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Abstract: Kernels as similarity measures are key components of machine learning algorithms such as 

Support Vector Machine and Gaussian Process. Invariant kernels are an effective way to incorporate prior 

knowledge in applications with the invariance property. In this paper, we characterize all the rotation 

invariant kernels on spheres. We show that such a kernel is a function of the dot product of the input vectors 

alone. This function can be expanded as a series of Chebyshev polynomials with non-negative coefficients. In 

a 2-D space this condition is also sufficient. On a 3-D sphere the function can be expanded as a series of 

Legendre polynomials with non-negative coefficients. In general, a necessary and sufficient condition for the 

rotation invariant kernel is that the function on dot products can be expanded as a series of Gegenbauer 

polynomials with non-negative coefficients. 
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1. Introduction 

A kernel is a similarity measure that is the key component of support vector machines ([1],[2]) and other 

machine learning techniques ([3]-[6]). Often the performance of a kernel based machine learning system 

depends highly on the effectiveness of the kernel to represent the similarity between objects. Capturing the 

special structural information of the data in the kernels can be useful in improving the system performance. 

A kernel is a real valued function on two variables that is symmetric and positive definite. 

𝐾(𝑥, 𝑦) = 𝐾(𝑦, 𝑥), ∑ 𝐾(𝑥𝑖 , 𝑥𝑗)𝑐𝑖𝑐𝑗
𝑛
𝑖,𝑗=1 ≥ 0 

A related concept is the function of positive type on a group G. A function 𝑓: 𝐺 → ℂ is of positive type or 

positive definite if 

∑ 𝑓(𝑥𝑖𝑥𝑗
−1)𝑐𝑖𝑐�̅�

𝑛

𝑖,𝑗=1

≥ 0 

A positive definite kernel can be defined from a positive definite function by 

𝐾(𝑥, 𝑦) = 𝑓(𝑥𝑦−1) 

Constructing kernels invariant to a group of transformations is one of the effective ways to incorporate 

prior knowledge and to improve the performance of a machine learning system. 

Let 𝐾(𝑥, 𝑦) be a kernel on X and G a group of transformations of X. The kernel is invariant under G if 

𝐾(𝑇𝑥, 𝑇𝑦) = 𝐾(𝑥, 𝑦), for all  𝑇 ∈ 𝐺 

International Journal of Applied Physics and Mathematics

43 Volume 11, Number 3, July 2021



  

The structure of an invariant kernel is dependent on the space and the group of transformations. In the 

Euclidean space, affine transforms such as translations, rotations, and scaling are important in many 

applications. A very common type of invariant kernels is the kernels invariant to all translations. These 

kernels are known as a shift invariant or stationary kernel and have the form 

𝐾(𝑥, 𝑦) = 𝑘(𝑥 − 𝑦) 

Because of the constraints of kernels, it is not always possible to find reasonable invariant kernels, given a 

symmetry group. For example, it is known that the only kernel invariant to translation, rotation, and scaling 

is a constant function. In [7], kernels incorporating local invariances were discussed. In [8], we characterized 

the periodic kernels that are defined on a direct product of circles and invariant to rotations in individual 1-

D variables. 

In this paper, we extend the results in [8] and study the rotation invariant kernels on spheres. Rotations in 

n-D spaces are more complex than the 2-D rotations. For example, the group of 3-D rotations, the special 

orthogonal group 𝑆𝑂(3), is non-abelian. We will show that a rotation invariant kernel must be a function of 

the dot product (inner product) of the two vectors. Consequently, the kernel is reduced to a positive definite 

function on the circle group. Using Fourier analysis, we show that such a kernel can be expressed as a 

Chebyshev series with non-negative coefficients. This condition on the series expansion is necessary but not 

sufficient for 𝑛 ≥ 3. A necessary and sufficient condition can be obtained using Schoenberg’s theorem. 

