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Abstract: In this paper, we study the minimum soft capacitated power cover problem: Given a set V of n  

client points, a set  of m  server points on a plane. Each sensor s  can be arranged by set 
sp  of power (

sp ) 

may contain the same power) and the covering range of sensor s  with any power  sp P  is a disk ( )d s, p of 

radius ( )r s satisfying ( )
α

p = cr s . Where 0c >  and 1α are two constants. Any disk center at sensor s  has a 

capacity 
sk . The minimum soft capacitated power cover problem is to find a power set for each sensor 

denoted as { } s sp  such that each client point is assigned to one disk supported by { } s sp  satisfying that the 

number of client points assigned to ( )d s, p is at most 
sk for any s  and  sp P . The objective is to minimize 

the value of { } s sp , i.e. the total power 
 

 
ss:s p: p P

p . Our main result is to present a primal-dual 

f - approximation algorithm for the MSCPCP, where { }( )  v V | |f = max D : v V D  and is a disk set 

related to V  and . 
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1. Introduction 

The minimum set cover problem (MSCP) is classic non-deterministic polynomial-time hardness (𝑁𝑃-hard) 

problem in combinatorial optimization and approximation algorithms, which is defined as follow. Given a 

ground element set {1, , }E n= , and a collection  of sets defined over E , Each S has a nonnegative 

cost ( )w S 0 . The MSCP is to find a subset C  of such that each element i  is covered by a set S C , i.e., 

.i S  The objective is to minimize the total cost of C . The MSCP has been studied extensively in the 

literature, and the best approximation factor achievable for it is 𝑂(log𝑛) [1]-[4]. 

The minimum capacitated set cover problem (MCSCP) is a generalization of the MSCP, in which each set 

S  has a capacity 
Sk  associated with it, where the set S  can cover at most 

Sk  elements. Generally, the 

MCSCP can be divided into two categories: soft capacities and hard capacities. In the case of soft capacities, 

an unbounded number of copies of each set S  is available; In the case of hard capacities, set S has an upper 

bound of copies, defined as Su , and C  is a feasible cover of the MCSCP, if C  contains at most Su  copies for 

each S , and each copy set covers at most 
Sk  elements. 

The minimum vertex cover problem (MVCP) is an important special case of the MCSCP, defined as follows. 

Given a graph ( , )G V E= , and each vertex v V  has a cost 
vw . The objective is to cover all the edges by 
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picking a subset with minimum weight from V . The MVCP is 𝑁𝑃-hard [5], and Khot and Regev [6] improved 

that the MVC cannot be approximated with in 2 − for any  0  under the unique game conjecture (UGC). 

Based on the LP-rounding, Hochbaum [7] presented a 2-approximation algorithm with running time of 

( )O n3 . Based on the primal-dual method, Bar-Yehuda and Even [8] proposed a linear-time 2-approximation 

algorithm. 

The minimum capacitated vertex cover problem (MCVCP) was first introduced by Guha et al. [9], which is 

a generalization of the MVCP, where each vertex v V  has a capacity 
vk . They considered the MCVCP with 

soft capacities, and presented a 2-approximation algorithm. Gandhi et al. [10] provided further results for 

the MCVCP with soft capacities. Bar-Yehuda et al. [11] considered the partial MCVCP with soft capacities, 

which is to find a vertex set that covers at least k  edges, and presented a 3-approximation. A tight 

approximation for the partial MCVCP with soft capacities was given by Mestre [12]. Chuzhoy and Naor [13] 

considered the MCVCP with hard capacities and presented a 3-approximation algorithm if 1vw = for each 

v V  and an ( )O f -approximations algorithm when the vertices are weighted, respectively, which is 

improved by Gandhi et al. [14]. More related results for the MCVCP can be found in [15]-[18]. 

The minimum power cover problem (MPCP) is another important special case of the MSCP, which comes 

from some practical problems, such as wireless sensor networks [19] and sea measurement floating 

sensors [20]. In the MPCP, we are given a plane with a point set V and a sensor set S  on it. Each sensor s S  

can adjust its power, where the power p  of each sensor is determined by the radius ( )r s of the sensor and 

the relationship between the power and the radius is as follows: 

( )p c r s =  , where 0c   and  are two constants. The objective is to minimize the total power across all 

sensors such that each point v  in V is covered by some sensor, where a point v  is covered by a sensor s  if 

the distance from v  to s  is no more than ( )r s . The MPCP is 𝑁𝑃-hard [21] and the best approximation 

algorithm is the PTAS designed by Biló et. al. [22]. More related results for the MPCP can be found in 

[23]-[27]. 

