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Abstract: In this paper, we consider the single machine scheduling with job rejection and generalized the 

number of rejected jobs. More specifically, each job is either accepted and processed on the single machine, 

or is rejected by paying a rejection cost, but the total number of rejected jobs are strictly upper bounded by 

given thresholds. Two problems are considered: (1) minimize total weighted completion time and the sum 

of rejection cost, and (2) minimize total weighted completion time under the job rejection constraint. For 

the first scheduling problem, we provide a 2.618-approximation algorithm, a pseudo-polynomial time 

algorithm and a full polynomial-time approximation scheme (FPTAS) for this problem. In additions, we also 

discuss some special cases and provide two polynomial-time algorithms for them. For the latter problem, 

we provide a pseudo-polynomial time dynamic programming algorithm. Furthermore, we develop the 

dynamic programming into a fully polynomial time approximation scheme. 

 
Key words: Scheduling, rejection, dynamic programming, fully polynomial time approximation scheme.  

 
 

1. Introduction 

In the classical deterministic scheduling problem, it is assumed that all jobs must be processed. However, 

in many practical cases, mainly in high load production to order systems, a manufacturer often receive a 

great deal of orders (jobs) from the customers. Due to the lack of enough resources such as machines and 

operators, accepting all jobs may lead to delayed order completion, which in turn may lead to high 

inventory and tardiness costs. Thus, sometimes the decision-maker may only accept some jobs and rejects 

the others, scheduling the accepted jobs to the machines for processing. More specifically, for each job 

decision-makers must decide either to schedule the job or to reject it. When a job is rejected, a 

corresponding rejection cost is required. Thus, from the practical point of view, rejecting some jobs can save 

time and reduce costs. We say that this kind of problem is job rejection scheduling.  

Scheduling with job rejection was first proposed by Bartal et al. [1], they considered parallel-machine 

scheduling problems with rejection, where the objective is to minimize the makespan of the accepted jobs 

plus the total penalty of the rejected jobs and they presented a PTAS and FPTAS when the number of 

machines is arbitrary and fixed, respectively. Then, Ou et al. [2] studied the same model in [1] and presented 

a (3 2 )+ -approximation algorithm with running time ( log )O n n n + , where   is a small given positive 

constant. This result was further improved by Ou and Zhong [3] who designed a (4 3 )+ -approximation 

algorithm with running time 2 2( )O mn  . Sengupta [4] studied a single-machine scheduling problems with 

the objective of minimizing the maximum tardiness/lateness of the accepted jobs plus the total penalty of 
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the rejected jobs. Zhang et al. [5] studied a scheduling model with release dates to minimize the makespan 

of the accepted jobs plus the total penalty of the rejected jobs, they proved that this problem is NP-hard and 

presented a fully polynomial time approximation scheme. He et al. [6] and Ou et al. [7] independently 

designed an improved approximation algorithm with a running time of  ( log )O n n . At the same time, Zhang 

et al. [8] also considered the parallel-machine case of the above problem: given a dynamic programming 

algorithm with pseudo-polynomial. When the number of machines m  is not fixed, they presented a 

2-approximate algorithm. When the number of machines m  is a fixed constant, they presented a FPTAS. In 

recent years, many people consider new problems with rejection. For example, the vector scheduling 

problem, where each job 
jJ  is associated with a d -dimensional vector 1 2( , , , )d

j j jp p p=jp . The problem 

aims to schedule n  d -dimensional jobs on $m$ machines and the objective is to minimize the maximum 

load over all dimensions and all machines. Li and Cui [9] considered a single machine vector scheduling 

problem with rejection that aims to minimize the maximum load over all dimensions plus the sum of the 

penalties of the rejected jobs. They proved that this problem is NP-hard and designed a combinatorial 

d -approximation algorithm and 
1

e

e−
-approximation algorithm based on randomized rounding. Next, Dai 

and Li [10] studied vector scheduling problem with rejection on two machines and designed a 

combinatorial 3-approximation and 2.54-approximation algorithm based on randomized rounding. Then, 

Liu et al. [11] studied single machine vector scheduling with general penalties and propose a 

noncombinatorial 
1

e

e−
-approximation algorithm and a combinatorial min{ , }r d -approximation algorithm, 

where r  is the maximum ratio of the maximum load to the minimum load on the d -dimensional vector. 

