. (15) and keeping only the leading terms according to these relationships immediately above yields 

a simplified expression for the density wave: 

 

[𝑖2𝑘𝑎
𝜕𝜌𝑎(𝑧)

𝜕𝑧
+ 𝑖𝛼𝑎𝑘𝑎𝜌𝑎(𝑧)] =  − 

𝜀0

𝑣𝐴
2

𝛾

2
(+𝑘𝑠)

2[𝐸𝑃(𝑧)𝐸𝑠
∗(𝑧)]𝑒𝑖(𝑘𝑝𝑧+𝑘𝑠𝑧−𝑘𝑎𝑧)  (16) 

 

where 𝐸𝑠
∗ denotes the complex conjugate. Ideally, 𝑘𝑃 = 𝑘𝑆+ 𝑘𝑎 however, the backward Stokes wave may not 

always be exactly 180 degrees oriented relative to the pump wave. The wave-vector difference ∆𝑘 =  𝑘𝑝 +

𝑘𝑠 − 𝑘𝑎 is called a phase mismatch. Moreover, by experimental observations (by author), as the fiber length 

approaches infinity (i.e., from 1 m to 1000 m), 𝜔𝑎 ≪ 𝜔𝑝 ≈ 𝜔𝑆. Then, the exponent in Eq. (16) can be 

rewritten. After dividing each side of Eq. (16) by 𝑖2𝑘𝑎 and integrating both sides w.r.t. z and using 

integrating factor 𝑒∫𝛼𝑎𝑧 2⁄ , yields: 

 

𝜌𝑎(𝑧) =  
𝑖𝜀0𝛾𝑒

4

𝑘𝑎

𝑣𝐴
2 ∫ [𝐸𝑃(𝑧

′)𝐸𝑠(𝑧
′)]𝑒−𝑖(∆𝑘𝑧′)𝑒−𝑖(𝛼𝑎(𝑧−𝑧′) 2⁄ 𝑑𝑧′ +

𝑧

0
𝜌𝑎(0)𝑒−𝛼𝑎𝑧 2⁄   (17) 

 

A critical assumption on phase (exponential terms) is the acoustic loss, 𝛼𝑎 [units of m-1] is only significant 

in a portion of fiber medium length, L [3]. Due to the factor 𝑒(𝛼𝑎(𝑧−𝑧′) 2⁄  in the integrand, the major 

contribution to the integral in Eq. (17) must come from the range (𝑧 − 𝑧′) ≤ 2
𝛼𝑎

⁄ . Furthermore, for most 

experiments observed by the author, the rate of acoustic loss is much larger than rates of change for 

𝐸𝑃(𝑧)and 𝐸𝑆(𝑧) [7]. Under these circumstances, the product of these two amplitude functions 𝐸𝑃(𝑧) and 

𝐸𝑆(𝑧) can be moved outside the integral. Evaluating the integral with 𝑧 ≥ 2 𝛼𝑎⁄  yields:  
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𝜌𝑎(𝑧) =
𝑖𝜀0𝛾𝑒

4

𝑘𝑎

𝑣𝐴
2 𝐸𝑃(𝑧)𝐸𝑠

∗(𝑧)
1

𝑖∆𝑘+(𝛼𝑎 2⁄ )
[𝑒−𝑖(∆𝑘𝑧)]  (18) 

 

4. Final Exact Solutions: Acoustic and Optical 

The density Eq. (8) when substituted into the optical Eq. (9) and neglecting the 2nd order spatial 

derivatives along with the case for maximum photoelastic coupling (when Δk = 0) yields:  

 
𝜕𝐸𝑃(𝑧)

𝜕𝑧
≈ −

𝜔𝑝
2𝜀0𝛾

2𝑘𝑎

8𝑐2𝛽𝑘𝑝
[

1

𝑖∆𝑘+(𝛼𝑎 2⁄ )
]𝐸𝑃(𝑧)|𝐸𝑠(𝑧)|

2 (19) 

 

Similar to deriving Eq. (19), the spatial variation in the back-scattered Stokes wave is: 

 

𝜕𝐸𝑆(𝑧)

𝜕𝑧
≈  

𝜔𝑝
2𝜀0𝛾

2𝑘𝑎

8𝑐2𝛽𝑘𝑠
[

1

−𝑖∆𝑘+(𝛼𝑎 2⁄ )
] 𝐸𝑠(𝑧)|𝐸𝑝(𝑧)|

2
  (20) 

 