In the real world, each sensor has a service upper bound and multiple sensors can be placed in a location 

to serve more client points. Therefore, we consider a new MPCP, called the minimum soft capacitated power 

cover problem (MSCPCP), which is generated the MPCP to soft capacity constraints. In this paper, firstly, by 

analyzing the properties of the optimal solution, we use a disk set D  to redefine the MSCPCP. Then, we 

present a primal-dual 𝑓-approximation algorithm for the MSCPCP, where |{ ( )}|:v Vf VDmax v D=   . 

The rest of this paper is organized as follows. In Section 2, we describe the definition of the MSCPCP and 

some preliminaries. In Section 3, we present the primal-dual approximation algorithm. In section 4, we give 

a specific example to help understand our algorithm. In Section 5, we present a brief conclusion and 

possible directions for future research. 

2. Preliminaries  

The minimum soft capacitated power cover problem (MSCPCP) is defined as follows: Given a set 

V of n client points, a set S of m server points on a plane. Each sensor s can be arranged by set 
sP  of power 

(
sP  may contain the same power) and the covering range of sensor s  with any power 

sp P is a disk ( , )d s p  

of radius ( )r s  satisfying 

( )p c r s =   

where 0c  and 1  are two constants. If ( , )v d s p , the client point v can be assigned to disk ( , )d s p . Any disk 

center at sensor s has a capacity
sk . The MSCPCP is to find a power set for each sensor, denoted as{ }s s SP 

, 
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such that each client point is assigned to one disk supported by { }s s Sp P  satisfying that the number of client 

points assigned to ( , )d s p  is at most 
sk  for any s S  and 

sp P . The objective is to minimize the value of 

{ }s s SP 
, i.e. the total power 

: : ss s S p p P

p
 

  . 

Let { *}s s SP 
 be an optimal assignment for the MSCPCP, for any sensor 𝑠 with * *sp P , there is at least one 

client point v V  on the boundary of the disk ( , *)d s p ; Otherwise, we can reduce *p to cover the same 

number of client points and find a power assignment with a smaller value. Therefore for each sensor s , 

there are at most n  disks with different radius in optimal assignment and at most mn  disks need to be 

considered. We use D  to denote the set of all these disks. For any disk D , ( )p D , ( )c D  and ( )r D  denote 

the power, center and radius of the disk D , respectively. Since any disk center at sensor𝑠 has a capacity 
sk , 

for any disk D  with ( )c D s= , let 
D sk k=  be the capacity of disk D . 

The MSCPCP can be redefined as follows: Given a client point set V  and a disk set D  on the plane. Each 

disk D  has a power ( )p D , a capacity 
Dk  and a corresponding point set ( )V D V , where only the client 

point in ( )V D  can be assigned to D  and D  can assign at most 
Dk  client points. The MSCPCP is to find a 

capacity assignment function :x D N 0→  such that there exists an assignment of client points satisfying that 

the number of client points assigned to each disk is at most ( )Dk x D  and minimum the total power 

:

( )D

D D

p x D


 . 

For each client point v V and each disk D , we introduce a binary variable 
vDy , where 

1, if  ( ) and is assigned to

0, otherwise.
vD

v V D v D
y

      ,
= 


 

The integer linear programming of the MSCPCP is defined as follows: 

:

: ( )

: ( )

min ( )

. . , ,

( ) , ,

( ) , ( ) ,

{ , }, ,

( ) , .

D

D D

vD

D v V D

D vD

v v V D

vD

vD

p x D

s t y v V

k x D y D

x D y v V D and D

y v V and D

x D N D0

     

   1  

       0  

          

       0 1     

       











  

−   

   

   

  






        (1) 

The first set of constraints guarantees that each client point v V is assigned to some disk in D  with 

( )v V D ; the second set of constraint guarantees that the number of client points assigned to any disk D  is 

no more than ( )Dk x D ; In fact, we do not really need the third set of constraints, however this constraint will 

play an important role in the relaxation, i.e., without this constraint there is a large integrality gap between 

the best fractional and integral solutions. Relaxing the integrality constraints, we get a linear programming 

as follows: 
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:

: ( )

: ( )

min ( )

. . , ,

( ) , ,

( ) , ( ) ,

, ,

( ) , .

