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Abstract: With the macroscopic mechanical properties of the particle reinforced composites, it has been 

used to approximate theoretical solution for a long time. With the development of computer, the 

comparison of uniaxial tension and simple shear is performed by the meso-mechanical theory and 

simulation. The simulation model uses the representative volume element (RVE) with periodic boundary 

conditions. The macroscopic stress and strain of the volume-averaged method use the Mori-Tanaka model 

and the Double-Inclusion model based on inclusion theory. The results demonstrate that the results with 

the meso-mechanics are agreement highly with the numerical simulation in the case of the linear elastic 

deformation. However, the results with the meso-mechanical method have deviation compared to the 

numerical simulation in the case of finite deformation. 

 
Keywords: Representative volume element, meso-mechanics, composite materials, numerical simulation, 
anisotropy. 

 
 

1. Introduction 

Particle-reinforced composites are constituted by adding reinforcement to the matrix material. It has 

excellent performance so that it is commonly used in aviation, aerospace and automotive fields. A great deal 

of research work has been undertaken by the meso-mechanical method for its effective performance. Mori 

and Tanaka [1] predicted the effective elastic properties of particle reinforced composites through the 

mean-field approximation. The Mori-Tanaka model is deemed to be the simplest model because of its 

compact form. Based on the Eshelby equivalent inclusion theory, Cheng et al. [2] and Sharma et al. [3] 

established a meso-mechanical model containing spherical and elliptical inclusion through extending the 

Mori-Tanaka method. However, these widely used models do not take into consideration the particles 

interactions, especially when involved with the high volume ratio of particle-reinforced composites. 

Meanwhile, the theoretical analysis method can only obtain the macroscopic effective modulus but the 

details of the local field, and the analysis of specific inclusion details such as the influence of geometric 

distribution, orientation and shape of the macro modulus. With the development of computers, numerical 

analysis of composite materials with periodic distribution can be done by establishing a representative 

volume unit (RVE). For example, Jaensson and Sundstorm [4] used the finite element method to get the 

elastic modulus and Poisson's ratio of an alloy. Tessier-Doyen et al. [5] applied finite element software to 

simulate the mechanical response of particle-reinforced composites then found that numerical predictions 
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are very similar to those obtained by Hashin and Shtrikman models [6]. Llorca and Segurado [7] established 

a modified stochastic continuous absorption algorithm to generate a three-dimensional cube unit cell 

model with a particle volume fraction up to 50%. A big problem with the numerical simulation is the setting 

of the volume unit size. Dagan and Willis [8], [9] proved that a small-scale representative volume unit has 

more accurate prediction results. 

For numerical simulation of particle reinforced composite materials using RVE have also been gradually 

improved, such as Li Qing and Kang Guozheng [10]-[13]. However, there are few references on numerical 

simulation as well as a comparative study with theoretical solutions in the case of large deformations. For 

basic works of nonlinear mechanics and composite material mechanics established by Holzapfel A G and Liu 

hongwen [14], [15].  

In general, particles are randomly distributed as well as macroscopically isotropic, if external 

disturbances, such as a magnetic field, occur, the particles are circulated in a chain along one direction. Thus 

macroscopically presents itself as transversely isotropic [16]. Galipeau et al. [17] studied mechanical 

responses of the materials in some specific surroundings through building the periodic microstructure of 

magnetohydro-dynamics. Weng L et al. [18] developed a three-dimensional multi-particle finite element 

model to explore the effects of particle size, morphology and interfacial strength on the elastic-plastic 

behavior of particle-reinforced composites under uniaxial tension. Xu W et al. [19] developed the coupled 

effects of anisotropic particle geometry and reinforced/weak interphase characteristics (i.e., volume 

fraction, thickness, moduli and Poisson ratio) on the elastic properties of particle-reinforced composites 

(PRCs) at nano and microscales. Based on the coupling method of finite element method and smoothed 

particle hydrodynamics method, the process of single abrasive grain cutting particles reinforced Cu-matrix 

compo-sites with small volume fraction of particle phase is simulated, and the chip formation mechanism of 

particle-reinforced Cu-matrix composites was analyzed [20]. Zhang J et al. [21] used RVE models containing 

complex morphology particles to study the effect of particle, matrix and interface damage on the 

mechanical properties and failure behavior of composites under uniaxial tension. Tian et al. [22] proposed a 

3D RVE model and forecast the effective elastic parameters of composites by the homogenization method. 

Xu et al. [23] developed full-scale finite element method to study the pseudo-elasticity and shape memory 

effects of shape memory alloy (SMA) fiber reinforced composites. 

