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Abstract: In this work, we will define two new types of exponential asymptotic stability for the 

Euler-Maruyama numerical scheme in the stochastic controlled Schro dinger equation dependent on time, 

corresponding to a stochastic quantum two-level system, namely, almost sure exponential robust stability 

and asymptotic stability. These types of stability are variants of Mao and Mora definitions for the stability of 

numerical schemes, in the control case. Through the techniques used by Tsoi, we demonstrate the almost 

sure exponential robust stability and the asymptotic stability of the Euler-Maruyama numerical scheme for 

the stochastic controlled Schro dinger equation.  
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1. Introduction 

Many applications on control of quantum systems have led to questions about the stochastic stability and 

robustness of solutions. If we require to select the optimal control so that the stochastic quantum system 

steers an initial state to a target with probability one, minimizing the cost, requiring some asymptotic 

stability properties for the resulting system, it is important to have several stability results that allow 

achieving the desired task. We can use stability results to select controls assuring asymptotic stability 

properties. Also, studying the stability of the numerical schemes for stochastic controlled Schro dinger 

equations and computing approximations, it's important to analyze the choice of step size 𝑡𝑘 , in order to 

extend the stability properties to the exact solution of the corresponding stochastic controlled Schro dinger 

equation, by very large time. There are different types of exponential stochastic stability and we look for the 

most suitable four our optimal control problem.  

The stability and robustness analysis of numerical computations in the stochastic controlled Schro dinger 

equation is motivated, at first, by the insensitivity of the numerical solution found via Euler-Maruyama 

numerical scheme, with respect to the ensemble of parameters related with the Nuclear Magnetic 

Resonance (NMR) phenomenon.  For this purpose, in this paper we will considerate asymptotic and robust 

analysis to study the stability of solutions of Euler-Maruyama numerical scheme for the time-dependent 

stochastic Schro dinger equation. 

2. Preliminaries 

We consider the following stochastic controlled quantum system: a two-level open quantum system 
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interacting on the one hand with a constant and longitudinal static electromagnetic field with magnitude 

𝐵0 = 1 in the direction of the Z axis and the other hand, with two randomly time varying electromagnetic 

fields, one of them with amplitude 𝑢1(𝑡) along the X axis and the other, with amplitude 𝑢2(𝑡) along the Y 

axis. This two-level quantum system is governed by the time-dependent Schro dinger equation for a pure 

state (we use natural units, ℏ =1): 

 

𝑑

𝑑𝑡
𝜓(𝑡) = −𝑖𝐻(𝑢(𝑡))𝜓(𝑡),                                                                       (1) 

 

where 𝜓 = (𝜓1, 𝜓2): [0, 𝑇]→ ℂ2  is a quantum state, 𝑢: [0, 𝑇]  → ℝ , 𝑢(t) = (𝑢1(𝑡), 𝑢2(𝑡)) are stochastic 

controls and the energy of the system is represented by the Hamiltonian operator 𝐻(𝑡). By splitting real 

and imaginary parts of 𝜓 and considering 𝑥: = (𝜓ℝ, 𝜓ℑ)𝑡 , we obtain, as in [1], the following equivalent 

stochastic differential system: 

 

𝑑𝑥(𝑡) = 𝑆3𝑥(𝑡) 𝑑𝑡 + (𝑆2𝑢2(𝑡) + 𝑆1𝑢1(𝑡))𝑥(𝑡) 𝑑𝑊,                                        (2) 

 

With initial state 𝑥 (
𝜋

√2
) =  (0,0,0,1), where 𝑆𝑖 is the real representation of the Pauli matrix, for 𝑖 =

1,2,3, 𝑊(𝑡) is a standard Wiener real process, defined over a probabilistic real valued space (𝛺, 𝐵, {𝐵𝑡}, 𝑃) 

and {𝐵𝑡}𝑡>0 is a sub--algebra defined by the usual conditions. Let   be the Euclidean norm in ℝ𝑛 and 

let’s consider the trace as the norm in ℝ𝑛𝑚. In the context of the optimal control, equation (2) represent a 

stochastic differential system whose analytic solution cannot be found, so numerical solution is needed. So, 

in [1], we use the Euler-Maruyama method. 