In order to arrive at a useful PDE for the pump and Stokes wave, which can be used in MATLAB 

simulation, the following relations for wave intensity, I are useful: 

 

𝐼 ≈
1

2
𝜀0𝑐𝑛0|𝐸|2 =

1

2
𝜀0𝑐𝑛0(𝐸𝐸∗);  

𝜕

𝜕𝑧
|𝐸|2 =

𝜕

𝜕𝑧
(𝐸𝐸∗) = 𝐸

𝜕

𝜕𝑧
(𝐸∗) + 𝐸∗ 𝜕

𝜕𝑧
(𝐸) (21) 

 

4.1. Summary of Coupled Solutions to SBS  

Eqs. (19) and (20) can be rewritten with the density Eq. (18) and in the terms of Eq. (21):  

 
𝜕𝐼𝑃(𝑧)

𝜕𝑧
≈ −𝑔0𝐼𝑃(𝑧)𝐼𝑠(𝑧) (22a) 

 

𝜕𝐼𝑆(𝑧)

𝜕𝑧
≈ −𝑔𝑆𝐼𝑠(𝑧)𝐼𝑝(𝑧) (22b) 

 

where 𝐼𝑃 and 𝐼𝑠 are the optical pump and back-scattered Stokes wave Intensities. 𝐼𝑃(0) is the power 

(intensity) at incident plane (z = 0). 

5. MATLAB Simulation of Sbs 

Fiber optic systems like the ones used to carry internet data, operate under some threshold in order to 

prevent significant power losses. Above an input power threshold, the Stokes backscattering limits the 

transmitted power the laser power then saturates. In fact, higher input power is redirected toward the 

Brillouin scattering direction. Therefore, the Brillouin threshold becomes an important metric. 

5.1. MATLAB Solver and Free Boundary Condition 

One issue with the usage of the ODE45 solver in MATLAB is related to the definition of the boundary 

conditions for 𝐼𝑃 and 𝐼𝑠 in Eq. (22) which describe signals propagating in forward and backward directions. 

Thus, the boundary conditions are defined on the opposite sides of the fiber section. For Eq. (22) only the 

pump power 𝐼𝑃(0) is known, as this is the power supplied by the source (pump) laser. The Stokes power 

𝐼𝑆(0) is a solution of this problem and results from SBS. It is unknown until the coupled equations are 

solved.  

Free Boundary Condition: Analogously, for Eq. (22), the known boundary condition is 𝐼𝑆(𝐿) = 0, as the 

scattered signal propagates in the backward direction. The value 𝐼𝑃(𝐿) is unknown which makes this a free 
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boundary problem (missing boundary information). Nevertheless, an effort is made to characterize the total 

optical power in MATLAB. Specifically, the following parameters are specified: Stokes power, Psp; the pump 

power, Pin; the length of the fiber, L; the Brillouin gain coefficient, gB, and the fiber loss, α. The 

approximation is the total optical power versus fiber length. 

MATLAB was chosen to simulate the Stokes power because the MATLAB subroutine BVP (boundary value 

problem) is a sophisticated solver. The bvp4c algorithm relies on an iteration structure for solving nonlinear 

systems of equations. In particular, bvp4c is a finite-difference code that implements the three-stage Lobatto 

III-a formula. This is a collocation formula and the collocation polynomial provides a ‘C1 –continuous’ 

solution that is fourth-order accurate uniformly in z ∈ [L1, L2]. Mesh selection and error control are based 

on the residual of the continuous solution. Since it is an iteration scheme, its effectiveness will ultimately 

rely on the ability to provide the algorithm with an initial guess for the solution [6]. In the code, sol = 

bvp4c(@bvp4ode, @bvp4bc,solinit) integrates a system of differential equations of the form y′ = f(x,y) 

specified by bvp4ode, subject to the boundary conditions described by bvp4bc and the initial solution guess, 

solinit. That is, an initial guess for the Stokes and pump powers is input to the bvpinit command. For each 

component of the solution, bvpinit replicates the corresponding element of the vector as a constant guess 

across all mesh points. Following the code is the simulation result for the total optical power plotted against 

fiber length. A goal here is determine the Brillouin threshold power depending on fiber length. To run the 

code, the function file ‘SBS’ with five input parameters are required. Those parameters are: Psp, the Stokes 

power in Watts; Pin, the pump power in Watts; L, the length of the fiber in meters; gB, the Brillouin gain 

coefficient; alpha, the fiber loss in (mW)-1. 