2. Particle Reinforced Composite Material Parameters 

2.1. Material Parameters 

In this paper, the rubber is selected as the matrix material, which can be regarded as a super-elastic 

materials. Its constitutive model can be derived from the strain energy density function. For the matrix, the 

Mooney-Rivlin [14] model is used: 
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two parameters of the matrix.   is the initial bulk modulus. The shear modulus based on Mooney-Rivlin 

model is as following:  

( )10 012 0G C C= +      (2) 

Here, G is the initial shear modulus. It is assumed that the ratio of: 
01

C :
10

C is 1:4, then 
10

C  is 0.4 MPa, 

International Journal of Applied Physics and Mathematics

34 Volume 11, Number 2, April 2021



which 
20

C  is 0.1 MPa. The result of G is equal to 1 MPa, then the Poisson's ratio   is set to 0.47. The bulk 

modulus [15] can be derived as follow: 

2 (1 )

3(1 2 )

G 




+
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−
   (3) 

The bulk modulus 16.33MPa =  can be obtained from the eq. (3). 

=2 (1 )E G +    (4) 

Then the initial Young's modulus E is 2.94MPa.  

Fig. 1 is the curve of strain-stress for Mooney-Rivlin matrix under uniaxial tensile. It can be seen from the 

Fig. 1 that Mooney-Rivlin matrix has nonlinear characteristics under uniaxial tension. 
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Fig. 1. Uniaxial tension of the Mooney-Rivlin model. 

 

Fig. 2 is the stress-strain curve of simple shear of the matrix under large deformation. It shows that a 

linear relationship between the nominal stress and the nominal strain in the case of simple shear. 
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Fig. 2. Shear deformation of the Mooney-Rivlin model. 

 

The filling material of particle reinforced composites are carbonyl iron powder, which is a kind of typical 

high magnetic permeability, low remanence and high magnetic saturation material. The mechanical 

parameters of Young's modulus is 210 GPa and Poisson's ratio is 0.33, from the following formula: 

( )1
=

2 +

E
G


  (5) 

From the eq.(5), The shear modulus G  can be obtained as 78.94 GPa. 

2.2. Representative Volume Element 

With the development of the computer, the composites can be approached with the real representative 

volume element by numerical simulation. Even the microstructures can be obtained directly from the CT 

scans of specimens. However, this method needs a large amount of calculation. The method using a 

representative volume element does not require the scanning of real materials. Then the macro-effective 

modulus based on the hypothesis of homogenization will become easy. Fig. 3 is a diagram of the RVE. 
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Fig. 3. Diagram of RVE method. 

 

2.3. Size and Establishment of RVE Models 

When the particles are separated from the RVE, the part of the particles of the RVE is retained, while the 

outside of the RVE should be transplanted to the corresponding boundary so that it becomes a complete 

particle of the RVE. It is set to ensure the continuity of the particles at the boundary as well as to get the 

repeatability of RVE. Fig. 4 and Fig. 5 are the RVE diagrams in the two-dimensional and three-dimensional 

cases, respectively. We can find that the particles of the boundary maintain the geometric continuity. For a 

periodic distribution or a regular array, the definition of the RVE supposes to be a unit element with the 

periodic characteristics. One parallelogram periodic representative flat element or hexagonal periodic 

representative volume element can usually be selected for a two-dimensional periodic microstructure, but 

in numerical simulation, the parallelogram makes the application of periodic boundary conditions become 

relatively easy. For the periodic structure, the usual method is as follows: select a point in the periodic 

structure, its surroundings must have its equivalent point, that is, the situation around the two points is 

exactly the same. Different equivalent points in the two directions are chosen for one point. Periodic 

representative element can be quickly constructed by this method. 
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Fig. 4. Plane sketch of geometric model. 

 

 
Fig. 5. 3-D sketch of RVE model. 
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The periodic volume unit can be used to construct the RVE directly. The generation of random inclusion 

depends on a random algorithm which generates a sphere center as well as inclusion. Once appearing 

inclusion interference then randomly generate ones in another position. Because this article mainly studies 

the generation of spherical inclusions, we only pay attention to the random distribution of inclusion instead 

of inclusion orientation thus ensuring the material isotropic. 

As to the selection of the RVE size for the random structure in this paper by comparison with the 

mechanical properties of different RVE sizes. Finally, a random isotropic RVE with a volume ratio of 0.3 and 

30 particles is established. The size of the RVE side length is 53.0 10− meter. 

2.4. Periodical Boundary Conditions 

In order to get the equivalent mechanical properties of composites, it is necessary to apply the load and 

periodic boundary conditions for the RVE. If the RVE is so large that the result is insensitive to any 

boundary conditions. For the sake of simplicity, there are two loading methods: the one is a rectangular 

RVE applied to the positioning shift value deforms to another rectangle. Under this loading condition, the 

stiffness obtained is larger than the actual result according to the principle of minimum potential energy. 

