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Abstract: Human at different age-group is susceptible to mosquito bites at different level due to their 

age-specific activity behavior when infected-treated bed-nets are used to prevent human from infection f 

malaria. In this paper, an age-structured mathematical model of malaria with heterogeneous mosquito 

biting pattern is proposed. The force of infection is formulated by a Bayesian formula by introducing biting 

probability of a mosquito bite different among different age groups. The resulting mathematical model is a 

system of mixed age-structured model and ordinary differential equations. An efficient numerical scheme is 

derived. Numerical simulation was done to simulate the malaria transmission in Nigeria.  
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1. Introduction 

Malaria, a mosquito-borne disease, still remains a major public health problem worldwide. According to 

World Health Organization (WHO), an estimated 228 million cases of malaria occurred worldwide with an 

estimated 405 thousand deaths in 2018 [1]. The existing WHO-recommended interventions for malaria 

include: Long Lasting Insecticide Nets (LLINs), Indoor Residual Spraying (IRS), Preventive Treatment for 

Infants and during Pregnancy, and Prompt Diagnostic Testing and Treatment with Anti-malaria Medicines. 

In 2014, the first and only vaccine RTS, S/AS01 against malaria finished the Phase III trial. The Phase III trial 

showed that the vaccine has partial protection against malaria with different efficacy among young children. 

Through a WHO-coordinated pilot program, three highly malaria endemic countries in Africa introduced 

the malaria vaccine in selected areas in 2019.  

It is well-known that the mosquito biting patterns will be different with existing interventions. For 

example, it is reasonable to assume that infants are less likely bitten by mosquitoes than active young 

children. There are some research works in studying vaccine strategy in controlling malaria [2], [3]. But 

most of these works are based on homogeneous assumptions in either mosquito biting or vaccination 

strategies. In this paper, an age-structured mathematical model is proposed to study the efficacy of the 

vaccine in control of malaria transmission. The model incorporates different biting preferences/accesses of 

mosquitoes to different age group of humans. In modeling mosquito-borne diseases, one has to follow a 

conservation law between the bites placed by mosquitoes and the bites that the hosts received. A Bayesian 

formula is derived to model this mosquito biting pattern. An efficient numerical method is derived to 

simulate the model. Numerical simulation was done to simulate the malaria transmission in Nigeria. The 

simulation also suggests that the new formulation is more appropriate than the age-independent mosquito 
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biting pattern in terms of numerical stability.  

2. Model 

Assume that mosquitos have different preference/access in successfully biting human population with 

different ages. For example, it is less likely for a mosquito to bite a newly-born baby than an active teenager. 

Let 𝑝(𝑎)  be the probability of a mosquito bite placed on an individual with age a. Let 

𝑠ℎ(𝑡, 𝑎), 𝑖ℎ(𝑡, 𝑎), 𝑟ℎ(𝑡, 𝑎), 𝑣ℎ(𝑡, 𝑎) be the density of susceptible, infected, recovered and vaccinated human 

population at age a at time t, respectively. Let 𝑆𝑣(𝑡) and 𝐼𝑣(𝑡) be the population of susceptible and infected 

mosquitos at time t respectively. An age-structured mathematical model of malaria with heterogeneous 

mosquito biting is given below: 

𝜕𝑠ℎ

𝜕𝑡
+

𝜕𝑠ℎ

𝜕𝑎
= −𝜆𝑣ℎ(𝑡, 𝑎)𝑠ℎ(𝑡, 𝑎) + 𝛾ℎ(𝑎)𝑟ℎ(𝑡, 𝑎) + 𝜂ℎ(𝑎)𝑣ℎ(𝑡, 𝑎) − 𝜉ℎ(𝑡, 𝑎)𝑠ℎ(𝑡, 𝑎) −  𝜇ℎ(𝑎, 𝑁ℎ)𝑠ℎ(𝑡, 𝑎) 

𝜕𝑖ℎ

𝜕𝑡
+

𝜕𝑖ℎ

𝜕𝑎
= 𝜆𝑣ℎ(𝑡, 𝑎)𝑠ℎ(𝑡, 𝑎) − 𝜁ℎ(𝑎)𝑖ℎ(𝑡, 𝑎) − 𝛿ℎ(𝑎)𝑖ℎ(𝑡, 𝑎) −  𝜇ℎ(𝑎, 𝑁ℎ)𝑖ℎ(𝑡, 𝑎),  

𝜕𝑟ℎ

𝜕𝑡
+

𝜕𝑟ℎ

𝜕𝑎
= 𝜁ℎ(𝑎)𝑖ℎ(𝑡, 𝑎) − 𝛾ℎ(𝑎)𝑟ℎ(𝑡, 𝑎) −  𝜇ℎ(𝑎, 𝑁ℎ)𝑟ℎ(𝑡, 𝑎),                                     (1) 