D

D D

vD

D v V D

D vD

v v V D

vD

vD

p x D

s t y v V

k x D y D

x D y v V D and D

y v V and D

x D D

     

   1  

       0  

          

       0     

      0  









  

−   

   

   

  





      (2) 

For any an optimal solution of (2), we have
vDy 1 . Thus, we deleted the constraints 

vDy 1  from (2). The 

corresponding dual program is 

:

max v

v v V

        


  

: ( )

. . , ,

, ( ) ,

, ,

, ,

, ( ) .

D D vD D

v v V D

D vD v

v

D

vD

s t k p D

v V D and D

v V

D

v V D and D

 

  







    

        

       0  

       0  

      0    



+   

+    

  

  

   



     (3) 

3. Primal-Dual Algorithm  

In the section, we present a primal-dual 𝑓-approximation algorithm for the MSCPCP, where 

| :{v Vf max VD v=   ( )} |D . 

The main idea of the primal-dual algorithm can be described as follows. Initially, no client points are 

assigned and all disks are closed. As the algorithm runs, we select certain disks to open. When a disk 'D  is 

opened, all unassigned client points in ( ')V D  are assigned to it. However, later on, if another disk D  with 

( ') ( )V D V D    is opened, client points in ( ')V D ( )V D  that was previously assigned to disk 'D  may get 

reassigned to disk D . In the end, the algorithm construct the capacity assignment function :x D N 0→ , 

where 
| |

( ) D

D

A
x D

k

   
=   
   

and 
DA  is the set of client points assigned to D . 

Before introducing the detail implementation method of the algorithm, we need the following definitions. 

For an instance ( ), ; ;D DV p k  of the MSCPCP, we defined high and 
low

to be the set of high and low 

capacitated disks, i.e., 

{ ( ) }high DD V D k|=    and { ( ) }low DD V D k|=   . 

Initially, let V  be the unassigned client point set, and let D be the closed disk set. We begin with a trivial 

dual feasible solution zero of (3), i.e., (𝜼,𝜷,𝜸)=0. Dual variables { }{ }v v V  simultaneously increase. To maintain 

dual feasibility 

, ( ) ,D vD v v V D and D     +      

As we increase 
v , we have to increase 

D  or 
vD . For the disk D  in high , we increase 

D ; for the disk D  

in 
low

, we increase }( ){{ }vD v V D V   , where V  is the unassigned client point set. For the first set of constraints 

of (3), 
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: ( )

, ,D D vD D

v v V D

k p D   


+         (4) 

initially the left-hand side is 0 and the right-hand side is the power of the disk. While increasing the dual 

variables { }{ }v v V  , we stop as soon as an inequality of disk 'D in (4) is met with equality. Open disk 'D . 

If ' highD  , add 'D  to the set cand  of candidate disks which may be used many a time and temporarily 

assign all client points in ( ')V D V  to disk 'D , for convenience, this client point set is defined as '

temp

DA . 

Otherwise, for ' lowD  , let ( ') 1x D = . Note that some temporarily assigned client points in  ' cand

temp

D D
A


 may 

be reassigned to disk 'D . We design a reassigned step to find the reassigned client point set 
'DA  satisfying 

'

'

: D

v D

v v A

p


=  

And the main idea of reassigned step is introduced later, where we propose the detailed reassigned step 

in Algorithm 2. For each disk highD , if | ( ( ) ) \ ( ') | DV D V V D k  , then move D  from high  to 
low

 and let 

( ( ) ) \ ( ')DA V D V V D=   and ( )temp

DA V D V=   be the set of client points certainly and temporarily assigned to D , 

where ( ( ) ) \ ( ')DA V D V V D=   and ( )temp

DA V D V=   is used in the reassigned step when D  is opened. 

Remove 'D  from .All dual variables { ( ') }{ }v v V D V    and their corresponding dual variables { ( ) }{ }vD v V D V    and 

'D  will no longer increase, and we have 

' ' , ( ') D vD v v V D V  + =    . 