The other loading method is the stress boundary condition, which the stress condition is imposed on the 

boundary with application of the principle of minimum residual energy, the predicted rigidity is smaller 

than reality. These loading methods may be correct when the meso-structure and load of the composites 

have some symmetry, while in most cases it is just an approximate result with nuances at the boundary. It 

is not clear boundary effects for large RVE which involved the deviation within the allowable range. For 

periodic RVE applied to composites with periodic microstructures, periodic boundary conditions should be 

applied. When composites is uniformly deformed macroscopically, its meso-structure periodic 

microstructure presents a periodical meso-deformation thus ensuring that the space is seamlessly filled 

without overlapping. As shown in Fig. 6, the deformation of the opposite edges is coordinated to guarantee 

the coordination of the deformation field: 

(1) Because of the continuous of displacement, the deformation in the adjacent RVE is consistent. 

(2) The stress is continuous, which the stress at the corresponding boundary of RVE is consistent. 

Assume the corresponding node Q1 and Q2 of the opposite edge. The reference coordinates of the Q1 and 

Q2 is X(Q1) and X(Q2), respectively. We can obtain the eq. (6): 
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When the RVE is deformed, the Q1 and Q2 satisfied the displacement relationship: 
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where RVE is the average deformation tensor. We can calculate from the eq. (7): 

( ) ( ) ( ) ( ) ( )1 2 1 2I 0Q Q Q Q− − − − =  u u F X X     (8) 

Take a three-dimensional RVE model as an example, as shown in Fig. 7. When the periodic boundary 

conditions imposed on RVE. The iS  is the surface boundary and jM  is the vertex of RVE. According to 

the requirements of the eqs.(6) and (7), the boundary condition displacement for the 3-D RVE is: 

( )
4 3 2 0S S M= + M −u u u u    (9) 
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( )
4 3 2 0S S M= + M −u u u u    (10) 

( )
6 5 3 0S S M= + M −u u u u    (11) 

Periodic boundary conditions of stress are 

1 1 2 2S SS S• = − •σ n σ n    (12) 

3 3 4 4S SS S• = − •σ n σ n    (13) 

5 5 6 6S SS S• = − •σ n σ n    (14) 

 

 
Fig. 6. Sketch of deformation under periodic boundary condition. 

 
Fig. 7. 3-D sketch of deformation under periodic boundary condition. 

 

3. Comparative Study between Theoretical Solutions and Numerical Simulation in the 
Case of Uniaxial Tension 

Fig. 8 is a periodic geometrical view of an isotropic with a volume ratio of particles of 0.3. Fig. 9 is the 

deformation of an isotropic elastomer in the case of uniaxial tension. It can be seen that the deformation of 

the RVE on the surface is so consistent that it satisfies the requirements of the periodic boundary conditions 

for consistent displacement. The results of numerical simulations of Fig. 10 show that in the case of small 

deformations, the results are in highly consistent with the results of Mori-Tanaka and Double-Inclusion 

models, but under large deformations, the deviation between the results of Mori-Tanaka and Double-

Inclusion models and those of numerical simulations gradually increases.  
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Fig. 8. Schematic diagram of periodic mesh. 

 

 
Fig. 9. Uniaxial tension deformation of isotropic MREs. 
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Fig. 10. Uniaxial tension deformation of isotropic MREs. 

4. Comparative Study between Simple Shear Numerical Simulation and Theoretical 
Solution in the Case of Simple Shear 

Fig. 11 is the deformation of simple shear. It demonstrates that the boundary deformation of surface is 

consistent with the application of periodic boundary conditions, which ensuring the reliability of the RVE. 

Fig. 12 is a diagram of macroscopic stress and strain, which illustrate that for the shear deformation, even if 

the deformation is small, the results of the Mori-Tanaka model and the Double-Inclusion model are different 
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from those of the numerical simulation. As the same to stretch, the results of the Mori-Tanaka model and the 

Double-Inclusion model are higher than the numerical simulation in the case of large deformation. 

 

 
Fig. 11. Simple shear deformation diagrams of isotropic MREs. 
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Fig. 12. Simple shear stress and strain curves of isotropic MREs. 

5. Conclusion 

The representative volume element (RVE) with periodic boundary conditions is used to perform a 

simulation of uniaxial tension and simple shear. The results of simulation and the theoretical calculation use 

the Mori-Tanaka model and the Double-Inclusion model show that in the linear elastic deformation the 

theoretical results are highly consistent with the numerical simulation. However, compared with the 

numerical simulation under finite deformation, the results use the theoretical calculation with Mori-Tanaka 

model and the Double-Inclusion model are deviated. 
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