This paper is organized as follows. Section 2 introduces the rotation groups and their actions on spheres. 

Section 3 provides a characterization of rotation invariant kernels using Fourier analysis. Numerical results 

using rotation invariant kernels are presented in Section 4. Finally, Section 5 provides conclusions and 

proposals for future studies. 

2. Rotation Groups 

The special orthogonal group 𝑆𝑂(𝑛) is a subgroup of 𝑛 × 𝑛 nonsingular matrices: 

𝑆𝑂(𝑛) = {𝑅 | 𝑅𝑅𝑇 = 𝐼 , det (𝑅) = 1} 

Acting on the Euclidean space ℝ𝑛, the group represents the rotations about the origin in the space. The 

group of 2-D rotations 𝑆𝑂(2) is isomorphic to the circle group, which is a compact abelian group. When 𝑛 ≥

3, the group is non-abelian. The group induces an action on spheres centered at the origin. 

The transitivity of a group acting on a space is important to the structure of the invariant functions. A group 

G acting on X is transitive if for any x, y∈X, there exists  g∈G such that 𝑔(𝑥) = 𝑦. A group action is doubly 

transitive if for any two pairs of points (𝑥, 𝑦), (𝑧, 𝑤) ∈ 𝑋 × 𝑋 , there exists g∈ G such that  𝑔(𝑥) =

𝑦 and 𝑔(𝑦) = 𝑤. 

𝑆𝑂(𝑛) is transitive on the unit sphere S. To prove the transitivity, it suffices to show that the north pole 

(1,0,…,0) can be mapped to an arbitrary point on the sphere 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)  by a rotation. Using the 

Gram-Schmidt process, x can be extended to an orthonormal basis 〈𝑥, 𝑣2, … , 𝑣𝑛〉. Write the vectors as columns 

of a matrix U and we have 

𝑈 [

1
0
⋮
0

] = [

𝑥1 𝑣21 ⋯ 𝑣𝑛1

𝑥2 𝑣22 ⋯ 𝑣𝑛2

⋮ ⋮ ⋱ ⋮
𝑥𝑛 𝑣2𝑛 ⋯ 𝑣𝑛𝑛

] [

1
0
⋮
0

] = [

𝑥1

𝑥2

⋮
𝑥𝑛

] 

The matrix U is orthogonal. If det(𝑈) = −1, multiplying one of the columns by -1 would make 𝑈 ∈ 𝑆𝑂(𝑛). 

Because a rotation is an orthogonal transform which preserves distances, it will not be doubly transitive 

on S. Nevertheless, we will show that 𝑆𝑂(𝑛) is transitive on pairs of points that are equal-distant.  

International Journal of Applied Physics and Mathematics

44 Volume 11, Number 3, July 2021



  

Theorem 1 Let (𝑥, 𝑦), (𝑧, 𝑤) be two pairs of points on the sphere S. There exists 𝑔 ∈ 𝑆𝑂(𝑛) such that 

𝑔(𝑥) = 𝑦 and 𝑔(𝑦) = 𝑤, if and only if 𝑑(𝑥, 𝑦) = 𝑑(𝑧, 𝑤) (in either geodesic or Euclidean distances). 

Proof. Since the rotations in 𝑆𝑂(𝑛) are orthogonal transforms, they preserve distances. The pairs of points 

must have the same distances if there is a rotation mapping one pair to the other. 

Conversely, if 𝑑(𝑥, 𝑦) = 𝑑(𝑧, 𝑤), we need to show that there is a rotation g that maps (𝑥, 𝑦)  to (𝑧, 𝑤). 

Without loss of generality, we may assume that 𝑥 = 𝑧, since 𝑆𝑂(𝑛) is transitive on S. Consider all the points 

on S that has a fixed distance r from the point x. 