𝜕𝑣ℎ

𝜕𝑡
+

𝜕𝑣ℎ

𝜕𝑎
= 𝜉ℎ(𝑡, 𝑎)𝑠ℎ(𝑡, 𝑎) −  𝜂ℎ(𝑎)𝑣ℎ(𝑡, 𝑎) − 𝜇ℎ(𝑎, 𝑁ℎ)𝑣ℎ(𝑡, 𝑎),  

𝑑𝑆𝑣

𝑑𝑡
= Λ𝑣 − 𝜆ℎ𝑣(𝑡)𝑆𝑣(𝑡) −  𝜇𝑣𝑆𝑣(𝑡),   

𝑑𝐼𝑣

𝑑𝑡
= 𝜆ℎ𝑣(𝑡)𝑆𝑣(𝑡) −  𝜇𝑣𝐼𝑣(𝑡)  

where the forces of infection are defined  

𝜆𝑣ℎ(𝑡, 𝑎) = 𝑝1𝛽𝐼𝑣𝑝(𝑎) ∫ 𝑝(𝑎)𝑛ℎ(𝑡, 𝑎)𝑑𝑎,
𝐴

0
⁄  𝜆ℎ𝑣(𝑡) = 𝑝2𝛽 ∫ 𝑝(𝑎)𝑖ℎ(𝑡, 𝑎)𝑑𝑎

𝐴

0
/ ∫ 𝑝(𝑎)𝑛ℎ(𝑡, 𝑎)𝑑𝑎,

𝐴

0
    (2) 

And 𝑛ℎ(𝑡, 𝑎) = 𝑠ℎ(𝑡, 𝑎) + 𝑖ℎ(𝑡, 𝑎) + 𝑟ℎ(𝑡, 𝑎) + 𝑣ℎ(𝑡, 𝑎). It is worth to point out that the force of infection 

has a Bayesian form. The model is completed with initial and boundary conditions  

𝑠ℎ(0, 𝑎) = 𝑠ℎ0(𝑎), 𝑖ℎ(0, 𝑎) = 𝑖ℎ0(𝑎), 𝑟ℎ(0, 𝑎) = 𝑟ℎ0(𝑎), 𝑣ℎ(0, 𝑎) = 𝑣ℎ0(𝑎), 𝑆𝑣(0) = 𝑆𝑣0, 𝐼𝑣(0) = 𝐼𝑣0   (3) 

And 

𝑠ℎ(𝑡, 0) = ∫ 𝑏ℎ(𝑎)𝑛ℎ(𝑡, 𝑎)𝑑𝑎,
𝐴

0

 𝑖ℎ(𝑡, 0) = 0, 𝑟ℎ(𝑡, 0) = 0, 𝑣ℎ(𝑡, 0) = 0.                         (4) 

All parameter descriptions and values are listed in Table 1. Most of parameter values can be found in [4].  

 
Table 1. Parameter Descriptions and Values 

Parameter Description Baseline values and range 

A Maximum age of humans 90 years 

𝑏ℎ  Birth rate of humans  

𝜇ℎ Death rate of humans  

𝛿ℎ Additional death rate of humans due to malaria  

𝜁ℎ Treatment rate of infected humans 1 ∈ [1/2, 6] 

𝛾ℎ Rate of loss of immunity of recovered humans per year 2 ∈ [1/50, 4] 

𝜉ℎ Vaccination rate of humans  

𝜂ℎ Rate of loss of immunity of vaccinated humans per year ¼ ∈ [1/5, 1] 

Λ𝑣 Recruitment rate of mosquitos per year 1012 

𝜇𝑣 Natural death rate of mosquitoes per year 365/21 ∈ [365/28, 365/14] 

𝛽 Mosquito biting rate per year 18 

𝑝1 Probability of humans being infected by one bite 1/2 

𝑝2 Probability of mosquitos being infected by one bite 2/45 
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3. Fitting of Parameters 

The maximum age was chosen as 90 from the population data available. The recruitment rate for the 

mosquito population was chosen so that it is significantly larger than the human population. For our case, 

we looked at Nigeria, which has a population around 108, so the mosquito recruitment rate per year was set 

as 1012. 

 Birth Rate of Humans 𝒃𝒉(𝒂) 

We model the birth and death rates for Nigeria with data obtained from the United Nations [5] and the 

World Health Organizations [6] for the year of 2015. For the birth rate, we first find the shape of the birth 

rate function then calculate the magnitude based on estimates from the age distribution of the population. 