Remove all client points in ( )V D V   from V . The process is iterated until 𝑉=∅. For each disk candD , set 

temp

D DA A=  and set
| |

( ) D

D

A
x D

k

   
=   
   

. Output the capacity assignment function ( )x   and an auxiliary assignment 

{ }{ }D DA  , where some client points v may be assigned to different disks by { }{ }D DA  . We propose the 

detailed the primal-dual algorithm in Algorithm 1 below. Then, we introduce the main idea of the 

reassigned step (Algorithm 2). When a disk ' lowD  is opened in Algorithm 1, we need use Algorithm 2. If 

'( ') DV D k , then we set 
' : ( ')DA V D= ; Otherwise, for 

'( ') DV D k , let 
'DA  and '

temp

DA  be the set of client points 

certainly and temporarily assigned to 'D when 'D  moves form high  to 
low

. For each candD , reassign all 

client point in '

temp

D DA A  from D  to 'D . Then, reassign 
' '| |D Dk A−  client points in ' '\temp

D DA A  from some opened 

disk to 'D , where we prefer to choose the client points in temp

DA  for candD . In Lemma 3.2,  we prove that 

'

'

: D

v D

v v A

p


= . In Theorem 3.3, we prove that the approximation factor of this primal-dual algorithm is f , 

where |{ |: ( )v V Df max v V D=   . To help understand Algorithm 1 and 2, we give a specific example in 

Section 4. 

LEMMA 3.1 (𝜼,𝜷,𝜸) is a feasible solution of Dual program (3).  

Proof. For any client point v V  and { | ( )}D D v V D  , if ( ) DV D k ,dual variables 
vD  and 

v  

simultaneously increase until v  is assigned to some disk, i.e., 

, D vD vD v   + =   

where 0D =  for any low capacitated disk. Otherwise, for ( ) DV D k , Case 1, if highD  when v  is assigned to 

some disk, dual variables D  and v  simultaneously increase until v  is assigned to some disk, i.e., 
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, D vD D v   + =   

where 0vD = for any high capacitated disk. Case 2, if 
lowD when v  is assigned to some opened disk, let 'D  

be the disk, where D  changes from high  to 
low

 when 'D  is opened. It keeps the dual variable 0vD =  and 

increases dual variables 
D  and 

v  simultaneously until 'D  is opened; it keeps the dual variable 
D  and 

increases dual variables 
vD  and 

v  simultaneously until v  is assigned to some disk, i.e., 

 D vD v  +  . 

Thus, we have  D vD v  +   for any v V . This statement and inequality (4) imply that (𝜼,𝜷,𝜸) is a feasible 

solution of the dual program (3). 
 

Algorithm 1. The Primal-Dual Algorithm 

Input: An instance ( , ; ; )D DV D p k  of the MSCPCP. 

Output: A capacity assignment function :x D N 0→  and an auxiliary assignment { }{ }D DA  . 

1. Initially, set ( ) 0D vDx D  = = =  for v V  and D , and set temp cand

D DA A= = =   for D . Let high  and 

low
be the high and low capacitated disk sets defined as above. 

2. while V   do 

3. : ( )

:: min
high

D D D vDv v V D

D D D

D

p k

k


 




− −
 =


 and 

 : ( ) \

:: min
| ( ) |low

D D D vDv v V D V

D D D

p k

V D V


 




− −
 =




. 

: min{ , }  =   . Let 'D  be the minimum disk among high low  with  . 

4.    for 
lowD  do 

5.    :vD =   for each ( )v V D V  . 

6.    for highD  do 

7.       :D =  . 

8.        if | ( ( ) \ ( ') | DV D V V D k   and 'D D  then  

9.           : ( ) , : ( ( ) ) \ ( '),temp

D DA V D V A V D V V D=  =   

            : { }low low D=  and : \ { }high high D= . 

10.   if  =   then  

     
' ' '{ }

' { }

({ } , ) Re ( , ( '), , ;

; ;{ } ).

cand

cand

temp temp

D D D DD

cand temp

D D D

A A assign V V D A A

k A






   ( ') , : \{ '}1 low lowx D D= =  and : \ ( ')V V V D= . 

11.   else  

12.     : \ { '}high high D= . : \{ '}cand cand D= , 

13.      ' : ( ')temp

DA V D V=   and : \ ( ')V V V D= . 

14. For each candD , set : temp

D DA A=  and 
| |

( ) : D

D

A
x D

k

 
=  
 

. 

15. Output function ( )x   and auxiliary assignment { }{ }D DA  . 

 

LEMMA3.2. For any candD  and temp

Dv A , we have D v Dk p = ; for any candD  with ( ) 1x D = , we have 

: D

v D

v v A

p


= . 