𝑆′ = {𝑦 ∈ 𝑆 | 𝑑(𝑥, 𝑦) = 𝑟} 

The set 𝑆′  is a sphere of dimension  𝑛 − 1. The rotations of 𝑆𝑂(𝑛)  that fix the point x is 𝑆𝑂(𝑛 − 1) 

acting on 𝑆′. Since the action of the group 𝑆𝑂(𝑛 − 1) on 𝑆′ is transitive, we have a rotation g that leaves x 

fixed and 𝑔(𝑦) = 𝑤. 

3. Invariant Kernals on Spheres 

Let K be a kernel on S that is invariant to rotations in 𝑆𝑂(𝑛). By Theorem 1, the kernel must be a function 

of the distance of the two points. 

𝐾(𝑥, 𝑦) = 𝑘(𝑑(𝑥, 𝑦)) 

Since the points on the unit sphere, the distance is determined by the dot product between the two vectors. 

𝑑(𝑥, 𝑦) = √2 − 2cos (𝜃) = √2 − 2(𝑥 ∙ 𝑦), where θ is the angle between the two vectors. Consequently, the 

kernel is a function of the dot product, or the cos of the angle between the vectors. 

𝐾(𝑥, 𝑦) = 𝑘(𝑥 ∙ 𝑦) = 𝑘(cos 𝜃) 

This reduces the kernel to a function on the circle group. To characterize such a kernel, we will apply 

Fourier transform ([9]) and Bochner’s theorem ([10], [11]). 

Chebyshev Polynomial. A Chebyshev polynomial of degree n is defined as  

𝑇𝑛(𝑥) = 𝑐𝑜𝑠(𝑛 arccos (𝑥)) 

Chebyshev polynomials are orthogonal over the interval [−1,1]  with respect to the weight function 

1/√1 − 𝑥2. 

Fourier Transform. Let G be a locally compact abelian group. A character χ(x) is a continuous group 

homomorphism from G to the circle group 𝕋. The dual group is the set of all characters on G, denoted by �̂�, 

along with the multiplication operation. Let f be a function on G. The Fourier transform of f is defined as a 

function on �̂�: 

𝑓(𝜒) = ∫𝑓(𝑥)𝜒(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝜈(𝑥)
 

𝐺

 

where ν is the Haar measure on G. 

Bochner’s Theorem. For a locally compact abelian group G with dual group �̂�, and a positive definite 

function f 

𝑓(𝑥) = ∫𝜒(𝑥)𝑑𝜇(𝜒)
 

�̂�
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where μ is a positive finite measure.

Theorem 2. A rotation invariant kernel 𝐾(𝑥, 𝑦) defined on S has the following form.



  

𝐾(𝑥, 𝑦) = 𝑘(𝑥 ∙ 𝑦) = ∑𝑎𝑛𝑇𝑛(𝑥 ∙ 𝑦) 

𝑛≥0

 𝑎𝑛 ≥ 0 

where 𝑇𝑛 is the Chebyshev polynomial of degree n. 

Proof. Because of the rotation invariance, the kernel is a function of the dot product 

𝐾(𝑥, 𝑦) = 𝑘(𝑥 ∙ 𝑦) = 𝑘(cos 𝜃) 

We show that 𝑘(cos 𝜃)  as a function of θ is a function of positive type on the circle group  𝕋 . Let 

𝜃1, 𝜃2, … , 𝜃𝑛 ∈ 𝕋 and 𝑥𝑖 = (cos 𝜃𝑖 , sin 𝜃𝑖 , 0, 0, … ) ∈ 𝑆. Then 

𝑥𝑖 ∙  𝑥𝑗 = cos 𝜃𝑖 cos 𝜃𝑗 +sin 𝜃𝑖 sin 𝜃𝑗 = 𝑐𝑜𝑠(𝜃𝑖 −𝜃𝑗) 

Since K is positive definite, 

∑ 𝑘 (𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑗)) 𝑐𝑖𝑐𝑗

𝑛

𝑖,𝑗=1

= ∑ 𝐾(𝑥𝑖 , 𝑥𝑗)𝑐𝑖𝑐𝑗

𝑛

𝑖,𝑗=1

≥ 0 

The dual group of the circle group 𝕋 is the group of integers ℤ. By using the Fourier inversion formula, 

the function 𝑘(cos 𝜃) can be expressed as a series over the dual group. Since k is real-valued, the Fourier 

series can be written as a series of sin and cos functions. 