The Euler-Maruyama method is obtained by truncating the Ito ’s formula of the stochastic Taylor series 

after the first terms. This method computes approximations  𝑥𝑘+1 𝑥𝑘(𝑘𝑡), selecting a grid of 0, T : 0 <

𝑡0 < ⋯ < 𝑡𝑁 = 𝑇 and defining 𝑡𝑘+1 = 𝑡𝑘+1 − 𝑡𝑘 and 𝑊𝑘+1 = 𝑊(𝑡𝑘+1) − 𝑊(𝑡𝑘): 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝑆3𝑥𝑘𝑡𝑘+1 + (𝑆1𝑢1(𝑡) + 𝑆2𝑢2(𝑡))𝑥𝑘𝑊𝑘+1                                      (3) 

 

Now, in order to addressing the concepts of stochastic stability in our discussion and according to 

Lyapunov theory, it is important to introduce a Lyapunov function 𝑉(𝑡, 𝑥)𝐶1,2(ℝ+ × ℝ𝑛; ℝ+), which 

allows to guarantee the stability of the solution of the stochastic differential equation  

 

𝑑𝑥(𝑡) = 𝑏(𝑡, 𝑥)𝑑𝑡 + 𝜎(𝑡, 𝑥)𝑑𝑊                                                                  (4) 

 

The aforementioned function 𝑉(𝑡, 𝑥) must satisfy, according to Ito ’s formula, the expression: 

 

𝑑𝑉(𝑡, 𝑥) = 𝐿𝑉(𝑡, 𝑥)𝑑𝑡 + 𝑉𝑥(𝑡, 𝑥)𝜎(𝑡, 𝑥)𝑑𝑊(𝑡)                                                   (5) 

 

where 𝐿:ℝ+ × ℝ𝑛→ ℝ is the diffusion operator acting on 𝑉(𝑡, 𝑥) and defined by 

 

𝐿𝑉(𝑡, 𝑥) =  𝑉𝑡(𝑡, 𝑥) + (𝑉𝑥(𝑡, 𝑥), 𝑏(𝑡, 𝑥)) +
1

2
 𝑡𝑟𝑎𝑐𝑒 [𝜎(𝑡, 𝑥)𝑡𝑉𝑥𝑥(𝑡, 𝑥)𝜎(𝑡, 𝑥)]                             (6) 

 

It is also convenient to introduce the operator 𝑄:ℝ+ × ℝ𝑛→ ℝ, which acts on 𝑉(𝑡, 𝑥) as follows: 

 

International Journal of Applied Physics and Mathematics

2 Volume 11, Number 1, January 2021



  

𝑄𝑉(𝑡, 𝑥) =  𝑡𝑟𝑎𝑐𝑒 [𝜎(𝑡, 𝑥)𝑡𝑉𝑥(𝑡, 𝑥)𝑡𝑉𝑥(𝑡, 𝑥)𝜎(𝑡, 𝑥) ]                                                       (7) 

 

We will establish the following result, called the exponential martingale inequality, which is a 

straightforward application of the Ito  formula and that is a fundamental tool in the formulation of our 

results. Its demonstration can be consulted in [2] 

Lemma 2.1 Let , , be any positive numbers. Let 𝑥(𝑡) be solution of the stochastic differential equation 

(4). If there exists a function 𝑉(𝑡, 𝑥)𝐶1,2(ℝ+ × ℝ𝑛; ℝ+) satisfying equation (5) for a diffusion operator 

𝐿𝑉(𝑡, 𝑥), then  

 

P [ sup
0≤𝑡≤𝑇

[∫ (𝜎(𝑡, 𝑥)𝑡 , 𝑉𝑥(𝑡, 𝑥))
𝑇

0

𝑑𝑊(𝑠) −
𝛼

2
 ∫ 𝑡𝑟𝑎𝑐𝑒 [𝜎(𝑡, 𝑥)𝑡𝑉𝑥(𝑡, 𝑥)𝑡𝑉𝑥(𝑡, 𝑥)𝜎(𝑡, 𝑥)] 𝑑𝑠] >  𝛽 

𝑇

0

] ≤ 𝑒−𝛼𝛽       (8) 

 

3. Long-Time Asymptotic Behavior 

In this section, we will introduce the definitions of almost sure exponential robust stability and 

asymptotic stability of the trivial solution of the numerical scheme defined by equation (3), associated to 

the stochastic controlled Schro dinger equation (2). 

