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Abstract: The characteristics of wave motion in a two-dimensional viscous fluid medium which is 

described by a bounded solution is obtained for the case in which the depth is essentially high. The 

distortion rising from the mixing of lamina irregular and turbulent mode of flow under a common 

transverse gradient is represented by the complex viscous term and relates to the Reynolds number Re, so 

that when the coefficient of viscosity v is larger, the Reynolds number is Zero.The governing equation 

include terms relating to the non-linear coupling in the plane for which viscosity is the dominant factor 

influencing the eddy driven current in the medium. The solution suggests a system of wave motion 

generated by gradual transition from the linear law of resistance for lamina flow to that of quadratic law for 

turbulent flow. 
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1. Introduction 

The characteristics of wave motion in a two-dimensional viscous fluid flow medium is discuss in this 

paper, for which the depth is essentially high. Shallow water processes which accounts for the linear long 

waves will be neglected in favor of the non-linear coupling in the plane for which viscosity is a dominant 

factor influencing the Eddy driven current in the medium Holland [1]. 

Makarious [2] noted that evolution of the long progressive waves and the surface of shallow water has 

been an intense successful research activity for a long time. Phan et al [3] noted the existence of finite 

amplitude vibrations of the cantilever beam of rectangular cross section immersed into a viscous fluid, 

while a two- dimensional flow caused by the plate oscillation and their hydrodynamic influence on the plate 

is well understood and reported by Muaiev et al. [4]. A thorough computation on the evolution of the 

periodic surface wave was done by Longnet-Higgins [5]. From their result the waves progress towards a 

coast line which often steepen and over turn. This work is in agreement with Galvin [6], who observed 

features of the plunging breakers. 

Okeke [7] in his work presented a model for weakly non-linear waves on the surface of the shallow water 

where he analyzed the development and propagation of singularities along the wave crest and eventual 

breaking using the Bousinesq equation for periodic wave trains in shallow water, without viscosity.  

In this research, we considered the dominant non-linear oscillations in the deep fluid medium with 

operating influence of viscosity. Our concern is the development of non-periodic bounded solutions that 

yield finite amplitude oscillations as the leading asymptotic flow approaches shallow water and while at the 
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same time the wave action undergoes gradual attention of the trailing end at a great depth. 

2. Basic Equations 

The mutually orthogonal axes of the Cartesian coordinate system are the x and z axes forming the plane 

for which the transverse motion of the stream takes place. The 𝑥 axes is taken horizontal and normal to the 

shoreline while the z-axes is vertically upward. 

The instructions rise of fluid representing the wave profile given by 

𝑧 =  ŋ(𝑥, 𝑡) (1) 

Given these specifications in a medium of infinitesimal disturbances, the evolution of dominant non-

linear wave in deep water is familiar Stokes kinematic equations for instantaneous wave motion confined to 

the dimensions of x and w and given by 

𝜕𝑢

𝜕𝑡
 +   

𝜕𝑤

𝜕𝑡
 =  

−1

𝜌
(

𝜕𝑝

𝜕𝑥
 +   

𝜕𝑝

𝜕𝑧
)   +   𝑟𝑣2(𝑢 + 𝑤)  (2) 

where 𝑣 is the kinematics viscosity of water, u, w are the components of particle velocity in the x and z 

directions with t > 0 as the time, 𝜌 is the density of the medium, and P is Pressure of the fluid medium. 

For mass flow, the equation of continuity is given by 

𝜕u

𝜕𝑥
 +  

𝜕𝑤

𝜕𝑧
= 0 (3) 

2.1. Boundary Condition 

The following boundary conditions are applied to our model: 

𝜕ŋ

𝜕𝑡
= 𝑤       𝑎𝑡 𝑧 = {

0
ɳ 

𝑡=0
ɳ=0

 (4) 

Which are the kinematic boundary conditions. 

The dynamic boundary conditions due to the balance of pressure P with friction expressed as 

𝑃 − 2𝜇
𝜕𝑤

𝜕𝑧
=  𝜆𝑗 (5) 

where 𝜆 is a measure of curvature of the fluid surface due to non-linear coupling in the plane and given by. 