More new scheduling with rejection, for example, with submodular penalties can be found in ([12]-[14]). 

For the scheduling problems under the job rejection constraint model. Cao et al. [15] considered the 

single-machine scheduling problem under the job rejection constraint to minimize the total weighted 

completion times of the accepted jobs. They showed that this problem is binary NP-hard and presented a 

pseudo-polynomial-time dynamic programming algorithm and a fully polynomial-time approximation 

scheme. Zhang et al. [16] extended the study of [15] to multiple identical parallel machines and presented a 

FPTAS. Zhang et al. [17] considered the parallel-machine scheduling problem under the job rejection 

constraint to minimize the makespan of the accepted jobs. They showed that this problem is NP-hard and 

presented a pseudo-polynomial-time dynamic programming algorithm and two fully polynomial-time 

approximation schemes. This result was further improved by Li et al. [14] who designed a FPTAS with 

running time 2 3 2(1 )mO mn + + . Zhang et al. [17] also considered the single-machine scheduling problem 

with release dates under the job rejection constraint to minimize the makespan and presented a fully 

polynomial time approximation scheme. Liu et al. [18] consider the single machine parallel-batch 

scheduling problem with release dates and the number of rejected jobs not exceeding a given threshold. The 

objective function is to minimize the sum of the makespan and the total rejection cost. They propose a 

pseudo-polynomial time dynamic programming exact algorithm, a 2–approximation algorithm and a fully 

polynomial time approximation scheme. More papers dealing scheduling under the job rejection constraint 

are ([19], [20]). 

For the objective is to minimize the total weighted completion time and the total rejection cost. Engels et 

al. [21] studied the problem of minimizing the total weighted completion time of the accepted jobs and the 

total rejection penalty of the rejected jobs, they proved that the problem is NP-hard and presented a FPTAS 

for the problem. They reduced the problem 1| | j j jrej w C e+   and |1| , jrej r  j j jw C e+  to the 

scheduling problem | | j jR rej w C + je and | , |j j j jR rej r w C e+  . Using the existing results of 
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unrelated machine scheduling problem, they obtained that there are 3 2 -approximation algorithms and 

2 -approximation algorithms for problems 1| | j jrej w C + je  and 1| , |j j j jrej r w C e+  , respectively. 

For more results on scheduling with rejection, we refer the readers to the surveys provided by Shatbay et al. 

[22] and Zhang [23], respectively. 

Motivated by the studies in ([15], [18], [21]). In this paper, we study the single machine scheduling with 

job rejection under the number of rejected jobs constraint and present some interesting results. The 

remaining parts are organised as follows: In Section 2, we provide the problem formulation on our 

problems. In Section 3, we first provide a 2.618-approximation algorithm and a pseudo-polynomial time 

algorithm, furthermore, we develop the pseudo-polynomial time algorithm into a full polynomial-time 

approximation scheme (FPTAS) for our first problem. In addition, we also discuss some special cases of our 

first problem and provide two polynomial-time algorithms for them. In Section 4, we provide a 

pseudo-polynomial time algorithm. Furthermore, we develop the pseudo-polynomial time algorithm into a 

full polynomial-time approximation scheme (FPTAS) for our second problem. We conclude the paper in 

Section 5, and suggest some possible future research. 

2. Preliminaries 

In this section, we formally define our rejection scheduling problems. Given a set of 

n jobs {1,2, , }J n= , with processing time jp , weights jw and rejection penalties 
je of the job, 

respectively, for 1,2, ,j n= . For each job, we either process it or reject it, but the total number of rejected 

jobs cannot exceed a given threshold of K . If we schedule job j , we denote its completion time by jC . If 

we reject the jobs j , we pay the rejection penalties je . Then we define the set of processed jobs as A , and 

the set of rejected jobs as , let R  represents the number of jobs in the set of R . In order to ensure a certain 

service level, the total number of rejected jobs shall not exceed a given value K , where the K  is a fixed 

constant. We introduce generalized the number of rejected jobs into our two problems as follows: 