Definition 3.1 Let t  0 and {
𝑘
} a positive continuous and increasing sequence. The numerical 

scheme defined by equation (3) is called almost surely exponentially and robustly stable, if there exists a 

constant r  0 such that  

lim sup
𝑘→

1

log𝜆𝑘(t)
 log ∥ 𝑥𝑘 ∥𝑝 < −𝑟      a.s. 

 

Definition 3.2 Let p(0,1] be arbitrary, t  0 and 𝑓: ℝ→ ℝ a continuous and increasing function. The 

numerical scheme defined by equation (3) is called asymptotically stable if there exist a constant l  0 such 

that  

 

lim sup
𝑘→

log 𝑓(𝑥𝑘)

𝑘
 < −𝑙 

 

Next, we will establish the first of the results of this paper, through the techniques used by [3] and [4], in 

exponential asymptotic stability, adapted to the case where the diffusion term contains a control 𝑢(𝑡), as in 

equation (3).  

Theorem 3.3 Let p(0,1] be arbitrary. Assume that the conditions of lemma 2.1 are satisfied and let 

{𝑥𝑘}𝑘 a Markov process.  If there exists a function 𝑉(𝑡, 𝑥)𝐶1,2(ℝ+ × ℝ𝑛; ℝ+), a positive continuous and 

increasing sequence  {𝜆𝑘(𝑡)}𝑘 , λ𝑘: ℝ → ℝ+ , with λ𝑘(t) ≥ 1 , a continuous and non-negative function 

𝑔: ℝ→ ℝ, such that  

a) 𝐿𝑉(𝑡, 𝑥) < −𝑔(𝑡)𝑉(𝑡, 𝑥),   ∀ 𝑡 ∈ ℝ+ 

b) ∥ 𝑥𝑘 ∥𝑝 𝑘(t) < 𝑉(𝑡, 𝑥), ∀ 𝑡 ∈ ℝ+, ∀ 𝑘 ∈ ℕ  

Then, the numerical scheme defined by equation (3) is almost surely exponentially and robustly stable. 

Proof. Let 𝑧1(𝑡), 𝑧2(𝑡) be the following processes: 

 

𝑧1(𝑡) = ∑ 𝑥𝑘 1[𝑘t,(𝑘+1)t](𝑡),   𝑧2(𝑡) =



𝑘=0

∑ 𝑥𝑘+1 1[𝑘t,(𝑘+1)t](𝑡)



𝑘=0
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where 𝑥𝑘 satisfies equation (3). Using equation (5) and Ito ’s formula we have 

 

𝑑𝑉(𝑧2(𝑡), 𝑡) = 𝑉𝑡(𝑧2(𝑡), 𝑡) 𝑑𝑡 + 𝑉𝑥(𝑧2(𝑡), 𝑡)𝑑𝑧2 +
1

2
 𝑡𝑟𝑎𝑐𝑒 [𝜎(𝑡, 𝑥)𝑡𝑉𝑥𝑥(𝑡, 𝑥)𝜎(𝑡, 𝑥)]           (9) 

 

Now, in combination with the following expression: 

 

𝑑 log𝑉(𝑧2(𝑡), 𝑡) =
1

𝑉(𝑧2(𝑡), 𝑡)
 [𝑑𝑉(𝑧2(𝑡), 𝑡) −

1

2
 

1

𝑉(𝑧2(𝑡), 𝑡)
 𝑑𝑉(𝑧2(𝑡), 𝑡)

2] 

 

We have  

 

log 𝑉(𝑧2(𝑡), 𝑡) = log𝑉(𝑥𝑘 , 𝑘) + ∫
1

𝑉(𝑧1(𝑠), 𝑠)

𝑡𝑘+1

0

 [𝐿𝑉(𝑧1(𝑠), 𝑠) −
1

2
 
𝑄𝑉(𝑧1(𝑠), 𝑠)

𝑉(𝑧1(𝑠), 𝑠)
] 𝑑𝑠                           

+ ∫
1

𝑉(𝑧1(𝑠), 𝑠)