The age specific fertility rate was obtained from the United Nations [5] and we fit the following curve using 

least squares suggested in [7]. The parameters β1, β2, β3, β4 determine the shape of the curve: 

 𝐵ℎ(𝑎) =  𝛽1 exp{−𝛽2(𝑎 − 𝛽3) − exp[−𝛽4(𝑎 − 𝛽3)]}.                                                (5) 

We obtain the least square estimate 

𝛽̂1 = 0.0001218, 𝛽̂2 = 0.3022, 𝛽̂3 = 78.38, 𝛽̂4 = 0.04006. 

Fig. 1 shows the fitted birth rate curve and the data. The birth function we will use in our model will have 

the form 

𝑏ℎ(𝑎) = 𝑐𝐵ℎ(𝑎) 

where 𝑐 =  𝑛ℎ(0,0)/ ∫ 𝐵ℎ(𝑎)𝑛ℎ(𝑎, 0)𝑑𝑎
𝐴

0
. The value of c will make sure that 𝑏ℎ(𝑎)  has the correct 

magnitude and also that any solution achieved is continuous. We cannot use c = 1 since the data collected is 

for females in Nigeria but 𝑏ℎ(𝑎) is the birth rate over the entire population. For our model we can obtain 

the numerator (𝑛ℎ(0, 0)) with estimates of newborns per year and the denominator (∫ 𝐵ℎ(𝑎)𝑛ℎ(𝑎, 0)𝑑𝑎
𝐴

0
) 

by using a rough estimate of the population age distribution obtained from the UN [5]. In this paper, c = 

0.4496. Note that the value of c only depends on the shape of the distribution over age and not the 

magnitude of the values. 

 Death Rate of Humans 𝝁𝒉(𝒂, 𝑵𝒉) 

The death rate will take the density dependent form 

     𝜇ℎ(𝑎, 𝑁ℎ) = 𝜇ℎ0(𝑎) +  𝜇ℎ1𝑁ℎ                                                                      (6) 

We model death rate in a similar fashion as the age dependent birth rate. The only difference will be that 

there is no need to adjust the magnitude of the values. Life table data is obtained from the World Health 

Organization for 2015 [6]. The death rate is assumed to follow the distribution suggested in [7] 

                                        𝜇ℎ0(𝑎) =  𝜇𝑐(𝑎) +  𝜇𝑚(𝑎) +  𝜇𝑜(𝑎)                                                               (7) 

where 𝜇𝑐(𝑎) = 𝛼𝑐 exp(−𝛽𝑐𝑎), 𝜇𝑚(𝑎) =  𝛼𝑚 exp{−𝛽𝑚(𝑎 − 𝛾𝑚) − exp [𝛿𝑚(𝑎 − 𝛾𝑚)], 𝜇𝑜(𝑎) = 𝛼𝑜/(𝐴 − 𝑎). 

We obtained the least square estimates 

𝛼̂𝑐 = 0.9959, 𝛽̂𝑐 = 0.6776, 𝛼̂𝑚 = 0.1277, 𝛽̂𝑚 = −0.09171, 𝛿𝑚 = −0.0006743, 𝛾̂𝑚 = 66.78, 𝛼̂𝑜 = 0.05859 

Fig. 1 shows the fitted death rate curve to the data.  

The death rate does not need their magnitudes adjusted because the values fitted were the death rates for 

the entire population. For the value of 𝜇ℎ1, we choose it to be constant and set it equal to 1.6 × 10−10. We 

can change the value depending on what we wish the maximum population size to be. The expected lifetime 

can be computed from the death rate by ∫ exp (−
𝐴

0
𝜇ℎ0(𝑎)𝑎)𝑑𝑎 = 50.49 years. 
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Fig. 1. Left: Birth rate function shape. Right: Death rate estimate. The open circles are data retrieved from 

the United Nation website. 

 

 Preference Function 𝒑(𝒂) 

A commonly used force of infection for vector-born disease models is a special case for which 𝑝(𝑎) takes 

the following form.  

𝑝𝑢𝑛𝑖𝑓(𝑎) = {
1, 0 ≤ 𝑎 < 𝐴,
0,              𝑎 ≥ 𝐴.

 

We use an age-dependent function to account for the differences in exposure for different age groups. 

Newborns are relatively protected from outside factors, having no risk of being bitten at birth, and the 

opportunity to come in contact with mosquito increases as they gain the ability to walk and become more 

active. We account for this with the following curve, which has lower values for newborns and drastically 

increases by the age of 10.  