𝜆 =
𝜕2ɳ

𝜕𝑥2 (5a) 

j is the surface Tension and 𝜇 is the dynamic coefficient of frictions, therefore equation (5) becomes 

𝑃 − 2𝜇
𝜕𝑤

𝜕𝑧
=  𝑗

𝜕2ɳ

𝜕𝑥2  (6) 

𝑧 = ɳ and given by 

𝜕𝑤

𝜕𝑥
+ 

𝜕𝑢

𝜕𝑧
= 0 (7) 

Equations (6) and (7) are continuous at 𝑧 = ɳ. 

Let 𝜓(𝑥, 𝑧, 𝑡) be the conservative stream function describing the transverse motion of the fluid such that  

u = −
𝜕𝜓

𝜕𝑧
 (8) 

And 

w =
𝜕𝜓

𝜕𝑥
  (9) 

To obtain the equation of transverse motion, we relate the horizontal motion to the perpendicular motion 

by considering the one-dimensional Navier Stokes equations without body force given by 
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𝜕𝑢

𝜕𝑡
=  −

1 

𝜌

𝜕𝑃

𝜕𝑥
+ 𝑣∇2𝑢 = 0  (10) 

Differentiate (10) with respect to z and equation (8) we have 

𝜕

𝜕𝑡
(−

𝜕2𝜓

𝜕𝑧2 ) =  −
1 

𝜌

𝜕2𝑃

𝜕𝑥𝜕𝑧
+ 𝑣∇2 (−

𝜕2𝜓

𝜕𝑧2 )  (11) 

Similarly, the transverse motion of equation (2) is given by 

𝜕𝑤

𝜕𝑡
=  −

1 

𝜌

𝜕𝑃

𝜕𝑧
+ 𝑣∇2𝑤 = 0  (12) 

Differentiating (12) with respect to x and substitute in equation (9) 

𝜕

𝜕𝑡
(

𝜕2𝜓

𝜕𝑥2 ) =  −
1 

𝜌

𝜕2𝑃

𝜕𝑥𝜕𝑥
+ 𝑣∇2 (

𝜕2𝜓

𝜕𝑥2 ) = 0  (13) 

Subtracting equation (11) from equation (13) we will obtain 

𝜕

𝜕𝑡
(

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑧2) 𝜓 =  𝑣∇2 (
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑧2) 𝜓 ⇒  
𝜕

𝜕𝑡
∇2𝜓 = 𝑣∇4𝜓   (14) 

In equation (14) if 𝜓 → 0 as 𝑧 → 0; the wave profile will gradually diminish at great depth 

The kinematic boundary condition of equation (4) will yield  

𝜕ɳ

𝜕𝑡
=  

𝜕𝜓 

𝜕𝑥
|

𝑧=0
= 𝑤|𝑧=0 (15) 

For the dynamic boundary condition of equation (5) we have 

𝑃 − 2𝜇
𝜕2𝜓

𝜕𝑥𝜕𝑧
= 𝑗

𝜕2ɳ

𝜕𝑥2|
𝑧=ɳ

 (16) 

Therefore cross-lateral displacement will yield 

𝜕2𝜓

𝜕𝑥2 −
𝜕2𝜓

𝜕𝑧2 = 0 (17) 

At 𝑧 = 0 𝑜𝑟 𝑧 = ɳ 

3. Solution of the Problem 

We shall look at the oscillatory solution built up by the complex exponential growth of horizontal wave 

motion with stream function given by; 

𝜓(𝑥, 𝑦, 𝑡) = 𝑓(𝑧)𝑒𝑖(kx+δt) (18) 

Taking equations (14) to (17), we will find a mixed B.V.P expressed as 4th order PDE governing the plane 

wave motion expressed as; 

𝜕

𝜕𝑡
∇2𝜓 = 𝑣∇4𝜓 (19) 

𝜕ɳ

𝜕𝑡
=  

𝜕𝜓

𝜕𝑥
= 𝑤 𝑎𝑡 𝑧 = 0 (19a) 