𝑡𝑘+1

0

 ∑ ∑[((𝑆2𝑢2(𝑡𝑘+1)                                                                    

𝑛

𝑘=1

𝑛

𝑘=1

+ 𝑆1𝑢1(𝑡𝑘+1))𝑥𝑘1[𝑘s,(𝑘+1)s](𝑠)] 
𝜕𝑉(𝑧1(𝑠), 𝑠)

ð 𝑧1(𝑠)
 𝑑𝑊𝑠                                                                      (10) 

 

Let’s use lemma 2.1, considering 𝑇 = 𝑡𝑘+1,  𝛽 = 2 log 𝐶, 𝛼 = 1 and 

 

𝜎(𝑡, 𝑥) = ((𝑆2𝑢2(𝑡𝑘+1) + 𝑆1𝑢1(𝑡𝑘+1))𝑥𝑘1[𝑘t,(𝑘+1)t](𝑡), 

 

To get 

 

P

[
 
 
 
 sup

0≤𝑡≤𝑇
[∫ ((𝑆2𝑢2(𝑡𝑘+1) + 𝑆1𝑢1(𝑡𝑘+1))𝑥𝑘1[𝑘t,(𝑘+1)t](𝑡)𝑉𝑥(𝑡, 𝑥)

𝑡𝑘+1

0

𝑑𝑊(𝑠)

−
1

2
 ∫ [((𝑆2𝑢2(𝑡𝑘+1) + 𝑆1𝑢1(𝑡𝑘+1))𝑥𝑘1[𝑘t,(𝑘+1)t](𝑡)]

2 [𝑉𝑥(𝑡, 𝑥)]2 𝑑𝑠] >  2 log 𝐶 
𝑇

0 ]
 
 
 
 

≤ 𝐶−2  

 

Now, as usual, the Borel-Cantelli lemma allows to deduce the existence of a random integer 𝑘0 such that, 

for all 𝑘 ≥  𝑘0 

 

∫ ((𝑆2𝑢2(𝑡𝑘+1) + 𝑆1𝑢1(𝑡𝑘+1))𝑥𝑘1[𝑘t,(𝑘+1)𝑡](𝑡)𝑉𝑥(𝑡, 𝑥)𝑑𝑊(𝑠)
𝑡𝑘+1

0

−
1

2
 ∫ [((𝑆2𝑢2(𝑡𝑘+1) + 𝑆1𝑢1(𝑡𝑘+1))𝑥𝑘1[𝑘t,(𝑘+1)t](𝑡)]

2 [𝑉𝑥(𝑡, 𝑥)]2𝑑𝑠]  
𝑇

0

≤  2 𝑙𝑜𝑔 𝐶 

 

So, using equation (10), we have 

 

∫
1

𝑉(𝑧1(𝑠), 𝑠)

𝑡𝑘+1

0

 ∑ ∑[((𝑆2𝑢2(𝑡𝑘+1) + 𝑆1𝑢1(𝑡𝑘+1))𝑥𝑘1[𝑘t,(𝑘+1)t](𝑠)]

𝑛

𝑘=1

 

𝑛

𝑘=1

𝜕𝑉(𝑧1(𝑠), 𝑠)

ð 𝑧1(𝑠)
 𝑑𝑊𝑠  

−
1

2
∫

1

𝑉2(𝑧1(𝑠), 𝑠)
  𝑄𝑉(𝑧1(𝑠), 𝑠)

𝑡𝑘+1

0

𝑑𝑠 

≤ 2𝑙𝑜𝑔 𝐶                                                                                                                                                      (11) 
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And, by using hypotheses (a) and (b), and inequality (11), this turns out 

 

log 𝑉(𝑧2(𝑡), 𝑡)  ≤ log 𝑉(𝑥0, 0) –∫ 𝑔(𝑡) 𝑑𝑡
𝑡𝑘+1

0

+ 2𝑙𝑜𝑔 𝐶                                                (12) 

 

Then, from (b), there hold 

 

1

log 𝜆𝑘(t)
log ∥ 𝑥𝑘 ∥𝑝≤ 

log𝑉(𝑥0, 0) 

log 𝜆𝑘(t)
−

∫ 𝑔(𝑡) 𝑑𝑡
𝑡𝑘+1

0

log 𝜆𝑘(t)
+

2 𝑙𝑜𝑔 𝐶

log 𝜆𝑘(t)
 

 

Finally, because sequence {𝜆𝑘(𝑡)}𝑘 is increasing and 𝑔(𝑡) is non-negative, there exists 𝑟 > 0, such that 

 

lim sup
𝑘→

1

log𝜆𝑘(t)
 log ∥ 𝑥𝑘 ∥𝑝 < −𝑟      a.s. 