𝑝(𝑎) = {
1

1 + 𝑒−(𝑥−4)
−

1

1 + 𝑒4
, 0 ≤ 𝑎 < 𝐴,

0,                                        𝑎 ≥ 𝐴.
 

Fig. 2 shows the curve 𝑝(𝑎). The value for newborns is consistent with our previous explanation, p(0) = 0. 

Furthermore, for this curve, the preference for humans over 10 is relatively uniform. 

 

 
Fig. 2. Preference function 𝑝(𝑎) in the function of force of infection.  

 

 Disease Induced Death Rate 𝜹𝒉(𝒂) 

Malaria cause high mortality among young age groups, particularly those in age 0-5 years old. We will 

find a function to model the high death rate within the 0-5 age range and the lower death rate within higher 
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age groups. The function is also chosen so it is continuous and differentiable. We assume that the additional 

death rate due to malaria follows the following distribution 

𝛿ℎ(𝑎) = {𝑐 ×
1

1 + 𝑒2𝑎−14 
, 0 ≤ 𝑎 < 𝐴

0,                     𝑎 ≥ 𝐴
 

The additional death rate will be steady around rate c for age 0 − 5. It will then drop quickly to a value 

close to 0. We will use data obtained from WHO in 2009 [8] to determine the value of c. The shape of the 

additional death rate allows us to assume for the purpose of finding an appropriate value of c that the 

additional death rate is constant between ages 0 and 5 at rate c. We use the following relation 

(Number of infected individuals) · (Average time spent infected) · (Probability of dying from the disease) 

= Average number of deaths due to infection 

We restrict to age 0 to 5. The number of infected individuals age 0 to 5 in one year is 34096000 and the 

number of deaths due to malaria in one year is 219000. The disease induced death rate for 0 to 5 years old 

is assumed constant at c, so the probability of dying from the disease over a year is 1 − 𝑒−𝑐. Since the 

natural death rate due to malaria is way smaller than the recovery rate (𝜇ℎ0(𝑎) ≪ 𝜁ℎ) and infection period 

is short, we can assume that the average infection period is  

∫ 𝑒−𝜁ℎ(𝑎)𝑎𝑑𝑎 =
𝐴

0

∫ 𝑒−𝑎𝑑𝑎 = 1 −  𝑒−𝐴 ≈ 1.
𝐴

0

 

Then we have the equation  

34096000 × 1 × (1 − 𝑒−𝑐) = 219000. 

Solving for c, we get c = 0.006444. 

Fig. 3 shows a plot for the disease induced death rate.  

 

 
Fig. 3. Disease induced death rate 𝛿ℎ(𝑎). 

4. Numerical Results 

For numerical simulation, we use implicit finite difference schemes along the characteristic line. We first 

run the iterations until population reaches an equilibrium state. 

Fig. 4 shows the equilibrium age distribution of the total population plotted against the age profile of the 

population of Nigeria. The equilibrium distribution closely mirrors the data for the population being 

modeled. 
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Fig. 4. Age distribution of total population. Solid line represents the numerical simulation results. The open 

circles represent the survey data by age group from Nigeria.  

 

Fig. 5 shows the age distributions of susceptible, infected and recovered groups at equilibrium under no 

vaccinations. The disease has reached a steady endemic state. The infected individuals reach the peak 

around age 5, which can be explained by the choice of biting preference function in the force of infection 

functions.  

 
Fig. 5. Age distribution of population at equilibrium under no vaccinations. 

 

Fig. 6 shows the age distribution of population at equilibrium under a constant vaccination rate of .5. The 

disease has again reached an endemic steady state but the total number of infectives are less than the no 

vaccination case. For best illustration, we only show the age profile for ages 0-20. Due to the effort of 

vaccination, less individuals are infected and age of infected group are pushed further.  

 
Fig. 6. Age distribution of population at equilibrium with vaccination rate 𝜉ℎ = 0.5. 
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Fig. 7 shows the age distribution at equilibrium under a constant vaccination rate of 1. The disease 

vanishes and only the susceptible and vaccinated populations remain, with most of the population being 

vaccinated. 

 
Fig. 7. Age distribution of population at equilibrium with vaccination rate 𝜉ℎ = 1. 

 

5. Conclusion 

In this paper, we proposed a new age-structure mathematical model to study the efficacy of vaccine in 

control of malaria. In particular, a Bayesian formula was used to describe the force of infection. Key 

age-dependent parameter functions are estimated using public data available online. A numerical 

simulation was carried out. Numerical simulations suggest that the disease can be controlled if the efficacy 

of the vaccine is effective and effort of implementation of vaccination is enough.  
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