For the first problem, our goal is to minimize the sum of the total weighted completion time of processed 

jobs and the total penalty of rejected jobs. Our first problem is to generalize the problem proposed by [21], 

and if K n= , the problem proposed by [21]. In [21], problem 1| |rej  
j j jj A j R

w C e
 

+  is NP-hard, thus 

our problem is NP-hard, too. Bases on the three-field notation | |    introduced by Graham et al. [24], this 

problem is denoted by: 

1| ,| | | .j j j

j A j R

rej R K w C e
 

 +   (1) 

For the second problem, the objective is to find a schedule to minimize the total weighted completion 

time of processed jobs under the job rejection constraint 
jj R

e U


  where U  is a given upper bound. Our 

second problem is to generalize the problem proposed by [15], and if K n= , the problem proposed by [15]. 

In [15], problem 1| ,rej  |j j jj R j A
e wU C

 
  is NP-hard, thus this problem is NP-hard, too. Bases on the 

three-field notation | |    introduced by Graham et al. [24], this problem is denoted by: 

1| ,| | , | .j j j

j R j A

rej R K e U w C
 

    (2) 
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3. Generalized the Number of Rejected Jobs 

In this section, we consider the problem 1| ,| | |rej R K  
j j jj A j R

w C e
 

+  . We provide a 

2.618 -approximation algorithm. Inspired by [21], we also solve this problem base on the dynamic 

programming algorithm, and then modify it to obtain a fully polynomial time approximation scheme 

(FPTAS). In addition, we also discuss some special cases of our problem. 

When job rejection is not allowed, the corresponding scheduling problem can be denoted by 1|| j jw C . 

For problem 1|| j jw C , Smith [25] showed that the WSPT rule yields an optimal schedule. The WSPT rule 

can be stated as follows:  

WSPT Rule: Schedule the jobs in order of non-decreasing 
j jp w . 

Lemma 3.1. For problem 1| ,| | | j jj A
rej R K w C


 +  

jj R
e

 , there is an optimal schedule such that all 

accepted jobs are processed in the WSPT rule. 

3.1. A 2.618-Approximation Algorithm 

In this subsection, we provide a 2.618-approximation algorithm for problem 

1| ,| | | j j jj A j R
rej R K w C e

 
 +  . Sort all jobs in ascending order of 

j jp w .  Let 1jx =  if job 
jJ  is accepted 

and 0jx =  if job 
jJ  is rejected. Thus, problem 1| ,| | | j j jj A j R

rej R K w C e
 

 +   is equivalent to the 

following Integer Linear Programming (ILP). 

Min    
1 1

(1 )
n n

j j j j

j j

w C x e
= =

+ −   

s.t.   
1

, 1, , ,
j

j j k k

k

C x x p j n
=

= =  

1

(1 ) ,
n

j

j

x K
=

−   

{0,1}, 1, , .jx j n =  

For each rejected job jJ , we have 0jC = . If we replace {0,1}jx   by 0 1jx   for each 1, , .j n= , we can 

obtain a Relaxed Linear Programming (RLP). 

Min    
1 1

(1 )
n n

j j j j

j j

w C x e
= =

+ −   

s.t.   
1

, 1, , ,
j

j j k k

k

C x x p j n
=

= =  

1

(1 ) ,
n

j

j

x K
=

−   

0 1, 1, , .jx j n  =  

Algorithm 1A  

Step 1: Solve the RLP. Let * *

1( , , )nx x be an optimal solution of RLP. If * 5 1

2
jx

−
 , then we set 1jx = ; 

otherwise, we set 0jx = . 

Step 2: Accept all jobs with 1jx =  and reject all jobs with 0jx = . Process all accepted jobs in the WSPT 

rule. 

Let   be the schedule obtained from algorithm 1A . Furthermore, we let Z  and *Z  be the corresponding 
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objective values of   and an optimal schedule * , respectively. 

Theorem 3.2 *3 5

2
Z Z

+
 .  

For each rejected job 
jJ , we have 0jC = . And note that * *

1 1

3 5

2

j j

j j j j k k j j k k

k k

w C w x x p w x x p
= =

+
=   , for each 

job
jJ . That is, *

1 1

3 5

2

n n

j j j j

j j

w C w C
= =

+
  . Furthermore, we also have *

1 1

3 5
(1 ) (1 )

2

n n

j j j j j

j R j j

e x e x e
 = =

+
= −  −   . 