And  

𝑝 − 2𝜇 
𝜕2𝜓

𝜕𝑥𝜕𝑧
= 𝑗

𝜕2ɳ

𝜕𝑥2
= 𝑎𝑡 𝑧 = ɳ 

And  

𝜕2𝜓

𝜕𝑥2
− 

𝜕2𝜓

𝜕𝑧2
= 𝑜 𝑎𝑡 𝑧 = 0 𝑜𝑟 𝑧 = ɳ 

Our interest here is only in the oscillatory solution built up by the complex exponential growth of 

horizontal wave motion with stream function given by equation (19a). 
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To simplify the treatment, we rewrite Equation (19) as  

(
𝜕

𝜕𝑡
∇2 − 𝑣∇4) 𝜓 = (

𝜕

𝜕𝑡
− 𝑣∇2) ∇2𝜓 = 0 

⇒ (
1

𝑣2

𝜕

𝜕𝑡
− ∇2) ∇2𝜓 = 0  (20) 

The stream function equation (19) introduces into equation (20), we will obtain the equation of motion 

describing the vertical profile of the flow 

(
𝜕2

𝜕𝑧2 − 𝑘2) (
𝜕2

𝜕𝑧2 − 𝑘2 − 𝑖
𝜕

𝑣
)  𝑓(𝑧) = 0   (21) 

Simplifying the non-linear process, we introduce a function g(z) representation of the vertical variation of 

the fluid as the wave motion which is equivalent to equation (21) given by 

(
𝜕2

𝜕𝑧2 − 𝑘2 − 𝑖
𝜕

𝑣
)  𝑓(𝑧) = 𝑔(𝑧)  (22) 

where g(z) = 0 as z → −∞ 

Substituting equation (22) into equation (21) we will obtain  

[
𝜕2

𝜕𝑧2 − 𝑘2] 𝑔(𝑧) = 0 (23) 

Which yields the   

𝑔(𝑧) = 𝐴𝑒𝑘𝑧 + 𝐵𝑒−𝑘𝑧  (24) 

𝐴𝑒𝑘𝑧 is the dominant part of the solution which is bounded and representing the asymptotic flow 

upstream with a finite amplitude. 

Therefore, 

𝑔(𝑧) = 𝐴𝑒𝑘𝑧 (25) 

To simplify equation (22) we introduce the factor  

𝑘2 +
𝑖𝛿

𝑣
= 𝑚2 (26) 

[
𝜕2

𝜕𝑧2 − 𝑚2]  𝑓(𝑧) = 𝐴𝑒𝑘𝑧  (27) 

𝑓(𝑧) = 𝛽0𝑒𝑚𝑧 + 
𝐴𝑒𝑘𝑧

𝑘2 − 𝑚2 (28) 

 𝑙𝑒𝑡 𝛼0 =   
𝐴

𝑘2 − 𝑚2 (29) 

Equation (27) reduces to 

𝑓(𝑧) = 𝛼0𝑒𝑘𝑧 + 𝛽0𝑒𝑚𝑧 (30) 

Then, we obtain a stream function 

𝜓 = [𝛼0𝑒𝑘𝑧 + 𝛽0𝑒𝑚𝑧]𝑒𝑖(𝑘𝑧−𝛿𝑡)  (31) 

To determine the non-shallow water rise of elevation, we use the following boundary condition  

𝜕𝜇

𝜕𝑡
=  

𝜕𝜓

𝜕𝑡
│𝑧=0 (31a) 

Now differentiating equation (31) with respect to t, results to 

𝜕𝜇

𝜕𝑡
= 𝑖𝛿(𝛼0 + 𝛽0)𝑒𝑖(𝑘𝑧−𝛿𝑡) (32) 

Integrating equation (32) with respect to t, we will have  

𝜇 = (𝛼0 + 𝛽0)𝑒−𝑖𝛿𝑡 (33) 
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From 
𝜕2𝜓

𝜕𝑥2 −
𝜕2𝜓

𝜕𝑧2 = 0 𝑎𝑡 𝑧 = 0, if 𝜇 is substituted in equation (31) we will have  

𝑘2(𝛼0 + 𝛽0) + (𝑘2𝛼0 + 𝑚2𝛽0) = 0  (34) 