Proof. For any candD , let v  be a client point in temp

DA , dual variables vD  keeps 0, and dual variables v  and 

D  increase until D  is opened. When D  is opened, dual variables D  and v  will no longer increase, i.e. 
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v D =  and 0vD = . 

According to the conditions of the disk opening, we have 

: ( )D D D vD D D D vv v V D
p k k k   


= + = = . 

For any candD  with ( ) 1x D = , if ( ) DV D k , we have 

( )DA V D=  

By the reassigned step (Algorithm 2). For any ( )v V D , dual variables 
D  keeps 0, and dual variables 

v  

and 
vD  increase until v  is assigned to some disk. Thus, we have 0D = , 

v vD =  and 

: ( ) : ( ) :
( )

D
D D vD vD vv v V D v v V D v v A

p D k    
  

= + = =   . 

 

Algorithm 2. Reassign 

Input: An unassigned client point set V ; the corresponding client point set ( ')V D ; the certainly and 

temporarily assigned client point set 
'DA and '

temp

DA  the capacity 
'Dk ; the candidate disk set cand  and its 

corresponding temporarily assigned client point set 
{ }

{ } cand

temp

D D
A


. 

Output: the reassigned client point set 
{ }

{ } cand

temp

D D
A


 and 

'DA  which is the set of client points assigned to 'D . 

1. if 
'DA =  then 

2.     
' : ( ')DA V D= . 

3.    for candD  do 

4.         ': \temp temp

D D DA A A= . 

5. else 

6.    Set ' ': \temp

D DR A A=  and 
' ': | |D Dk k A= − . Go to Step 15 if 0k  . 

7.    for candD  do 

8.      ': \temp temp

D D DA A A=  

9.        if temp

DR A    then 

10.         if | |temp

DR A k   then  

11.            ' ': ( )temp

D D DA A R A=   , : \ temp

DR R A= ,                        

12.            : | |temp

Dk k R A= −  and : \temp temp

D DA A R= . 

13.         else  

14.            Select a set ' temp

DR R A  satisfying | ' |R k= .   
' ': 'D DA A R=   and : \ 'temp temp

D DA A R= . Go to Step 15. 

15. Select a set 'R R  satisfying | ' |R k= . 
' ': 'D DA A R=   and go to Step 15. 

16. Output 
{ }

{ } cand

temp

D D
A


 and 

'DA . 

 

Otherwise, for ( ) DV D k , let 'DA  and temp

DA  be the set of client points certainly and temporarily assigned to 

D  when D  moves form high to 
low

. Thus, we have 

' temp

D D DA A A   and | |D DA k= . 

By the reassigned step (Algorithm 2). For any temp

Dv A , dual variables 
vD  keeps 0, and dual variables 

v  

and 
D  increase until D  moves form high to 

low
, and all client points in \ 'temp

D DA A  are assigned to some 

open disk. Thus, we have that D  no longer increases and all client points in ( ) \ 'DV D A  is assigned after D  

moves form high to 
low

, i.e., 

, \ 'temp

v D D Dv A A =    and , ( ) \ '0vD Dv V D A =    
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Then, for any 'Dv A , dual variables 
v  and 

vD  increase until v  is assigned to some disk. Thus, we have 

, 'v D vD Dv A  = +   . 

According to the conditions of the disk opening and | |D DA k= , we have 

: ( ) : '

: '

:

| \ ' | ( )

,

     

     

D

D

D

D D D vD D D vD

v v V D v v A

D D D D vD

v v A

v

v v A

p k k

A A

   

  



 





= + = +

= + +

=

 





 

where the third equality follows from temp

D DA A  and 
v D =  for any \ 'temp

D Dv A A . Therefore, the Lemma 

holds. 

Combining Lemma 3.1 and Lemma 3.2, we can obtain the following theorem. 

THEOREM 3.3. Algorithm 1 achieves a worst-case guarantee of f  in polynomial time, where 

|{ |: ( )v V Df max v V D=   . 