Thus, we have  *

1 1 1

3 5 3 5
(1

2 2

n n n

j j j j j

j j R j j

Z w C e w C
=  = =

+ +
= +  + −   

* )j jx e  *3 5

2
Z

+
This completes the proof 

of Theorem 3.2.  

3.2. Dynamic Programming 

In this subsection, we give an 
1

( )
n

j

j

O nK w
=

  time algorithm using dynamic programming to solve problem 

1| ,| | | j j jj A j R
rej R K w C e

 
 +  . 

Similar to [21], to solve our problem, we set up a dynamic program for a harder problem: namely, to find 

the schedule that minimizes the objective function when the total weight of the scheduled jobs and the total 

number of rejected jobs are given. We number the jobs in ascending order of
j jp w . Let 

, ,k W j  denote the 

optimal value of the objective function when the jobs in consideration are , 1, ,j j n+ , the total number of 

reject jobs is k , and the total weight of the scheduled jobs is W .  

Now, consider any optimal schedule for the job , 1, ,j j n+ , in which the total number of reject jobs is k , 

the total weight of the scheduled jobs is W . In any such schedule, there are two possible cases, either job j  

is rejected or job j  is scheduled. 

Case 1. Job j  is rejected. Then, the optimal value of the objective function is clearly 
1, , 1k W j je − + + , since the 

total weight of the scheduled jobs among 1, ,j n+  must be W , the total number of reject jobs is 1k − . 

Case 2. Job j  is scheduled. In this case, the total weight of the scheduled jobs among 1, ,j n+  must be 

jW w− . Also, when job j  is scheduled before all jobs in the optimal schedule for jobs 1, ,j n+ , the 

completion time of every scheduled job among 1, ,j n+  is increased by jp . Then, the optimal value of the 

objective function is , , 1jk W w j jWp − + + .  

Combining the above two cases, we have following dynamic programming algorithm DP1: 

Dynamic Programming Algorithm DP1 

The Boundary Conditions: 

, ,

, ,

, ,

, ,

, 0, ;

, 0,

, 0;

min{ , }

;

, 0.

n

n

k W n n

k W n n n

k w n n n

k w n n n n

k W w

e k W w

w p k

w p e k









= + = 

=  

= =









 =

 

The Recursive Function: 

, , 1, , 1 , , 1( , ).
jk W j k W j j k W w j jmin e Wp  − + − += + +  

Since the reject of the jobs can be at most K , the weight of the scheduled jobs can be at most 
1

n

jj
w

= , 
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and the answer to our original problem is 
, ,1

1

{ : 0 ,0
n

k W j

j

min k K W w
=

    } . 

Theorem 3.3. Dynamic programming yields an 
1

( )
n

j

j

O nK w
=

  time algorithm for solving problem 1| ,rej  

| | | j j jj A j R
R K w C e

 
 +  . 

3.3. Fully Polynomial Time Approximation Scheme 

In this subsection, we describe a fully polynomial time approximation scheme (FPTAS) for problem  

1| ,| | |rej R K
j j jj A j R

w C e
 

+  . There is a number of works concerning designing FPTASes in general, e.g. 

Woeginger [26]. A survey of Polynomial Approximation Schemes minimizing the total completion time of a 

schedule can be found in Afrati and Milis [27]. 

Similar to [21], we identify any given schedule its   -aligned schedule by sliding the scheduled time of 

each job (starting from the first scheduled job and proceeding in order) forward in time until its completion 

time coincides with the next time instant of the form (1 )i

i  = + , the job is then said to be   -aligned. Note 

that when we slide the scheduled time of job i , the scheduled times of later jobs also get shifted forward in 

time by the same amount as for job i . When the time comes to   -aligned job j , its completion time has 

already moved forward in time by an amount equal to the sum of the amounts moved by the completion 

times of the jobs scheduled earlier than itself.   -aligned schedule may contain idle time. Without any loss 

of generality, we can assume that the smallest processing time is at least 1. Otherwise, we can divide each 

processing time
jp and rejection penalty 

je  by the smallest processing time 1p  . 

Lemma 3.4. For problem 1| ,| | | j jj A
rej R K w C


 + jj R

e
 , the optimal objective function value 

increases by a factor of at most (1 )n +  for any 0   , when we restrict our attention to   -aligned 

schedules only. 