Eliminating m from equation (34) using equation (26) we have  

𝑘2(𝛼0 + 𝛽0) + (𝑘2𝛼0 + 𝑘2𝛽0 +
𝑖𝛿

𝑣
𝛽0) = 0 

⇒ 2𝑘2(𝛼0 + 𝛽0) =
−𝑖𝛿

𝑣
𝛽0 

⇒   
(𝛼0 + 𝛽0)

𝛽0
=  −

𝑖𝛿

2𝑘2𝑣
 

⇒   
𝛼0

𝛽0
+ 1 = − 

𝑖𝛿

2𝑘2𝑣
 

⇒   
𝛼0

𝛽0
= −1 − 

𝑖𝛿

2𝑘2𝑣
  (35) 

𝑖𝛿

𝑘2𝑣
 has the representation of Reynolds number R and express as a ratio of the dynamical measure of stress 

over fluid inertia that essentially generates the transition from linear law of resistance of lamina flow Stuart 

[8] to that of the quadratic law for turbulence flow due to the action of the eddies in continuous horizontal 

and transverse motion. 

Hence the distortion arising from the mixing of lamina, irregular and turbulent modes of flow with a 

common transverse gradient justifies the complex nature of viscosity and thus introduces an imaginary part 

in the propagation frequency, 𝛿, which can be express as 

𝛿 = 𝛿𝑜𝑒𝑖𝛿  (36) 

𝛿 = 𝛿𝑜[cos 𝛿  +   𝑖𝑠𝑖𝑛𝛿] (37) 

Thus, the Reynolds number becomes 

𝑅 = −
𝛿𝑜𝑠𝑖𝑛𝛿

𝑣𝑘2  (38) 

where 𝛿𝑜 is the characteristic frequency of flow motion 

𝛿 =  −𝛿𝑜𝑠𝑖𝑛𝛿 is the im (𝛿𝑜) 

We now determine the exact expression of the component of 𝑢, 𝑣, ɳ and p 

Since we know the exact expression of the stream function  

𝜓(𝑥, 𝑧, 𝑡) = [𝛼𝑜𝑒𝑘𝑧  +   𝐵𝑜𝑒𝑚𝑧]𝑒(𝑘𝑥 −  𝛿𝑡)  (39) 

With 𝛼𝑜  =   
𝐴

𝑘2  −  𝑚2 

First taking equation (33), we see that the non-periodic rise of wave height in deep water is given by: 

ɳ(x, t)  = −
𝑘

𝛿
(𝛼𝑜  +   𝛽𝑜)𝑒(𝑘𝑥− 𝛿𝑡) 

The quantity 

ɳo =  −
𝑘

𝛿
(𝛼𝑜 + 𝛽𝑜) (40) 

is the characteristic amplitude of the wave elevation and is finite since: 

|ɳ0|  =   |𝑘

𝛿
(𝛼𝑜 + 𝛽𝑜)| <   ∞  as 

|𝑘

𝜕
| < ∞ and |𝛼𝑜 + 𝛽𝑜|  =   |𝛼𝑜|  +   |𝛽𝑜| <   ∞ 

Hence 
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ɳ (x, t) = ɳoei(kx− δt)  (41) 

at 𝑧 =   ɳ𝑜, 𝑥 = 0  &  𝑡 = 0 

To determine u, w and p. we note that 

𝜓(𝑥, 𝑧, 𝑡) = [𝛼𝑜𝑒𝑘𝑧  +   𝛽𝑣𝑒𝑚𝑧]𝑒𝑖(𝑘𝑥− 𝛿𝑡)  (42) 

If 

𝑢 =  −
𝜕𝜓

𝜕𝑧
    ⇒   𝑢 = −

𝜕

𝜕𝑧
[𝛼𝑜𝑒𝑘𝑧 +  𝛽𝑜𝑒𝑚𝑧]𝑒𝑖(𝑘𝑥 −  𝛿𝑡) 

Hence 

𝑢 =  −[𝛼𝑜𝑘𝑒𝑘𝑧  +   𝛽𝑜𝑚𝑒𝑚𝑧]𝑒𝑖(𝑘𝑥 −  𝛿𝑡)  (43) 