Proof. Consistent with the description above, { }{ }D DA   and ( )x   are the auxiliary assignment and 

assignment function generated by Algorithm 1, respectively. For any client point 'v V , let 'D  be the first 

disk to assign 'v . If ' lowD   when 'v  is assigned to 'D , then 'v  is added to 'DA  and removes from the 

unassigned client point set. Meanwhile, for any candD  with ' temp

Dv A   , remove 'v  from temp

DA  by the 

reassigned step (Algorithm 2). Thus, we have ' Dv A  for any candD , i.e.,  

| { \ : ' } | |{ : ' } |cand

D DD D v A D v A  =    

|{ : ' ( } |                                        D v V D               (5) 

  , f  

where |{ |: ( )v V Df max v V D=   . The set consisting of such client points is defined as 𝑉(D𝑙𝑜𝑤). Otherwise, 

for ' highD   when 'v  is assigned to 'D , this means ' candD   and ' ( )highv V , where we define 

( ) \ ( )high lowV V V= . 

Then 'v  is added to '

temp

DA  and removes from the unassigned client point set. Thus, 'v  will not be assigned 

to the other disk in cand , i.e.,  

, \ { '}cand

Dv A D D D   . 

Case 1. 
'' Dv A , then for any disk \ candD , ' Dv A = , otherwise, 'v  is removed from '

temp

DA  by the 

reassigned step (Algorithm 2). Since 
Dv A  for any \{ '}candD D , we have 

:

|{ : ' } | , '1
cand

D D

D D

D v A v A


  =         (6) 

Case 2. 
'' Dv A , i.e. ' '' \temp

D Dv A A . By the reassigned step (Algorithm 2), 'v  is removed from '

temp

DA  when 

some disk in \ cand  is opened. Since ( )DA V D  for any D , we have 

:

|{ : ' } | |{ : ( )} |

, ' ( ) \

1

                             1
cand

D

high D

D D

D v A D v V D

f v V A


     −

 −            (7) 
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where the first inequality follows from 
'' Dv A and ' '' \ ( ')temp

D Dv A A V D  .  

We define 

{ : ( ) };

{ : ( ) };

1

1

1

1

cand cand

cand cand

D x D

D x D

=



 =  =


=  
 

where cand  is the candidate disk set. For any ' 1
candD  = , we have 

' '| |D DA k  and 
'

| |
D

tempA k . Thus, we have 

'

' ' ' '

:

( ')
temp
D

D D D v v

v v A

x D p p k  


= =        (8) 

where v  is a client point in 
'D

tempA  and the second equality follows from Lemma 3.2. For any ' 1

candD  , we 

have 
' '| |D DA k  and 

'

' ' '
' ' '

' '

' '
' '

'

:

| | | |
( ')

| |
| |                2

                2
D

D D D
D D D

D D

D D
D v D v

D

v

v v A

A A k
x D p p p

k k

A k
k A

k
 




  +
=  
 

+
= 

= 

      (9) 

where v  is a client point in 
'DA  and the second equality follows from Lemma 3.2. 

The total power of the capacity assignment function ( )x  generated by Algorithm 1 is 

: : \ :

: \ ( ) : :

: ( ): \ ( )

( ) ( ) ( )

( )

1 1
 1

 1

                      

                      

               

cand cand

cand cand cand

cand

D D D

D D D D D D D D

D D D

D D D D and x D D D D D

v

v v V DD D D D and x D

x D p x D p x D p

p p x D p



= 

  

 =  

 =

= +

= + +



  

  

 

:

:: ::

: ( )

: ( ) \

:

| { : } |

|{ : } |

1 1

      2

                     

                     

                     

cand temp cand
DD

low

high D

candD D D

temp
D

D

v v

v v AD D D Dv v A

D v

v v V D

D v

v v V D A

v

v v A

D D v A

D D v A

 







= 



 







+ +

=  

+  

+

   





::

:

::

:

: ( ) : ( ) \

:: ( \ )

( )

11

1

2

                    1

                    2

                   

D

candcand D D DD D

low high D

candD D D

temp
DDD

candcand D D DD D D

v

v v A

v v

v v V D v v V D A

v v

v v Av v A A

v

f f

f



 

 



 =




=



 



+

 + −

+ +



 

 

 

,
v V

f OPT


 

 

where the first inequality follows from inequalities (8) and (9); the second inequality follows from 

inequalities (5), (6) and (7); the third in equality follows from 2f  ; the last inequality follows from Lemma 

3.1 and OPT  is the total power of the optimal capacity assignment function. 