Proof: The prove follows same idea as in [21]. We prove the conclusion by induction on i . Note that if a 

job finishes at time ( 1, ]i it   −  after all the jobs before it have been   -aligned, its completion time after 

being   -aligned is (1 )i t   + . Since we assume that the minimum processing time is at least 1, and the 

smallest i  is 0 1 = , clearly 1C  increases by a factor of (1 ) + . Now, assume by induction, that iC  increases 

by a factor of at most (1 )i + . When the turn comes to   -align the 1i+ th scheduled job, its completion 

time 1iC +  has already increased by an amount equal to the amount moved by iC , which is at most 

[(1 ) 1]i

iC + − . When it is   -aligned, 1iC +  further increases by a factor of at most (1 ) + . Thus, the final 

value of 1iC +  is at most 
1(1 )[(1 ) 1]i

i iC C  +
 + + − + . Since 1i iC C + , this is at most 1

1(1 )i

iC +

+
+ . Since the 

number of scheduled jobs is at most n , the result follows. 

Let / (2 )n  = , the optimal objective function value increases by a factor of at most (1 )+  for any 0  , 

since (1 / 2 ) (1 )nn +  + . For our FPTAS, we set up a dynamic program for a harder problem: namely,  to 

find the   -aligned schedule that minimizes the objective function when the total number of reject jobs less 

than or equal to k  and the completion time of the latest scheduled job is on or before i , for a given i . We 

number the jobs in ascending order of j jp w . Let , ,k i j  denote the optimal value of the objective function 

when the jobs in consideration are 1,2, , j , the total number of reject jobs less than or equal to k and the 

latest scheduled job (if any) in an   -aligned schedule completes at time less than or equal to ( 0)i i  . 

Now, consider any optimal schedule for the jobs 1,2, , , 1j j + , in which the total number of reject jobs 
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less than or equal to k  and the latest scheduled job completes by time i . In any such schedule, there are 

two possible cases, either job 1j +  is rejected or job 1j +  is scheduled. 

Case 1. Job 1j +  is rejected. Then, the optimal value of the objective function is 
1, , 1k i j je − ++ , since the last 

of the scheduled jobs among 1,2, , j must finish at time less than or equal to i , the total number of reject 

jobs less than or equal to 1k − . 

Case 2. Job 1j +  is scheduled. This is possible only if 
1j ip +  . In this case, if there was a job scheduled 

before job 1j + , it must have completed at time i  , where 
1( )i i jp   +−  . Then, the optimal value of the 

objective function is 
, , 1k i j j iw  ++ , where i  is the greatest value of i , such that

1( )i i jp  +−  .  

Combining the above two cases, we have following dynamic programming algorithm DP2: 

Dynamic Programming Algorithm DP2 

The Boundary Conditions: 

1 1 1 1

1 1 1

, ,1

1 1

min( ),  if ( , ];

,  if 0,  

1

and ,

, ,

] ; ( ,

, ;

, .

1,

j i i

j i i j

k i

i

i

e

k

e

ot

w k p

w p

k

her

p

s



  

    



−

−

=

 


 


 

=

+





 

The Recursive Function: 

, , 1, , 1 1 , , 1( , ).k i j k i j j k i j j imin e w   − + + += + +  

Now, observe that for finding an   -aligned schedule with the optimum objective function value, it is 

sufficient to assume that the completion time of the latest scheduled job is at most 
1

(1 )
nn

jj
p

=
+  . The 

answer to our original problem is
, ,K L n , where K  is the maximum number of jobs allowed to be rejected, L  

is the smallest integer such that
1

(1 )
n

L j

n

jp 
=

 +  . Thus, L  is the smallest integer greater than or equal to 

1
log / log(1 )

n

j j np 
=

+ + , whence 
1

( log )
j j

nn
L pO

 =
=  . So that the overall time for the dynamic program 

(FPTAS) is 2( ) (( / )O nKL O Kn =   
1

log )j

n

j
p

= . We also note that dividing each processing time and rejection 

penalty by the smallest processing time 1p   increases the running time of the algorithm by at most a 

polynomial additive factor of 2( / ) log(1/ )Kn p . 