Now letting 𝛼 =   𝛼𝑜𝑘 and 𝛽 =  𝛽𝑜𝑚 

𝜓(𝑥, 𝑧, 𝑡)  =  −[𝛼𝑒𝑘𝑧  +   𝛽𝑒𝑚𝑧]𝑒𝑖(𝑘𝑥 − 𝛿𝑡)  (44) 

Also from equation (9), we have 

𝜔 =
𝜕𝜓

𝜕𝑥
⇒ 𝜔 =

𝜕

𝜕𝑥
[[𝛼𝑜𝑒𝑘𝑧 + 𝛽𝑜𝑒𝑚𝑒]𝑒𝑖(𝑘𝑥−𝛿𝑡)] 

⇒ 𝜔(𝑥, 𝑧, 𝑡) =  𝑖𝑘[𝛼𝑜𝑒𝑘𝑧 + 𝛽𝑜𝑒𝑘𝑧 ]𝑒𝑖(𝑘𝑥−𝛿𝑡)  (45) 

Now 𝑢(𝑥, 𝑧, 𝑡)in equation (44) represents the velocity component driving the horizontal flow, which 

𝜔(𝑥, 𝑧, 𝑡) is the component due to transverse flow. Hence the current system generating the waves in the 

stream is giving by velocity potential, ῦ and expressed as 

𝑣 = (𝑢
𝑤

) (45a) 

ῦ =   [(
−𝛼𝑜𝑘
𝑖𝑘𝛼𝑜

) ekz + (
−𝛽𝑜𝑚
𝑖𝑘𝛽𝑜

) 𝑒𝑚𝑧] 𝑒𝑖(𝑘𝑥−𝛿𝑡) 

= [𝛼0𝑘(−1
𝑖

)𝑒𝑘𝑧 + 𝛽0(−𝑚
𝑖𝑘

)𝑒𝑚𝑧]𝑒𝑖(𝑘𝑥−𝛿𝑡)   (46) 

Letting 𝛼𝑜k = 𝜏0 then equation (46) yields the current system in the stream as  

ῦ =   [(
−1

i
) 𝜏𝑜𝑒𝑘𝑧 + 𝛽𝑜 (

−𝑚
𝑖𝑘

) 𝑒𝑚𝑧]  (47) 

This shows that the oscillations are due to Turbulence resulting from the non-linear coupling in the plane 

(𝑥, 𝑡) which the transverse motion interplay with horizontal frictional flow. For finite amplitude oscillations, 

the boundary data is defined for the values at x = 0, t = 0, z = 𝜂𝑜 

Hence, ῦ is the current system defining the free surface and given by  

𝑣̌𝑜 =  (𝑢0
𝑤0

) = [(−1
𝑖

)𝜏0𝑒𝑘𝑧   + β𝑜 (
−𝑚
𝑖𝑘

) 𝑒𝑚𝑧] 𝑒𝑖(𝑘𝑥−𝛿𝑡) (48) 

To find the pressure distribution 𝑝(𝑥, 𝑧, 𝑡), we use equation (16) as  

𝑝 − 2𝜇
𝜕2𝜓

𝜕𝑥𝜕𝑧
= 𝑗

𝜕2𝜂

𝜕𝑥2 ⇒ 𝑝 =  2𝜇
𝜕2𝜓

𝜕𝑥𝜕𝑧
+ 𝑗

𝜕2𝜂

𝜕𝑥2  (49) 

If 𝜂(𝑥, 𝑡) = 𝜂0𝑒𝑖(𝑘𝑥−𝛿𝑡) 

⇒
𝜕𝜂

𝜕𝑥
= 𝑖𝑘𝜂0𝑒𝑖(𝑘𝑥−𝛿𝑡)  and  

𝜕2𝜂

𝜕𝑥2 =  −𝑘2𝜂𝑒𝑖(𝑘𝑥−𝛿𝑡) (50) 

where 𝑥 = 0, 𝑡 = 0, 𝑧 = 𝜂0 

𝜕2𝜂

𝜕𝑥2 = −𝑘2𝜂0 (51) 