5.2. MATLAB Code for SBS Simulation 

The MATLAB code includes fiber attenuation, α, so the exact PDEs are used:  

 
𝜕𝐼𝑃(𝑧)

𝜕𝑧
≈ −𝑔0𝐼𝑃(𝑧)𝐼𝑠(𝑧) − 𝛼𝑃 𝐼𝑠(𝑧) (23a) 

 

 
𝜕𝐼𝑆(𝑧)

𝜕𝑧
≈ −𝑔𝑆𝐼𝑠(𝑧)𝐼𝑝(𝑧) − 𝛼𝑆 𝐼𝑃(𝑧) (23b) 

 

The function SBS computes the evolution of optical power in the fiber that includes a single ‘signal’ beam 

and backward scattered light due to SBS, by solving the Brillouin power differential equations as a 

boundary value problem (BVP). The boundary conditions are given by the input optical power and the 

spontaneous Brillouin power that ‘seeds’ the SBS process. The function inputs are as follows: Psp the 

spontaneous Brillouin power in Watts (aka Stokes power); Pin is the input signal power in Watts (W), the 

pump signal ; L is the fiber length in m. gB is  the Brillouin gain parameter in (m*W)-1 while alpha is a length 

2 vector specifying the fiber attenuation for the signal and Brillouin wavelengths in dB/km. Pout is a 3 

column array with the first column being values of position z in the fiber, the second column being signal 

power as a function of z, and the third column being the SBS power as a function of z. The code converts 

attenuation to units of m-1. The code is shown here: 

function Pout = SBS(Psp,Pin,L,gB,alpha) 

alphap=alpha/(4.3429*1000); % signal (pump) 

alphas=alpha/(4.3429*1000); % Stokes loss factor in units %of m-1 

% Set up the initial solution [Ps(L),PP(0)] 

solinit = bvpinit(linspace(0,L,20),[1,1]); % bvpinit is the %initial guess for BVP4C 

% Solve the boundary value problem (calls functions below) 

sol = bvp4c(@bvp4ode,@bvp4bc,solinit); 
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% Evaluate the solution - zint is a vector corresponding to %fiber position 

% and Szint is an array with columns 1-2 the corresponding values for the pump power and Stokes power 

zint = linspace(0,L,1000); % L pts between 0 and 1000 %meters 

Szint = deval(sol,zint);% evals the soln of DE at all entries %of vector zint 

Pout = Szint; %DE solution is passed to the variable Pout 
% ODE definition routine where P(1) and P(2) are the %pump power and Stokes power, 
% respectively 
function dPdz=bvp4ode(z,P) %solve boundary value %problem for dPdz ODE 
dPdz = [-(gB)*P(1)*P(2)-(alphap*P(1)) ... % next line for %the PDE 
 -(gB)*P(1)*(P(2)+Psp)+(alphas*P(2))]; 
End %boundary condition definition routine - P0/L is the power at z=0/L and indices 1 & 2 are the incident 
(pump) and Stokes optical intensities 
function res=bvp4bc(P0,PL) 
res = [P0(1)-Pin PL(2)-0]; 
end 
end 
plot(zint,Szint(1,:)); 
xlabel('fiber length(m)'); ylabel('Optical Power(W)') 
title('Optical Power vs. Fiber Length') 
end 

5.3. MATLAB Simulation Result 

The simulation results are the total optical power due to the input optical power and the spontaneous 

Brillouin power that ‘seeds’ the SBS process. The input parameters used to run the code are SBS(0.1, 1, 100, 

0.1, 0.1). As shown in Fig. 2, the ‘half-power’ point occurs at 3.7 meters from the fiber face where the optical 

power is 0.708 Watts (708 mW). See Fig. 2 below.  

 

 
Fig. 2. SBS optical power versus fiber length (MATLAB simulation). 

 

6. Conclusion 

The current literature survey reveals various experimental schemes for fiber optic experiments that 

exploit SBS. Only a few of the papers and one or two textbooks go into detail of the derivations or the 

coupled SBS PDEs.  

This study started with Maxwell’s equations and derived a theoretical model of Brillouin scattering that 

shows how spontaneous Brillouin scattering is initiated by acoustic waves within a fiber optic medium. 

Provided is a derivation of an approximate analytical solution to the system of SBS equations in a lossless 
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medium. This model predicts how the SBS Stokes intensity depend upon the laser pump intensity and upon 

the physical properties of the SBS medium. A brief study of a numerical approximation to the Brillouin wave 

equations was presented as MATLAB code and simulation result. 
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