Theorem 3.5. Dynamic programming yields a FPTAS for problem 1| ,| | | j j jj A j R
rej R K w C e

 
 +  , 

which runs in time 2

1
(( / ) log )j

n

j
O n pK 

= . 

3.4. Discussions on Some Special Cases 

Inspired by Lu et al. \cite{lu2021single}, we discuss some special cases about our first problem. For any 

instance 1, , nI J J= , let ,p wn n  and en  be the numbers of distinct processing times, distinct weights and 

distinct rejection costs, respectively. In this subsection, we consider some special cases with   pn k= , wn k=  

or en k= , where k  is a fixed constant. The corresponding problems are denoted  

1| ,| | |
j

p j j jJ R
n k R K w C e


=  +    ,   1| ,| | |wn k R K=       

j
j j jJ R

w C e


+  , 1| ,| | |e j j jn k R K w C e=  +  . 

Problem 1| ,| | |p j j jn k R K w C e=  +   

Suppose that 1 2, , , ka a a  are k  distinct processing times for instance 1, , nI J J= . Furthermore, we write 
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iS =   { : }j j iJ p a=  and | |i iS m= . Next, we provide a polynomial-time algorithm for this problem. 

First, similar to algorithm DP1, we obtain a new dynamic programming algorithm DP3 for problem 

1| ,| | | j j jj A j R
rej R K w C e

 
 +  . 

To solve our problem, we set up a dynamic program for a harder problem: namely, to find the schedule 

that minimizes the objective function when the total processing time of the scheduled jobs and the total 

number of rejected jobs are given. We number the jobs in ascending order of 
j jp w . Let 

, ,k t j  denote the 

optimal value of the objective function when the jobs in consideration are 1,2, , j , the total number of 

reject jobs is k , and the total processing time of the scheduled jobs is t . 

Case 1. Job j  is rejected. Then, the optimal value of the objective function is clearly 
1, , 1k t j je − − + , since the 

total processing time of the scheduled jobs among 1, , 1j −  must be t , the total number of reject jobs is 

1k − . 

Case 2. Job j  is scheduled. In this case, the total processing time of the scheduled jobs among 1, , 1j −  

must be 
jt p− . Also, when job j  is scheduled later all jobs in the optimal schedule for jobs 1, , 1j − , the 

total weighted completion time is increased 
jw t . Then, the optimal value of the objective function is 

, , 1jk t p j jw t − − + .  

Combining the above two cases, we have following dynamic programming algorithm DP3: 

Dynamic Programming Algorithm DP3 

The Boundary Conditions: 

1

1

, ,1 1

, ,1 1 1

, ,1 1 1

, ,1 1 1 1

,  0,

, 0,

n

 

 

 

;

, 0;

mi { , }, 0

;

.

k t

k t

k p

k p

k t p

e k t p

w p k

w p e k









= + = 

=  

= =









 =

 

The Recursive Function: 

, , 1, , 1 , , 1( , ).
jk t j k t j j k t p j jmin e w t  − − − −= + +  

Since the reject of the jobs can be at most K , the total processing time of the scheduled jobs can be at 

most 
1 j

n

j
p

= , and the answer to our original problem is 
, , 1

{ : 0 ,0 }
n

jk t n jmin k K t p
=

    . 

Theorem 3.6. Dynamic programming yields an 
1

( )
n

j jpO nK
=  time algorithm for solving problem 

1| ,| | | j j jj A j R
rej R K w C e

 
 +  . 

Specially, if all jobs have k  distinct processing times 1, , ka a , then we have 1 1{ : 0 }k k i it x a x a x m + +   . 

Thus, we have 
1

( ) ( )
k

k

i

i

O m O n
=

=  choices for each t . As a result, we have the following corollary. 

Corollary 3.7. Algorithm DP3 solves problem 1| ,| | |
j

p j j jJ R
n k R K w C e


=  +   in 1( )kO Kn +  time. 

Problem 1| ,| | |w j j jn k R K w C e=  +   

Let 1, , kb b  are the distinct weights. Furthermore, we set { : }x j j xS J w b= =  for 

each 1, ,x k= and | |x xS m= . Specially, if all jobs have k  distinct weights 1, , kb b , based on the DP1, we have 

1 1{ : 0 }k k x xW y b y b y m + +   . Thus, we have 
1

( ) ( )
k

k

x

x

O m O n
=

=  choices for each W . As a result, we have 
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the following corollary. 