𝑤(𝑥, 𝑧, 𝑡) = [𝛼0𝑒𝑘𝑧 + 𝛽0𝑒𝑚𝑧]𝑒𝑖(𝑘𝑥−𝛿𝑡) 
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Therefore  

𝜕𝜓

𝜕𝑧
=  − [𝑘𝛼0𝑒𝑘𝑧 +  𝑚𝛽0𝑒𝑚𝑧]𝑒𝑖(𝑘𝑥−𝛿𝑡) 

Hence,  

𝜕2𝜓

𝜕𝑥𝜕𝑧
=

𝜕

𝜕𝑥

𝜕𝜓

𝜕𝑧
= 𝑖𝑘[𝑘𝛼0𝑒𝑘𝑧 +  𝑚𝛽0𝑒𝑚𝑧]  (52) 

Substitute equation (50) and (52) into (49), we will obtain 

𝑃 = 2𝜇
𝜕2𝜓

𝜕𝑥𝜕𝑧
+  𝑗

𝜕2𝜂

𝜕𝑥2
 

= 2𝜇(𝑖𝑘𝛼0𝑒𝑘𝑧 +  𝑖𝑘𝑚𝛽0𝑒𝑚𝑧)𝑒𝑖(𝑘𝑥−𝛿𝑡) + 𝐽(−𝑘2𝜂0𝑒𝑖(𝑘𝑥−𝛿𝑡)) 

𝑃(𝑥, 𝑧, 𝑡) = [2𝑖𝑘𝜇(𝑘𝛼0𝑒𝑘𝑧 +  𝑚𝛽0𝑒𝑚𝑧)  −  𝑘2𝐽𝜂0] 𝑒𝑖(𝑘𝑥−𝛿𝑡)   (53) 

Which is the pressure distribution along the flow, and at the boundary 𝑥 = 0, 𝑡 = 0, 𝑧 = 𝜂0. 

We obtain the bounded pressure distribution about the elevation 𝑧 = 𝜂0 as  

𝑃(0, 𝜂0, 0) = 2𝑖𝑘2𝜇𝛼0𝑒𝑘𝑧 − 𝑘2𝐽𝜂0  (54) 

4. Discussion of Result 

The bounded solution of equations (48) to (54) of equation (2) and equation (3) represent a system of 

wave motion for which the flow that is initially lamina increasing sensitive to small disturbances due to an 

irregular eddying motion in the horizontal layer of the fluid against the transverse motion that generally 

cause interlacing and constantly varying streams, crossing and re-crossing the flow field. The eddying 

motion is caused by viscous driven current, and the quantity 
𝛿

𝑣𝑘2 in (35) has the representation of the 

Reynolds number R, and in this case expresses as a ratio, the dynamical measure of stress over fluid inertia 

that essentially generate the transition from the linear law of resistance for lamina flow to that of quadratic 

law for turbulence flow due to the action of the eddies in continuous horizontal and transverse motion. 

Hence the distortion arising from the mixing of lamina, irregular and turbulent modes of flow with the 

common transverse gradient justifies the complex nature of the viscosity and thus introduces an imaginary 

part in the propagation frequency, 𝛿, which can be expressed as  

𝛿 =  𝛿𝑜𝑒𝑖𝛿   

Which is equivalent to 

𝛿 =  𝛿𝑜[cos𝛿 +  𝑖 𝑠𝑖𝑛𝛿] 

Thus the Reynolds number for bounded finite amplitude oscillations now becomes 

𝑅   =   −
𝛿𝑜𝑠𝑖𝑛𝛿

𝑣𝑘2
    =    

𝛿

𝑣𝑘2
 

where 𝛿 is the characteristics frequency, and 

𝛿1  =   𝛿𝑜𝑠𝑖𝑛𝛿 =   𝐼𝑚(𝛿) 

Thus if the coefficient of viscosity is large the Reynolds number will be zero. In inviscid fluid, 𝛿 = 0 and 

𝑅 = 0, hence the operating waves now oscillates in shallow water. 
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