 

Obtaining the conclusion. 

The last result presented here is the following theorem. 

Theorem 3.4 Let p(0,1] be arbitrary. Let 𝑓: ℝ→ ℝ be a function continuous increasing, t  0 and 

suppose that there exists a function 𝑉(𝑡, 𝑥)𝐶1,2(ℝ+ × ℝ𝑛; ℝ+) and a constant 𝑟 > 0, such that  

 

a) 𝑓(𝑥𝑘) ≤ 𝑉(𝑡, 𝑥),   ∀ 𝑡 ∈ ℝ+, ∀ 𝑘 ∈ ℕ  

b) 𝐿𝑉(𝑡, 𝑥) < −𝑟 𝑉(𝑡, 𝑥),    ∀ 𝑡 ∈ ℝ+ 

 

Then, the numerical scheme defined by equation (3) is asymptotically stable. 

Proof. Let 𝑉(𝑡, 𝑥)𝐶1,2(ℝ+ × ℝ𝑛; ℝ+) and 𝑓: ℝ→ ℝ be the functions mentioned in the hypothesis. We 

can follow the argumentation exposed in the proof of Theorem 3.3, so, by equation (12) and hypothesis (b), 

we have 

 

1

𝑘
log V(z2(𝑡), 𝑡)  ≤ 

1

𝑘
[log 𝑉(𝑥0, 0) – 𝑟𝑡𝑘+1 + 2𝑙𝑜𝑔 𝐶 ]                                                (13) 

 

From which, using hypothesis (a), 

 

1

𝑘
log 𝑓(𝑥𝑘)  ≤ [

log 𝑉(𝑥0, 0) 

𝑘
– 𝑟

𝑡𝑘+1

𝑘
+

2𝑙𝑜𝑔 𝐶 

𝑘
]                                          (14) 

 

Taking 𝑘 → , the first and the third term in right hand of equation (14) tend to 0 and, because  𝑡𝑘+1 ≤

𝑘 + 1, there exist 𝑙 > 0 such that the conclusion is satisfied: 

 

lim sup
𝑘→

1

𝑘
 log 𝑓(𝑥𝑘)  < −𝑙 

 

4. An Application in Stochastic Optimal Control for NMR 

In this section, we will apply Theorem 3.3 and Theorem 3.4 to the model of stochastic controlled 

Schro dinger equation (2).  
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We consider again, the model describing a spin ½-particle in an electromagnetic field, fluctuating in the 

𝑋 and 𝑌 directions by white noise. The optimal control problem for this quantum stochastic systems is the 

following: 

To find controls 𝑢1(𝑡), 𝑢2(𝑡) which steers the initial condition 𝑥(0) =  (1,0,0,0) of stochastic system 

given by equation (2), to the final state 𝑥 (
𝜋

√2
) =  (0,0,0,1) and minimize the cost functional Bolza type 

following: 

 

min ⟶ 𝐽(𝑢1, 𝑢1 ) = 𝐸 [< 𝑥𝑡 (
𝜋

√2
) |𝑂| 𝑥 (

𝜋

√2
) > +∫ (𝑢1

2(𝑡) + 𝑢2
2(𝑡)) 𝑑𝑡

𝜋

√2

0

] 

 

where 𝐸[𝑓] denotes the conditional expectation with respect to 𝑓 and 𝑂 is the symmetric, negative 

defined matrix 𝑂 = 𝑥𝑡 (
𝜋

√2
) 𝑥 (

𝜋

√2
), called the observable operator.  