𝑘(cos 𝜃) = ∑ 𝑎𝑛 cos(𝑛𝜃) + 𝑏𝑛 sin(𝑛𝜃) 

∞

𝑛=0

 

Since 𝑘(cos 𝜃) is an even function, the Fourier series contains only cos terms. 

𝑘(cos 𝜃) = ∑ 𝑎𝑛 cos 𝑛𝜃 

∞

𝑛=0

 

Now we only need to show that 𝑎𝑛 ≥ 0. Since 𝑘(cos 𝜃) is positive definite, by Bochner’s theorem, 

𝑘(cos 𝜃) = ∫𝜒(𝜃)𝑑𝜇(𝜒)
 

�̂�

 

In this case, the dual group �̂� is the integer group ℤ. The positive measure μ corresponds to the Fourier 

coefficients 𝑎𝑛. Therefore, 𝑎𝑛 ≥ 0. 

On the sphere S, cos 𝜃 = 𝑥 ∙ 𝑦. We have 

𝐾(𝑥, 𝑦) = 𝑘(𝑥 ∙ 𝑦) = 𝑘(cos 𝜃) = ∑ 𝑎𝑛 cos 𝑛𝜃 

∞

𝑛=0

= ∑ 𝑎𝑛 cos(𝑛 arccos(𝑥 ∙ 𝑦)) 

∞

𝑛=0

 

Therefore, by definition of Chebyshev polynomials, 

𝐾(𝑥, 𝑦) = ∑ 𝑎𝑛𝑇𝑛(𝑥 ∙ 𝑦) 

∞

𝑛=0

 𝑎𝑛 ≥ 0 

The Chebyshev series expansion of the dot products with non-negative coefficients is a necessary condition 

for the invariant kernels. For 2-dimensional space, the condition is also sufficient. This is due to the fact that 

the 2-D sphere can be identified as the circle group and the positive definite kernel corresponds to the positive 

definite function directly. 

For 𝑛 ≥ 3, the condition in Theorem 2 may not be sufficient. The spheres do not have an abelian group 
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structure as in the 2-D case. We may apply Schoenberg’s theorem to obtain a necessary and sufficient 

condition for invariant kernels on n-D spheres. 

Legendre Polynomial. A Legendre polynomial 𝑃𝑛(𝑥)  of degree n can be defined by the generating 

function. 

1

√1 − 2𝑥𝑡 + 𝑡2
= ∑ 𝑃𝑛(𝑥)𝑡𝑛

∞

𝑛=0

 

Legendre polynomials are orthogonal over the interval [−1,1] with respect to the weight function 1. 

Gegenbauer Polynomial. A Gegenbauer polynomial of order 𝛼 and degree n is defined by the generating 

function. 

1

(1 − 2𝑥𝑡 + 𝑡2)𝛼
= ∑ 𝑃 𝑛

𝛼(𝑥)𝑡𝑛

∞

𝑛=0

 

Gegenbauer polynomials are orthogonal over the interval [−1,1]  with respect to the weight function 

(1 − 𝑥2)𝛼−1/2. 

Note that Chebyshev polynomials and Legendre polynomials are special cases of Gegenbauer polynomials 

with orders 0 and 1/2 respectively. 

Schoenberg’s Theorem. ([12]) A positive definite function 𝑘(𝑥 ∙ 𝑦) on the unit sphere is invariant under 

𝑆𝑂(𝑑) if and only if it has the following form. 