Corollary 3.8. Algorithm DP1 solves problem 1| ,| | |
j

w j j jJ R
n k R K w C e


=  +   in 1( )kO Kn +  time. 

Problem 1| ,| | |e j j jn k R K w C e=  +   

Note that in all algorithms DP1, DP2 and DP3, the current total processing time $t$ or total weight W  of 

schedules jobs is always used to compute the 
j jw C  value if 

jJ  is accepted. Thus, it seems to be difficult to 

design an algorithm which does not include t  or W  as a parameter. Thus, we conjecture that problem 

1| ,| | |p j jn k R K w C=  +  
j

jJ R
e

 is NP-hard even when 1en = . It might be a challenging problem to 

determine its exact computational complexity. 

4. Scheduling under the Job Rejection Cost Constraint 

In this section, we consider the problem 1| ,| | ,rej R K |j j j

j R j A

e U w C
 

  . Our dynamic programming 

algorithm and fully polynomial time approximation scheme (FPTAS) follow the ideas presented in [15]. 

We are given a list of jobs { ( , , ) :1 }j j j jJ p w e j n=    and suppose that all the jobs have been indexed in 

non-decreasing order of 
j jp w . The given threshold for job rejection constraint is U . Let ( , , , )f j k P A  be 

the minimum rejection cost of partial schedules for jobs 
1 2, , , jJ J J , whose total number of reject jobs is k , 

total processing time are P  and objective function values are A . Let 

max maxmax , max .j j
j J j J

p p w w
 

= =  

Case 1. Job j  is rejected. Then, the optimal value of the objective function is clearly ( 1, 1, , ) jf j k P A e− − + . 

In this case, when only the jobs 
1 1, , jJ J −

 is considered, the total number of reject jobs is 1k −  and the total 

rejection cost must plus 
je . 

Case 2. Job j  is scheduled. In this case, when the jobs 1 1, , jJ J −  is considered, the number of the current 

accepted jobs is 1j −  and the total rejection cost is not change. Furthermore, the total number of reject jobs 

is k . Thus, we have ( 1, , , )j jf j k P p A w P− − − . 

Combining the above two cases, we have following dynamic programming algorithm DP3: 

Dynamic Programming Algorithm DP3 

The Boundary Conditions: 

( )
1 1 1

1 1

 a0,  if 

1, , , , 0 andi  

,

nd 

, 0;

 .

;

 f 

P p

f k P A e P A

others

A w p

k

=


=  = =
+

=



 

The Recursive Function: 

( , , , ) min{ ( 1, , , ), ( 1, 1, , ) }.j j jf j k P A f j k P p A w P f j k P A e= − − − − − +  

The optimal schedule can be obtained by finding the minimum A  such that ( , , , )f n k P A U  for some 

0 k K   and  
1

0
n

j

j

P p
=

  , and derive the corresponding schedule by backtracking. The running time is 

3 2( )max maxO Kn p w . 

Theorem 4.1. 1| ,| | , |j j j

j R j A

rej R K e U w C
 

   admits an FPTAS. 

Proof: In order to get a (1 )+ -approximation in polynomial time, we need to use the trimming the state 
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space technique. The prove follows same idea as in [15]. Thus, we omit the detailed proof, the details are 

left to the interested readers. 

5. Conclusions and Future Research 

In this paper, we consider the single-machine scheduling with job rejection subject to the number of 

rejected jobs not exceeding a given threshold. We study two problems with rejection into our framework as 

follows: (1) the objective is to minimize total weighted completion time and the sum of rejection, (2) 

minimize total weighted completion time under the job rejection constraint. For the first scheduling 

problem, we provide a 2.618-approximation algorithm. In additions, we also discuss some special cases 

about our first problem. Furthermore, for the two problems, we provide a pseudo-polynomial time 

algorithm and a fully polynomial time approximation scheme (FPTAS), respectively. 

In future research, an interesting direction is to consider our problems with release dates or submodular 

penalties. Moreover, it is also interesting to consider the online or semi-online versions of this problem. 

Finally, we also plan to extend this problem into parallel machine scheduling in the future. 
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