Reference [1] shows the application of maximum principle, stochastic maximum principle and second 

order maximum principle to determine the form of the optimal control in this case. The corresponding 

adjoint equations for the co-state λ and state equations for 𝑥, constitute an associated two-point boundary 

value problem which can’t be analytically solved. Through the Euler-Maruyama scheme, we have 

numerically obtained the optimal controls 𝑢1(𝑡), 𝑢2(𝑡) and state trajectory 𝑥 = (𝑥1, 𝑥1, 𝑥1, 𝑥1). Fig. 1 

shows a computer simulation of the optimal stochastic trajectory steering initial state 𝑥(0)  =  (1,0,0,0) 

(the North Pole on Bloch sphere) to final state 𝑥 (
𝜋

√2
) =  (0,0,0,1) (the South Pole on Bloch sphere), for this 

control problem, using Euler-Maruyama scheme given by equation (3), obtained in [1]. Now, we have 

interested in almost sure exponential robust stability and asymptotic stability of the Euler-Maruyama 

scheme for this optimal control problem. 

 
Fig. 1. The optimal stochastic trajectory on the Bloch sphere of the solution 𝑥 = (𝑥1, 𝑥1, 𝑥1, 𝑥1) to trivial 

solution of the numerical scheme in the stochastic controlled Schro dinger equation. 

 

Let consider for 𝑘 ∈ ℕ and 𝑢1(𝑡) ≠ 0, 𝑢2(𝑡) ≠ 0, controls obtained in [1], namely,  

 

𝑢1(𝑡) = −
1

2
 Λ(t)𝑆1𝑥(𝑡),    𝑢2(𝑡) = −

1

2
 Λ(t)𝑆2𝑥(𝑡), 

 

where 𝛬(𝑡) is the adjoint state to 𝑥(𝑡), the Lyapunov function 

 

𝑉(𝑡, 𝑥) = [𝑢1(𝑡) + 𝑢2(𝑡)]
−2 ∥ 𝑥𝑘(𝑡) ∥2 1[𝑘t,(𝑘+1)t](𝑡)                                   (15) 
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And la function 𝑔: ℝ→ ℝ given by  

 

𝑔(𝑡) = −2(𝑢1(𝑡) + 𝑢2(𝑡) + 1)(𝑢′
1(𝑡) + 𝑢′

2(𝑡)) 

 

We obtain the corresponding diffusion operator  

 

𝐿𝑉(𝑡, 𝑥) = {∥ 𝑥𝑘 ∥2 [−2[𝑢1(𝑡) + 𝑢2(𝑡)]
−2[(𝑢1(𝑡) + 𝑢2(𝑡))(𝑢

′
1(𝑡) + 𝑢′

2(𝑡)) + 1]] + 1}  1[𝑘t,(𝑘+1)t](𝑡) 

 

Then 

 

𝐿𝑉(𝑡, 𝑥) <  𝑉(𝑡, 𝑥) − 2(𝑢1(𝑡) + 𝑢2(𝑡) + 1)[𝑢′
1(𝑡) + 𝑢′

2(𝑡)] + 1 < 𝑔(𝑡)𝑉(𝑡, 𝑥) + 1 

 

So, applying Theorem 3.3, we conclude that Euler-Maruyama numerical scheme, defined by equation (3), 

is almost surely exponentially and robustly stable, for all sufficiently small step sizes 𝑡𝑘 . 

Similarly, we apply Theorem 3.4, using again equation (15) to define the Lyapunov function 𝑉(𝑡, 𝑥), 

considering 𝑓(𝑥) = 𝑥  in Theorem 3.3 and setting 𝑝 = 1, to deduce that Euler-Maruyama numerical 

scheme defined by equation (3) is asymptotically stable 

5. Conclusion 

In this paper, we have presented definitions of almost sure exponential robust stability and asymptotic 

stability for the Euler-Maruyama numerical scheme in the stochastic controlled Schro dinger equation to a 

stochastic quantum two-level system. These types of stability are variants of Mao and Mora definitions in [5] 

and [6], respectively. Through techniques used in [3] and [5], adapted to controlled systems, we have 

demonstrated the almost sure exponential robust stability and asymptotic stability of the numerical 

solution, for the step-size ∆𝑡 small and for long-time, found by numerical integration of coupled stochastic 

differential equations, describing a stochastic quantum two-level system in NMR. We have presented a 

simulation obtained in [1], using Euler-Maruyama scheme, of the optimal stochastic trajectory, which is 

solution of the optimal control problem posed.  
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