𝑘(𝑥 ∙ 𝑦) = ∑ 𝑎𝑛𝑃𝑛

𝑑
2
−1

(𝑥 ∙ 𝑦) 

∞

𝑛=0

 𝑎𝑛 ≥ 0 

where 𝑃𝑛

𝑑

2
−1

 
(𝑥) is the Gegenbauer polynomial of order  𝑑/2 − 1 and degree n. 

When 𝑑 = 2  the order of the Gegenbauer polynomials is 0 and the series is a Chebyshev polynomial 

expansion. When 𝑑 = 3  the order of the Gegenbauer polynomials is 1/2 and the series is a Legendre 

polynomial expansion.  

4. Numerical Results and Discussions 

A 3-dimensional example is used to illustrate the rotation invariance of the kernels on a sphere as defined 

in Section III. A random sample of 8 points on the sphere and its rotated version are shown in Fig. 1. The red 

dots are the random sample and the blue dots are the rotated version. 

 
Fig. 1. Rotated data points on a sphere. 
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In the 3-D space, the rotation invariant kernels are represented as a series of Legendre polynomials. The 

following kernel is constructed with a Legendre polynomial on the dot product. It is applied to the two data 

sets. 𝐾(𝑥, 𝑦) = 𝑃3(𝑥 ∙ 𝑦) = 2.5(𝑥 ∙ 𝑦)3 − 1.5(𝑥 ∙ 𝑦) 

To show the rotation invariance, the Gram matrices on the two data sets are calculated. The two Gram 

matrices are identical: 

[
 
 
 
 
 
 
 
 4.0000    2.0679    3.4466    3.1025    3.0814    3.8844    3.6012    1.9971
2.0679    4.0000    1.7508    1.2609    3.1086    1.6103    2.9660    3.8239
3.4466    1.7508    4.0000    3.9006    3.3748    3.6801    3.4990    1.3846
 3.1025    1.2609    3.9006    4.0000    2.9331    3.5043    3.0304    0.9329
3.0814    3.1086    3.3748    2.9331    4.0000    2.9158    3.8540    2.5867
3.8844    1.6103    3.6801    3.5043    2.9158    4.0000    3.3856    1.4676
3.6012    2.9660    3.4990    3.0304    3.8540    3.3856    4.0000    2.6413
1.9971    3.8239    1.3846    0.9329    2.5867    1.4676    2.6413    4.0000]

 
 
 
 
 
 
 

 

Kernel based machine learning methods such as support vector machine (SVM) and Gaussian process (GP) 

have the kernel (and specifically, the Gram matrix) as the oracle. The rotation invariance of the kernel will be 

propagated to the learning system. 

By incorporating the natural symmetries of the sphere, the invariant kernel is benefited in measuring the 

similarity based on simpler and more essential structure information. The reduced capacity in the learning 

system will lead to less overfitting and better performance in generalization. 

5. Conclusions and Future Work 

In this paper, we studied the kernels on spheres that are invariant under the actions of the rotation group. 

By studying the transitivity of the rotation groups on spheres, we concluded that such an invariant kernel 

must be a function of the dot product of the two vectors. By using the Fourier transform on locally compact 

abelian groups and the Bochner’s theorem, we further proved that such a kernel has a Chebyshev polynomial 

expansion with non-negative coefficients regardless of the dimension.  

The Chebyshev series expansion with non-negative coefficients of the positive definite function of dot 

products is a necessary condition for the invariant kernels. For 2-dimensional space, the condition is also 

sufficient. For 𝑛 ≥ 3, the condition may not be sufficient. Schoenberg’s theorem can be applied to derive a 

necessary and sufficient condition in terms of Gegenbauer polynomial expansions. 

For future work, we will consider invariant kernels related to other spaces and symmetry groups, by 

exploring modern harmonic analysis methods in relation to kernel structures. We will also study the efficacy 

of the invariant kernels on practical machine learning applications. 
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