4. A Special Example for the MSCPCP 

In this section, we give a specific example for the MSCPCP to help understand the primal-dual algorithm 

as follows: Given a client points set , ,{ } 1 9i iV v ==  and a set of disks { , , }1 2 3D D D D=  in Fig. 1. a, where 

,
1 2

2 5D Dk k= =  and ; ( ) , ( )
3 1 23 2 6Dk p D p D= = =  and ( )3 9p D = . In Algorithm 1, initially, ( ) 0D vDx D  = = =  for v V  
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and D , and temp cand

D DA A= = =   for D . { },1 3high D D=  and 
low = . { }2D . For the first iteration, we have 

1 =  and 
3

2
 =  and ' 1D D=  is the minimum disk with 1 = . By 

2 lowD   and ( ) { , }2 3 4V D V v v = , 

3 2 4 2
1v D v D = = ; since ,1 3 highD D  , 

1 3
1D D = = . Especially, 

| ( ( ) ) \ ( ') |
33 3 DV D V V D k =  ,

3

temp

DA ( ( ) ) \ ( ') { , , }3 6 8 9V D V V D v v v=  = . Then, 
3D  is moved from high to 

low
 and 

{ }1high D= . Since  =  , 
1D  is removed from high  and high =  . Then, 

1D  is added to the candidate disk set 

cand ; and { , , , , }
1 1 2 3 4 5

temp

DA v v v v v= ; and the unassigned client point set { , , , }6 7 8 9V v v v v= , in Fig. 1. b. 

For the second iteration, we have  =   by high =   and 2 =  and ' 2D D=  is the minimum disk with 

2 = . Since 
2D , 

3 lowD  , ( ) { , }2 6 7V D V v v =  and ( ) { }3 6V D V v = ,
6 2v D =  

7 2 6 3
2v D v D = = . Since  =  , we use the 

reassigned step (Algorithm2). Since 
2DA =  , { }1

candD D=  and { , ,
1 1 2

temp

DA v v=  , , }3 4 5v v v  are input, Algorithm 2 

outputs ( ) { , ,
2 2 3 4DA V D v v= =  , }6 7v v and \ { , , }

1 1 2 1 2 5

temp temp

D D DA A A v v v= = . Then, ( )2 1x D = , 
low

 { }3D=  and the 

unassigned client point set { , }8 9V v v= , in Fig. 1. c. For the third iteration, we have  =  by high =   and 

3 =  and ' 3D D=  is the minimum disk with 3 = . Since 
3 lowD  , 

8 3 9 3
3v D v D = = . Since  =  , we use the 

reassigned step (Algorithm 2). Since { , , }
3 6 8 9DA v v v=    and { , , }

1 1 2 5

temp

DA v v v= ,we have 0k =  and Algorithm 2 

outputs { , , }
3 6 8 9DA v v v=  and { , , }

1 1 2 5

temp

DA v v v= . Then, ( )3 1x D = ,
low

 =  and the unassigned client point set V = . 

This means, the iteration stops, in Fig. 1. d. Since { }1

cand D=  and { , , }
1 1 2 5

temp

DA v v v= , we have 

{ , , }
1 1 2 5DA v v v=  and 

| |
( ) 1

1

1 2
D

D

A
x D

k

 
= = 
  

. 

The primal-dual algorithm outputs ( )1 2x D = , ( )2 1x D =  and ( )3 1x D = ; { , , }
1 1 2 5DA v v v=  , 

2DA =  { , , , }3 4 6 7v v v v  and 

{ , , }
3 6 8 9DA v v v= . The value of ( )x   is 19. It is obvious that the optimal assignment function is *( )1 1x D = , 

*( )2 1x D =  and *( )3 1x D = ; * { , }
1 1 2DA v v= , * { , , , }

2 3 4 6 7DA v v v v=  and *
3DA = { , , }5 8 9v v v . The value of * ( )x   is 17. 

 

 

Fig. 1. A specific example for the MSCPCP. 

 

5. Conclusion 

In this paper, we introduce minimum soft capacitated power cover problem (MSCPCP), which is 

generated the MPCP to soft capacity constraints. We propose a primal-dual f -approximation algorithm for 

the MSCPCP, where |{ |: ( )v V Df max v V D=   . The minimum power multi-cover problem (MPMP) is a 

generation of the MPCP, in which every client points v  has a covering requirement 
vcr . The goal of the 

MPMC is to select a disk set such that each point v  is covered at least vcr  times. Thus, the minimum soft 

capacitated power multi-cover problem (MSCPMP), which can be viewed as a generalization of the MSCPCP, 

deserves to be explored. It is possible to design an approximation algorithm with an approximation ratio of 

f , but it is a challenge. 
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